Knowledge

Skew lines

Source 📝

106: 20: 1571: 1049: 849: 140:. Conversely, any two pairs of points defining a tetrahedron of nonzero volume also define a pair of skew lines. Therefore, a test of whether two pairs of points define skew lines is to apply the formula for the volume of a tetrahedron in terms of its four vertices. Denoting one point as the 1×3 vector 86:
define a pair of skew lines. After the first three points have been chosen, the fourth point will define a non-skew line if, and only if, it is coplanar with the first three points. However, the plane through the first three points forms a subset of measure zero of the cube, and the probability that
1534:
if it is possible to continuously transform one configuration into the other, maintaining throughout the transformation the invariant that all pairs of lines remain skew. Any two configurations of two lines are easily seen to be isotopic, and configurations of the same number of lines in dimensions
1645:
of this ruled surface produces a surface which in general has an elliptical cross-section rather than the circular cross-section produced by rotating L around L'; such surfaces are also called hyperboloids of one sheet, and again are ruled by two families of mutually skew lines. A third type of
1421: 912: 712: 475: 399: 1650:. Like the hyperboloid of one sheet, the hyperbolic paraboloid has two families of skew lines; in each of the two families the lines are parallel to a common plane although not to each other. Any three skew lines in 904: 701: 595: 1494: 1177: 1227: 1272: 301: 90:
Similarly, in three-dimensional space a very small perturbation of any two parallel or intersecting lines will almost certainly turn them into skew lines. Therefore, any four points in
1535:
higher than three are always isotopic, but there exist multiple non-isotopic configurations of three or more lines in three dimensions. The number of nonisotopic configurations of
1357: 1115: 1086: 649: 540: 511: 1044:{\displaystyle \mathbf {c_{2}} =\mathbf {p_{2}} +{\frac {(\mathbf {p_{1}} -\mathbf {p_{2}} )\cdot \mathbf {n_{1}} }{\mathbf {d_{2}} \cdot \mathbf {n_{1}} }}\mathbf {d_{2}} } 844:{\displaystyle \mathbf {c_{1}} =\mathbf {p_{1}} +{\frac {(\mathbf {p_{2}} -\mathbf {p_{1}} )\cdot \mathbf {n_{2}} }{\mathbf {d_{1}} \cdot \mathbf {n_{2}} }}\mathbf {d_{1}} } 620: 1313: 405: 329: 706:
Therefore, the intersecting point of Line 1 with the above-mentioned plane, which is also the point on Line 1 that is nearest to Line 2 is given by
1994:
G. Gallucci (1906), "Studio della figura delle otto rette e sue applicazioni alla geometria del tetraedro ed alla teoria della configurazioni",
857: 654: 548: 1662:
If three skew lines all meet three other skew lines, any transversal of the first set of three meets any transversal of the second set.
1436: 58:. Two lines that both lie in the same plane must either cross each other or be parallel, so skew lines can exist only in three or more 1123: 1558: 1188: 312: 318: 1233: 194: 1516: 1857: 2050: 1957: 75: 2060: 1634:
from it but with the opposite angle that form the opposite regulus. The two reguli display the hyperboloid as a
1610:. For instance, the three hyperboloids visible in the illustration can be formed in this way by rotating a line 114: 1972: 2055: 2045: 87:
the fourth point lies on this plane is zero. If it does not, the lines defined by the points will be skew.
1862: 1416:{\displaystyle \mathbf {n} ={\frac {\mathbf {b} \times \mathbf {d} }{|\mathbf {b} \times \mathbf {d} |}}} 35: 23: 1091: 1062: 625: 516: 487: 97:
In this sense, skew lines are the "usual" case, and parallel or intersecting lines are special cases.
2065: 1607: 603: 1182:
The distance between nearest points in two skew lines may also be expressed using other vectors:
1530:
of skew lines is a set of lines in which all pairs are skew. Two configurations are said to be
1427: 47: 1298: 1647: 1642: 1599: 109:
PQ, the shortest distance between two skew lines AB and CD is perpendicular to both AB and CD
54:. A simple example of a pair of skew lines is the pair of lines through opposite edges of a 1980: 1719:. As with lines in 3-space, skew flats are those that are neither parallel nor intersect. 8: 1945: 1731: 470:{\displaystyle {\text{Line 2:}}\;\mathbf {v_{2}} =\mathbf {p_{2}} +t_{2}\mathbf {d_{2}} } 394:{\displaystyle {\text{Line 1:}}\;\mathbf {v_{1}} =\mathbf {p_{1}} +t_{1}\mathbf {d_{1}} } 128:
that it passes through, then these four points must not be coplanar, so they must be the
55: 51: 1925: 1887: 1623: 2018: 1953: 1883: 129: 146:
whose three elements are the point's three coordinate values, and likewise denoting
1579: 125: 91: 1723: 1671: 43: 2022: 1626:; the hyperboloid also contains a second family of lines that are also skew to 105: 1734:, parallelism does not exist; two flats must either intersect or be skew. Let 1315:
determining where the point is on the line, and similarly for arbitrary point
2039: 1941: 1635: 1337: 1295:
representing the direction of the line and with the value of the real number
481: 83: 19: 1908: 1575: 1583: 1349: 133: 1929: 1570: 2027: 1892: 188:
by seeing if the tetrahedron volume formula gives a non-zero result:
59: 899:{\displaystyle \mathbf {n_{1}} =\mathbf {d_{1}} \times \mathbf {n} } 854:
Similarly, the point on Line 2 nearest to Line 1 is given by (where
696:{\displaystyle \mathbf {n_{2}} =\mathbf {d_{2}} \times \mathbf {n} } 590:{\displaystyle \mathbf {n} =\mathbf {d_{1}} \times \mathbf {d_{2}} } 1283:
represents an arbitrary point on the line through particular point
63: 1507:| is zero the lines are parallel and this method cannot be used). 1489:{\displaystyle d=|\mathbf {n} \cdot (\mathbf {c} -\mathbf {a} )|.} 1172:{\displaystyle d=\Vert \mathbf {c_{1}} -\mathbf {c_{2}} \Vert .} 1222:{\displaystyle \mathbf {x} =\mathbf {a} +\lambda \mathbf {b} ;} 137: 1996:
Rendiconto dell'Accademia della Scienza Fisiche e Matematiche
26:. The line through segment AD and the line through segment B 1881: 1553: 1267:{\displaystyle \mathbf {y} =\mathbf {c} +\mu \mathbf {d} .} 79: 1730:, two flats of any dimension may be parallel. However, in 1117:
form the shortest line segment joining Line 1 and Line 2:
313:
Line–line intersection § Nearest points to skew lines
1654:
lie on exactly one ruled surface of one of these types.
296:{\displaystyle V={\frac {1}{6}}\left|\det \left\right|.} 30:
B are skew lines because they are not in the same plane.
319:
Triangulation (computer vision) § Mid-point method
164:
for the other points, we can check if the line through
124:
If each line in a pair of skew lines is defined by two
227: 1439: 1360: 1301: 1236: 1191: 1126: 1094: 1065: 915: 860: 715: 657: 628: 606: 600:
The plane formed by the translations of Line 2 along
551: 519: 490: 408: 332: 197: 2016: 1940: 1934: 1665: 1488: 1415: 1307: 1266: 1221: 1171: 1109: 1080: 1043: 898: 843: 695: 643: 614: 589: 534: 505: 469: 393: 295: 1682:-flat. Thus, a line may also be called a 1-flat. 1517:Line–line intersection § More than two lines 62:. Two lines are skew if and only if they are not 2037: 219: 1907:Viro, Julia Drobotukhina; Viro, Oleg (1990), 1163: 1133: 1993: 414: 338: 1952:(2nd ed.), Chelsea, pp. 13–17, 1348:is perpendicular to the lines, as is the 1906: 1900: 1569: 104: 18: 1971: 1614:around the central white vertical line 119: 2038: 1987: 1965: 1598:skew but not perpendicular to it, the 1510: 115:Line–line intersection § Formulas 2017: 1882: 1875: 1657: 1551:1, 1, 2, 3, 7, 19, 74, ... (sequence 1321:on the line through particular point 323:Expressing the two lines as vectors: 74:If four points are chosen at random 1858:Distance between two parallel lines 69: 13: 14: 2077: 2010: 1565: 1521: 306: 1471: 1463: 1452: 1401: 1393: 1381: 1373: 1362: 1257: 1246: 1238: 1212: 1201: 1193: 1157: 1153: 1142: 1138: 1110:{\displaystyle \mathbf {c_{2}} } 1101: 1097: 1081:{\displaystyle \mathbf {c_{1}} } 1072: 1068: 1035: 1031: 1020: 1016: 1005: 1001: 991: 987: 973: 969: 958: 954: 937: 933: 922: 918: 892: 882: 878: 867: 863: 835: 831: 820: 816: 805: 801: 791: 787: 773: 769: 758: 754: 737: 733: 722: 718: 689: 679: 675: 664: 660: 644:{\displaystyle \mathbf {p_{2}} } 635: 631: 608: 581: 577: 566: 562: 553: 535:{\displaystyle \mathbf {d_{2}} } 526: 522: 506:{\displaystyle \mathbf {d_{1}} } 497: 493: 461: 457: 436: 432: 421: 417: 385: 381: 360: 356: 345: 341: 273: 265: 256: 248: 239: 231: 1670:In higher-dimensional space, a 1666:Skew flats in higher dimensions 542:is perpendicular to the lines. 1924:. Revised version in English: 1909:"Configurations of skew lines" 1479: 1475: 1459: 1447: 1406: 1388: 979: 949: 779: 749: 1: 1868: 1950:Geometry and the Imagination 1685:Generalizing the concept of 615:{\displaystyle \mathbf {n} } 176:is skew to the line through 7: 1851: 1740:be the set of points on an 1622:within this surface form a 1054: 100: 16:Lines not in the same plane 10: 2082: 1750:be the set of points on a 1514: 1430:between the lines is then 316: 310: 112: 36:three-dimensional geometry 24:Rectangular parallelepiped 1772:then the intersection of 2051:Euclidean solid geometry 1977:Introduction to Geometry 1630:at the same distance as 1608:hyperboloid of one sheet 1582:by skew lines on nested 1308:{\displaystyle \lambda } 651:and is perpendicular to 94:always form skew lines. 1863:Petersen–Morley theorem 1803:In either geometry, if 1693:-dimensional space, an 2061:Orientation (geometry) 1590:If one rotates a line 1587: 1490: 1428:perpendicular distance 1417: 1309: 1268: 1223: 1173: 1111: 1082: 1045: 900: 845: 697: 645: 616: 591: 536: 507: 471: 395: 297: 110: 31: 1981:John Wiley & Sons 1826:, then the points of 1754:-flat. In projective 1648:hyperbolic paraboloid 1646:ruled surface is the 1643:affine transformation 1600:surface of revolution 1573: 1491: 1418: 1310: 1269: 1224: 1174: 1112: 1083: 1046: 901: 846: 698: 646: 617: 592: 537: 508: 472: 396: 298: 113:Further information: 108: 22: 1946:Cohn-Vossen, Stephan 1888:"Line-Line Distance" 1678:is referred to as a 1594:around another line 1437: 1358: 1299: 1277:Here the 1×3 vector 1234: 1189: 1124: 1092: 1063: 913: 858: 713: 655: 626: 604: 549: 517: 488: 406: 330: 195: 120:Testing for skewness 2056:Multilinear algebra 2046:Elementary geometry 1800:-flat is a point.) 1511:More than two lines 1059:The nearest points 622:contains the point 56:regular tetrahedron 2019:Weisstein, Eric W. 1916:Leningrad Math. J. 1884:Weisstein, Eric W. 1658:Gallucci's theorem 1588: 1486: 1413: 1305: 1264: 1219: 1169: 1107: 1078: 1041: 896: 841: 693: 641: 612: 587: 532: 503: 467: 391: 293: 279: 111: 32: 1973:Coxeter, H. S. M. 1411: 1027: 827: 412: 336: 212: 2073: 2032: 2031: 2004: 2003: 1991: 1985: 1984: 1979:(2nd ed.), 1969: 1963: 1962: 1938: 1932: 1923: 1913: 1904: 1898: 1897: 1896: 1879: 1835: 1825: 1814: 1808: 1784:must contain a ( 1783: 1777: 1771: 1749: 1739: 1732:projective space 1718: 1618:. The copies of 1580:projective space 1556: 1495: 1493: 1492: 1487: 1482: 1474: 1466: 1455: 1450: 1422: 1420: 1419: 1414: 1412: 1410: 1409: 1404: 1396: 1391: 1385: 1384: 1376: 1370: 1365: 1332: 1326: 1320: 1314: 1312: 1311: 1306: 1294: 1288: 1282: 1273: 1271: 1270: 1265: 1260: 1249: 1241: 1228: 1226: 1225: 1220: 1215: 1204: 1196: 1178: 1176: 1175: 1170: 1162: 1161: 1160: 1147: 1146: 1145: 1116: 1114: 1113: 1108: 1106: 1105: 1104: 1087: 1085: 1084: 1079: 1077: 1076: 1075: 1050: 1048: 1047: 1042: 1040: 1039: 1038: 1028: 1026: 1025: 1024: 1023: 1010: 1009: 1008: 997: 996: 995: 994: 978: 977: 976: 963: 962: 961: 947: 942: 941: 940: 927: 926: 925: 905: 903: 902: 897: 895: 887: 886: 885: 872: 871: 870: 850: 848: 847: 842: 840: 839: 838: 828: 826: 825: 824: 823: 810: 809: 808: 797: 796: 795: 794: 778: 777: 776: 763: 762: 761: 747: 742: 741: 740: 727: 726: 725: 702: 700: 699: 694: 692: 684: 683: 682: 669: 668: 667: 650: 648: 647: 642: 640: 639: 638: 621: 619: 618: 613: 611: 596: 594: 593: 588: 586: 585: 584: 571: 570: 569: 556: 541: 539: 538: 533: 531: 530: 529: 512: 510: 509: 504: 502: 501: 500: 476: 474: 473: 468: 466: 465: 464: 454: 453: 441: 440: 439: 426: 425: 424: 413: 410: 400: 398: 397: 392: 390: 389: 388: 378: 377: 365: 364: 363: 350: 349: 348: 337: 334: 302: 300: 299: 294: 289: 285: 284: 280: 276: 268: 259: 251: 242: 234: 213: 205: 187: 181: 175: 169: 163: 157: 151: 145: 92:general position 70:General position 2081: 2080: 2076: 2075: 2074: 2072: 2071: 2070: 2066:Line (geometry) 2036: 2035: 2013: 2008: 2007: 1992: 1988: 1970: 1966: 1960: 1939: 1935: 1930:math.GT/0611374 1911: 1905: 1901: 1880: 1876: 1871: 1854: 1827: 1820: 1815:intersect at a 1810: 1804: 1779: 1773: 1759: 1745: 1744:-flat, and let 1735: 1706: 1668: 1660: 1568: 1552: 1524: 1519: 1513: 1478: 1470: 1462: 1451: 1446: 1438: 1435: 1434: 1405: 1400: 1392: 1387: 1386: 1380: 1372: 1371: 1369: 1361: 1359: 1356: 1355: 1328: 1322: 1316: 1300: 1297: 1296: 1290: 1284: 1278: 1256: 1245: 1237: 1235: 1232: 1231: 1211: 1200: 1192: 1190: 1187: 1186: 1156: 1152: 1151: 1141: 1137: 1136: 1125: 1122: 1121: 1100: 1096: 1095: 1093: 1090: 1089: 1071: 1067: 1066: 1064: 1061: 1060: 1057: 1034: 1030: 1029: 1019: 1015: 1014: 1004: 1000: 999: 998: 990: 986: 985: 972: 968: 967: 957: 953: 952: 948: 946: 936: 932: 931: 921: 917: 916: 914: 911: 910: 891: 881: 877: 876: 866: 862: 861: 859: 856: 855: 834: 830: 829: 819: 815: 814: 804: 800: 799: 798: 790: 786: 785: 772: 768: 767: 757: 753: 752: 748: 746: 736: 732: 731: 721: 717: 716: 714: 711: 710: 688: 678: 674: 673: 663: 659: 658: 656: 653: 652: 634: 630: 629: 627: 624: 623: 607: 605: 602: 601: 580: 576: 575: 565: 561: 560: 552: 550: 547: 546: 525: 521: 520: 518: 515: 514: 496: 492: 491: 489: 486: 485: 460: 456: 455: 449: 445: 435: 431: 430: 420: 416: 415: 409: 407: 404: 403: 384: 380: 379: 373: 369: 359: 355: 354: 344: 340: 339: 333: 331: 328: 327: 321: 315: 309: 278: 277: 272: 264: 261: 260: 255: 247: 244: 243: 238: 230: 226: 222: 218: 214: 204: 196: 193: 192: 183: 177: 171: 165: 159: 153: 147: 141: 122: 117: 103: 72: 29: 17: 12: 11: 5: 2079: 2069: 2068: 2063: 2058: 2053: 2048: 2034: 2033: 2012: 2011:External links 2009: 2006: 2005: 1998:, 3rd series, 1986: 1964: 1958: 1942:Hilbert, David 1933: 1922:(4): 1027–1050 1918:(in Russian), 1899: 1873: 1872: 1870: 1867: 1866: 1865: 1860: 1853: 1850: 1667: 1664: 1659: 1656: 1567: 1566:Ruled surfaces 1564: 1563: 1562: 1543:, starting at 1523: 1522:Configurations 1520: 1512: 1509: 1497: 1496: 1485: 1481: 1477: 1473: 1469: 1465: 1461: 1458: 1454: 1449: 1445: 1442: 1424: 1423: 1408: 1403: 1399: 1395: 1390: 1383: 1379: 1375: 1368: 1364: 1304: 1275: 1274: 1263: 1259: 1255: 1252: 1248: 1244: 1240: 1229: 1218: 1214: 1210: 1207: 1203: 1199: 1195: 1180: 1179: 1168: 1165: 1159: 1155: 1150: 1144: 1140: 1135: 1132: 1129: 1103: 1099: 1074: 1070: 1056: 1053: 1052: 1051: 1037: 1033: 1022: 1018: 1013: 1007: 1003: 993: 989: 984: 981: 975: 971: 966: 960: 956: 951: 945: 939: 935: 930: 924: 920: 894: 890: 884: 880: 875: 869: 865: 852: 851: 837: 833: 822: 818: 813: 807: 803: 793: 789: 784: 781: 775: 771: 766: 760: 756: 751: 745: 739: 735: 730: 724: 720: 691: 687: 681: 677: 672: 666: 662: 637: 633: 610: 598: 597: 583: 579: 574: 568: 564: 559: 555: 528: 524: 499: 495: 478: 477: 463: 459: 452: 448: 444: 438: 434: 429: 423: 419: 401: 387: 383: 376: 372: 368: 362: 358: 353: 347: 343: 308: 307:Nearest points 305: 304: 303: 292: 288: 283: 275: 271: 267: 263: 262: 258: 254: 250: 246: 245: 241: 237: 233: 229: 228: 225: 221: 217: 211: 208: 203: 200: 121: 118: 102: 99: 78:within a unit 71: 68: 27: 15: 9: 6: 4: 3: 2: 2078: 2067: 2064: 2062: 2059: 2057: 2054: 2052: 2049: 2047: 2044: 2043: 2041: 2030: 2029: 2024: 2020: 2015: 2014: 2001: 1997: 1990: 1983:, p. 257 1982: 1978: 1974: 1968: 1961: 1959:0-8284-1087-9 1955: 1951: 1947: 1943: 1937: 1931: 1927: 1921: 1917: 1910: 1903: 1895: 1894: 1889: 1885: 1878: 1874: 1864: 1861: 1859: 1856: 1855: 1849: 1847: 1843: 1839: 1836:determine a ( 1834: 1830: 1823: 1818: 1813: 1807: 1801: 1799: 1795: 1791: 1787: 1782: 1776: 1770: 1766: 1762: 1757: 1753: 1748: 1743: 1738: 1733: 1729: 1727: 1720: 1717: 1713: 1709: 1704: 1701:-flat may be 1700: 1696: 1692: 1688: 1683: 1681: 1677: 1674:of dimension 1673: 1663: 1655: 1653: 1649: 1644: 1639: 1637: 1636:ruled surface 1633: 1629: 1625: 1621: 1617: 1613: 1609: 1605: 1602:swept out by 1601: 1597: 1593: 1585: 1581: 1577: 1572: 1560: 1555: 1550: 1549: 1548: 1546: 1542: 1538: 1533: 1529: 1528:configuration 1518: 1508: 1506: 1502: 1483: 1467: 1456: 1443: 1440: 1433: 1432: 1431: 1429: 1397: 1377: 1366: 1354: 1353: 1352: 1351: 1347: 1343: 1339: 1338:cross product 1334: 1331: 1327:in direction 1325: 1319: 1302: 1293: 1287: 1281: 1261: 1253: 1250: 1242: 1230: 1216: 1208: 1205: 1197: 1185: 1184: 1183: 1166: 1148: 1130: 1127: 1120: 1119: 1118: 1011: 982: 964: 943: 928: 909: 908: 907: 888: 873: 811: 782: 764: 743: 728: 709: 708: 707: 704: 685: 670: 572: 557: 545: 544: 543: 483: 482:cross product 450: 446: 442: 427: 402: 374: 370: 366: 351: 326: 325: 324: 320: 314: 290: 286: 281: 269: 252: 235: 223: 215: 209: 206: 201: 198: 191: 190: 189: 186: 180: 174: 168: 162: 156: 150: 144: 139: 135: 131: 127: 116: 107: 98: 95: 93: 88: 85: 84:almost surely 81: 77: 67: 65: 61: 57: 53: 49: 45: 41: 37: 25: 21: 2026: 2023:"Skew Lines" 1999: 1995: 1989: 1976: 1967: 1949: 1936: 1919: 1915: 1902: 1891: 1877: 1845: 1841: 1837: 1832: 1828: 1821: 1816: 1811: 1805: 1802: 1797: 1793: 1789: 1785: 1780: 1774: 1768: 1764: 1760: 1755: 1751: 1746: 1741: 1736: 1725: 1721: 1715: 1711: 1707: 1702: 1698: 1697:-flat and a 1694: 1690: 1686: 1684: 1679: 1675: 1669: 1661: 1651: 1640: 1631: 1627: 1619: 1615: 1611: 1603: 1595: 1591: 1589: 1584:hyperboloids 1544: 1540: 1536: 1531: 1527: 1525: 1504: 1500: 1498: 1425: 1345: 1341: 1335: 1329: 1323: 1317: 1291: 1285: 1279: 1276: 1181: 1058: 853: 705: 599: 479: 322: 184: 178: 172: 166: 160: 154: 148: 142: 123: 96: 89: 82:, they will 73: 50:and are not 46:that do not 39: 33: 1819:-flat, for 1796:)-flat. (A 1758:-space, if 1350:unit vector 136:of nonzero 134:tetrahedron 2040:Categories 1869:References 1687:skew lines 1515:See also: 317:See also: 311:See also: 60:dimensions 40:skew lines 2028:MathWorld 1893:MathWorld 1576:fibration 1539:lines in 1468:− 1457:⋅ 1398:× 1378:× 1303:λ 1254:μ 1209:λ 1164:‖ 1149:− 1134:‖ 1012:⋅ 983:⋅ 965:− 889:× 812:⋅ 783:⋅ 765:− 686:× 573:× 270:− 253:− 236:− 76:uniformly 48:intersect 1975:(1969), 1948:(1952), 1852:See also 1848:)-flat. 1547:= 1, is 1532:isotopic 1055:Distance 130:vertices 101:Formulas 64:coplanar 52:parallel 42:are two 2002:: 49–79 1844:− 1792:− 1724:affine 1624:regulus 1557:in the 1554:A110887 411:Line 2: 335:Line 1: 1956:  1728:-space 158:, and 138:volume 126:points 1926:arXiv 1912:(PDF) 1714:< 1606:is a 1499:(if | 1289:with 132:of a 44:lines 1954:ISBN 1809:and 1778:and 1705:if 1703:skew 1672:flat 1559:OEIS 1426:The 1344:and 1336:The 1088:and 513:and 480:The 182:and 170:and 80:cube 1824:≥ 0 1722:In 1689:to 1641:An 1578:of 1340:of 484:of 220:det 34:In 2042:: 2025:, 2021:, 2000:12 1944:; 1914:, 1890:, 1886:, 1831:∪ 1767:≥ 1763:+ 1710:+ 1638:. 1574:A 1561:). 1526:A 1503:× 1333:. 906:) 703:. 152:, 66:. 38:, 1928:: 1920:1 1846:k 1842:j 1840:+ 1838:i 1833:J 1829:I 1822:k 1817:k 1812:J 1806:I 1798:0 1794:d 1790:j 1788:+ 1786:i 1781:J 1775:I 1769:d 1765:j 1761:i 1756:d 1752:j 1747:J 1742:i 1737:I 1726:d 1716:d 1712:j 1708:i 1699:j 1695:i 1691:d 1680:k 1676:k 1652:R 1632:L 1628:M 1620:L 1616:M 1612:L 1604:L 1596:M 1592:L 1586:. 1545:n 1541:R 1537:n 1505:d 1501:b 1484:. 1480:| 1476:) 1472:a 1464:c 1460:( 1453:n 1448:| 1444:= 1441:d 1407:| 1402:d 1394:b 1389:| 1382:d 1374:b 1367:= 1363:n 1346:d 1342:b 1330:d 1324:c 1318:y 1292:b 1286:a 1280:x 1262:. 1258:d 1251:+ 1247:c 1243:= 1239:y 1217:; 1213:b 1206:+ 1202:a 1198:= 1194:x 1167:. 1158:2 1154:c 1143:1 1139:c 1131:= 1128:d 1102:2 1098:c 1073:1 1069:c 1036:2 1032:d 1021:1 1017:n 1006:2 1002:d 992:1 988:n 980:) 974:2 970:p 959:1 955:p 950:( 944:+ 938:2 934:p 929:= 923:2 919:c 893:n 883:1 879:d 874:= 868:1 864:n 836:1 832:d 821:2 817:n 806:1 802:d 792:2 788:n 780:) 774:1 770:p 759:2 755:p 750:( 744:+ 738:1 734:p 729:= 723:1 719:c 690:n 680:2 676:d 671:= 665:2 661:n 636:2 632:p 609:n 582:2 578:d 567:1 563:d 558:= 554:n 527:2 523:d 498:1 494:d 462:2 458:d 451:2 447:t 443:+ 437:2 433:p 428:= 422:2 418:v 386:1 382:d 375:1 371:t 367:+ 361:1 357:p 352:= 346:1 342:v 291:. 287:| 282:] 274:d 266:c 257:c 249:b 240:b 232:a 224:[ 216:| 210:6 207:1 202:= 199:V 185:d 179:c 173:b 167:a 161:d 155:c 149:b 143:a 28:1

Index


Rectangular parallelepiped
three-dimensional geometry
lines
intersect
parallel
regular tetrahedron
dimensions
coplanar
uniformly
cube
almost surely
general position

Line–line intersection § Formulas
points
vertices
tetrahedron
volume
Line–line intersection § Nearest points to skew lines
Triangulation (computer vision) § Mid-point method
cross product
cross product
unit vector
perpendicular distance
Line–line intersection § More than two lines
A110887
OEIS

fibration

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.