Knowledge

Sierpiński triangle

Source 📝

1419: 246: 139: 655: 585: 47: 31: 1719: 576:. You can start from any point outside or inside the triangle, and it would eventually form the Sierpiński Gasket with a few leftover points (if the starting point lies on the outline of the triangle, there are no leftover points). With pencil and paper, a brief outline is formed after placing approximately one hundred points, and detail begins to appear after a few hundred. 1684:, the numerator is the logarithm of the number of copies of the shape formed from each copy of the previous iteration, and the denominator is the logarithm of the factor by which these copies are scaled down from the previous iteration. If all points are projected onto a plane that is parallel to two of the outer edges, they exactly fill a square of side length 355: 1624:
again. Subsequent iterations again quadruple the number of copies and halve the side length, preserving the overall area. Meanwhile, the volume of the construction is halved at every step and therefore approaches zero. The limit of this process has neither volume nor surface but, like the Sierpinski
641:
B1/S12 when applied to a single cell will generate four approximations of the Sierpinski triangle. A very long, one cell–thick line in standard life will create two mirrored Sierpiński triangles. The time-space diagram of a replicator pattern in a cellular automaton also often resembles a Sierpiński
607:
Repeatedly replace each line segment of the curve with three shorter segments, forming 120° angles at each junction between two consecutive segments, with the first and last segments of the curve either parallel to the original line segment or forming a 60° angle with
213:
width, make three copies, and position the three shrunken triangles so that each triangle touches the two other triangles at a corner (image 2). Note the emergence of the central hole—because the three shrunken triangles can between them cover only
834:
copies of it are created, i.e. 2 copies for 1-dimensional object, 4 copies for 2-dimensional object and 8 copies for 3-dimensional object. For the Sierpiński triangle, doubling its side creates 3 copies of itself. Thus the Sierpiński triangle has
1120: 3138: 1622: 612:
At every iteration, this construction gives a continuous curve. In the limit, these approach a curve that traces out the Sierpinski triangle by a single continuous directed (infinitely wiggly) path, which is called the
335: 237:
This infinite process is not dependent upon the starting shape being a triangle—it is just clearer that way. The first few steps starting, for example, from a square also tend towards a Sierpinski triangle.
346:, so that when the operation is applied to any other set repeatedly, the images converge on the Sierpiński triangle. This is what is happening with the triangle above, but any other set would suffice. 39: 887: 1678: 1713: 1408: 1183: 658:
A level-5 approximation to a Sierpinski triangle obtained by shading the first 2 (32) levels of a Pascal's triangle white if the binomial coefficient is even and black otherwise
253:
The actual fractal is what would be obtained after an infinite number of iterations. More formally, one describes it in terms of functions on closed sets of points. If we let
1513: 1542: 976: 920: 617:. In fact, the aim of the original article by Sierpinski of 1915, was to show an example of a curve (a Cantorian curve), as the title of the article itself declares. 383:
to it randomly, the resulting points will be dense in the Sierpiński triangle, so the following algorithm will again generate arbitrarily close approximations to it:
1359: 1289: 832: 755:
puzzle involves moving disks of different sizes between three pegs, maintaining the property that no disk is ever placed on top of a smaller disk. The states of an
730: 691: 982: 1479: 1459: 1329: 1309: 1258: 1238: 1205: 940: 805: 988: 1461:
has the property that the total surface area remains constant with each iteration. The initial surface area of the (iteration-0) tetrahedron of side-length
100:
sets—that is, it is a mathematically generated pattern that is reproducible at any magnification or reduction. It is named after the Polish mathematician
1410:
of the new figures in the same orientation into a larger similar triangle with the vertices of the previous figures touching, then iterating that step.
1547: 693:
rows and colors the even numbers white, and the odd numbers black, the result is an approximation to the Sierpiński triangle. More precisely, the
281: 174:
Start with any triangle in a plane (any closed, bounded region in the plane will actually work). The canonical Sierpiński triangle uses an
1869:
NOVA (public television program). The Strange New Science of Chaos (episode). Public television station WGBH Boston. Aired 31 January 1989.
1361:
similar triangles and removing the triangles that are upside-down from the original, then iterating this step with each smaller triangle.
2310:
Jones, Huw; Campa, Aurelio (1993), "Abstract and natural forms from iterated function systems", in Thalmann, N. M.; Thalmann, D. (eds.),
1438:
to one half its original height, putting together four copies of this tetrahedron with corners touching, and then repeating the process.
3236: 2570: 65: 3156: 1796: 3211: 2420: 2396: 2215: 2281: 841: 3231: 170:
The same sequence of shapes, converging to the Sierpiński triangle, can alternatively be generated by the following steps:
3246: 2289: 596:
in the plane. It is formed by a process of repeated modification of simpler curves, analogous to the construction of the
17: 2602: 1742:
described the Sierpiński triangle in 1915. However, similar patterns appear already as a common motif of 13th-century
2635: 2250: 2120: 1973: 1960:, Advances in Intelligent Systems and Computing, vol. 809, Springer International Publishing, pp. 595–609, 1892: 1777:, and which sometimes feature a series of holes of decreasing size, similar to the fractal; this usage was coined by 978:
of the area from the previous iteration, and an infinite number of iterations results in an area approaching zero.
1418: 779:
goes to infinity, this sequence of graphs can be interpreted as a discrete analogue of the Sierpinski triangle.
3162: 2410: 2341: 2065:
Khovanova, Tanya; Nie, Eric; Puranik, Alok (2014), "The Sierpinski Triangle and the Ulam-Warburton Automaton",
642:
triangle, such as that of the common replicator in HighLife. The Sierpinski triangle can also be found in the
276:
about a point A, then the Sierpiński triangle with corners A, B, and C is the fixed set of the transformation
3018: 2975: 2464: 1687: 1632: 1364:
Conversely, the fractal can also be generated by beginning with a triangle and duplicating it and arranging
96:
into smaller equilateral triangles. Originally constructed as a curve, this is one of the basic examples of
2891: 638: 3096: 1367: 508:
to lie within the perimeter of the triangle is not a point on the Sierpiński triangle, none of the points
3226: 3221: 3178: 2662: 2459: 2336: 1129: 1727: 2454: 1804:, another fractal named after Sierpiński and formed by repeatedly removing squares from a larger square 1434:
is the three-dimensional analogue of the Sierpiński triangle, formed by repeatedly shrinking a regular
614: 1484: 2828: 1518: 952: 1793:, a set of mutually tangent circles with the same combinatorial structure as the Sierpinski triangle 2684: 2332: 643: 634: 573: 58:
ordered arguments. The columns interpreted as binary numbers give 1, 3, 5, 15, 17, 51... (sequence
1718: 1909: 1723: 242:
used an image of a fish to illustrate this in his paper "V-variable fractals and superfractals."
159: 2207: 3170: 3121: 2729: 2595: 2535: 1739: 131:
Subdivide it into four smaller congruent equilateral triangles and remove the central triangle.
101: 2388: 2381: 2110: 1880: 2955: 2647: 2240: 892: 55: 3116: 3111: 2901: 2833: 2176: 1337: 1267: 1261: 1217: 810: 708: 702: 669: 663: 343: 175: 121: 89: 2225: 2022:; Pantano, Pietro (Summer 2005), "Emergent patterning phenomena in 2D cellular automata", 8: 2874: 2851: 2734: 2719: 2652: 1754: 1626: 1115:{\displaystyle (0.u_{1}u_{2}u_{3}\dots ,0.v_{1}v_{2}v_{3}\dots ,0.w_{1}w_{2}w_{3}\dots )} 836: 694: 51: 2786: 3241: 3101: 3081: 3045: 3040: 2803: 2358: 2200: 2180: 2154: 2092: 2074: 2047: 1979: 1851: 1464: 1444: 1314: 1294: 1243: 1223: 1190: 925: 790: 768: 245: 230:
of the area of the original. (Holes are an important feature of Sierpinski's triangle.)
38: 2519: 2492: 1781:, who thought the fractal looked similar to "the part that prevents leaks in motors". 552:
Randomly select any point inside the triangle and consider that your current position.
3144: 3106: 3030: 2938: 2843: 2749: 2724: 2714: 2657: 2640: 2630: 2625: 2588: 2575: 2524: 2476: 2473: 2416: 2392: 2376: 2362: 2246: 2211: 2145:
Romik, Dan (2006), "Shortest paths in the Tower of Hanoi graph and finite automata",
2116: 2096: 2039: 1983: 1969: 1955: 1888: 1801: 1790: 1778: 1758: 1750: 1681: 626: 592:
Another construction for the Sierpinski gasket shows that it can be constructed as a
104:, but appeared as a decorative pattern many centuries before the work of Sierpiński. 2565:
A067771    Number of vertices in Sierpiński triangle of order n.
1833: 517:
will lie on the Sierpiński triangle, however they will converge on the triangle. If
3061: 2928: 2911: 2739: 2553: 2544: 2514: 2504: 2350: 2315: 2266: 2221: 2184: 2164: 2084: 2051: 2031: 2019: 2005:
Proceedings of the Eleventh International Conference on Membrane Computing (CMC 11)
1961: 1957:
Imperial Porphiry and Golden Leaf: Sierpinski Triangle in a Medieval Roman Cloister
1847: 1761:(17th century), and is a curved precursor of the 20th-century Sierpiński triangle. 946: 760: 739:, a corollary is that the proportion of odd binomial coefficients tends to zero as 239: 3216: 3076: 3013: 2674: 2558: 2509: 2319: 2172: 1997: 1965: 1812: 752: 97: 2771: 2088: 542:
is on what would be part of the triangle, if the triangle was infinitely large.
138: 3091: 3023: 2994: 2950: 2933: 2916: 2869: 2813: 2798: 2766: 2704: 1932: 1617:{\textstyle 4{\bigl (}{\tfrac {L}{2}}{\bigr )}^{2}{\sqrt {3}}=L^{2}{\sqrt {3}}} 1334:
The same fractal can be achieved by dividing a triangle into a tessellation of
1123: 597: 354: 3035: 775:
th step in the construction of the Sierpinski triangle. Thus, in the limit as
584: 3205: 2945: 2921: 2791: 2761: 2744: 2709: 2694: 2035: 1769:
The usage of the word "gasket" to refer to the Sierpiński triangle refers to
654: 3190: 3185: 3086: 3066: 2823: 2756: 2548: 2539: 2528: 2406: 2043: 330:{\displaystyle d_{\mathrm {A} }\cup d_{\mathrm {B} }\cup d_{\mathrm {C} }} 3151: 3071: 2781: 2776: 1743: 1435: 764: 759:-disk puzzle, and the allowable moves from one state to another, form an 558:
Move half the distance from your current position to the selected vertex.
2159: 1216:
A generalization of the Sierpiński triangle can also be generated using
3004: 2989: 2984: 2965: 2699: 2354: 569: 112:
There are many different ways of constructing the Sierpinski triangle.
46: 2168: 1954:
Brunori, Paola; Magrone, Paola; Lalli, Laura Tedeschini (2018-07-07),
981:
The points of a Sierpinski triangle have a simple characterization in
134:
Repeat step 2 with each of the remaining smaller triangles infinitely.
30: 2960: 2906: 2818: 2669: 2481: 1856: 233:
Repeat step 2 with each of the smaller triangles (image 3 and so on).
93: 158:. This process of recursively removing triangles is an example of a 2861: 2135:
Ian Stewart, "How to Cut a Cake", Oxford University Press, page 180
1807: 155: 151: 2314:, CGS CG International Series, Tokyo: Springer, pp. 332–344, 2079: 2808: 2611: 2339:(ed.). "The pavements of the Cosmati". The Mathematical Tourist. 735:
As the proportion of black numbers tends to zero with increasing
630: 85: 2415:(2nd ed.). New York: Taylor and Francis. pp. 131–138. 1441:
A tetrix constructed from an initial tetrahedron of side-length
2879: 1850:; et al. (2003), "V-variable fractals and superfractals", 1770: 1515:. The next iteration consists of four copies with side length 358:
Animated creation of a Sierpinski triangle using the chaos game
2491:
Rothemund, Paul W. K.; Papadakis, Nick; Winfree, Erik (2004).
579: 407:
as the corners of the Sierpinski triangle, and a random point
1933:"Sur une courbe dont tout point est un point de ramification" 1774: 593: 362:
If one takes a point and applies each of the transformations
2280:
Shannon, Kathleen M.; Bardzell, Michael J. (November 2003).
1917:
Proceedings of Graphics Interface '86 / Vision Interface '86
1730:, move left and right over the tetrix to rotate the 3D model 1126:, then the point is in Sierpiński's triangle if and only if 492:
was a point on the Sierpiński triangle, then all the points
2580: 2564: 2202:
Fractal geometry: mathematical foundations and applications
60: 178:
with a base parallel to the horizontal axis (first image).
2490: 2471: 1722:
Animation of a rotating level-4 tetrix showing how some
2493:"Algorithmic Self-Assembly of DNA Sierpinski Triangles" 1692: 1637: 1635: 1562: 1550: 1523: 1372: 957: 882:{\displaystyle {\tfrac {\log 3}{\log 2}}\approx 1.585} 846: 1690: 1521: 1487: 1467: 1447: 1370: 1340: 1317: 1297: 1270: 1246: 1226: 1193: 1132: 991: 955: 928: 895: 844: 813: 793: 711: 672: 284: 2112:
How to Cut a Cake: And other mathematical conundrums
2064: 1953: 555:
Randomly select any one of the three vertex points.
501:lie on the Sierpiński triangle. If the first point 120:The Sierpinski triangle may be constructed from an 2380: 2199: 1707: 1672: 1616: 1536: 1507: 1473: 1453: 1402: 1353: 1323: 1303: 1283: 1252: 1232: 1199: 1177: 1114: 970: 934: 914: 881: 826: 799: 724: 685: 329: 2554:Real-time GPU generated Sierpinski Triangle in 3D 1413: 1211: 732:-row Pascal triangle is the Sierpinski triangle. 3203: 2404: 1846: 1291:rows and coloring numbers by their value modulo 625:The Sierpinski triangle also appears in certain 549:Take three points in a plane to form a triangle. 2279: 1998:"Conway's Game of Life accelerated with OpenCL" 1625:gasket, is an intricately connected curve. Its 767:, that can be represented geometrically as the 588:Arrowhead construction of the Sierpinski gasket 2561:, Waclaw Sierpinski, Courier Corporation, 2003 2282:"Patterns in Pascal's Triangle – with a Twist" 2018: 1885:Chaos and Fractals: An Elementary Introduction 949:). The area remaining after each iteration is 945:The area of a Sierpiński triangle is zero (in 471:is a random number 1, 2 or 3. Draw the points 2596: 2435: 1907: 1887:, Oxford University Press, pp. 178–180, 1576: 1556: 1331:approaches infinity, a fractal is generated. 604:Start with a single line segment in the plane 2375: 771:of the set of triangles remaining after the 165: 580:Arrowhead construction of Sierpiński gasket 124:by repeated removal of triangular subsets: 50:Sierpiński triangle in logic: The first 16 2603: 2589: 2309: 1930: 2518: 2508: 2267:"Many ways to form the Sierpinski gasket" 2158: 2078: 1855: 1757:(3rd century BC) and further analyzed by 985:. If a point has barycentric coordinates 2331: 2238: 2197: 2115:, Oxford University Press, p. 145, 1726:of a tetrix can fill a plane – in 1717: 1673:{\textstyle {\tfrac {\log 4}{\log 2}}=2} 1417: 653: 583: 533:will land on the actual triangle, is if 353: 244: 142:The evolution of the Sierpinski triangle 137: 45: 37: 29: 3157:List of fractals by Hausdorff dimension 2108: 1878: 1797:List of fractals by Hausdorff dimension 1708:{\displaystyle {\tfrac {L}{\sqrt {2}}}} 14: 3204: 2191: 1834:""Sierpinski Gasket by Trema Removal"" 1422:Sierpinski pyramid recursion (8 steps) 646:and the Hex-Ulam-Warburton automaton. 524:is outside the triangle, the only way 2584: 2576:Interactive version of the chaos game 2472: 2144: 1995: 1910:"Graphical applications of L-systems" 807:, when doubling a side of an object, 115: 2545:Sierpinski Gasket and Tower of Hanoi 2147:SIAM Journal on Discrete Mathematics 1403:{\displaystyle {\tfrac {n(n+1)}{2}}} 649: 620: 2387:. New York: W. H. Freeman. p.  2290:Mathematical Association of America 1178:{\displaystyle u_{i}+v_{i}+w_{i}=1} 260:denote the dilation by a factor of 128:Start with an equilateral triangle. 24: 2536:Sierpinski Gasket by Trema Removal 2436:Benedetto, John; Wojciech, Czaja. 2206:. Chichester: John Wiley. p.  746: 321: 306: 291: 42:Generated using a random algorithm 25: 3258: 3139:How Long Is the Coast of Britain? 2447: 2312:Communicating with Virtual Worlds 2245:, Walter de Gruyter, p. 41, 1947: 787:For integer number of dimensions 3237:Science and technology in Poland 2242:Getting Acquainted with Fractals 1508:{\displaystyle L^{2}{\sqrt {3}}} 107: 2438:Integration and Modern Analysis 2429: 2369: 2325: 2303: 2273: 2259: 2232: 2138: 2129: 2102: 2058: 1537:{\displaystyle {\tfrac {L}{2}}} 971:{\displaystyle {\tfrac {3}{4}}} 633:), including those relating to 568:This method is also called the 3163:The Fractal Geometry of Nature 2412:The Pursuit of Perfect Packing 2383:The Fractal Geometry of Nature 2342:The Mathematical Intelligencer 2012: 1989: 1924: 1901: 1872: 1863: 1840: 1826: 1728:this interactive SVG 1414:Analogues in higher dimensions 1390: 1378: 1212:Generalization to other moduli 1109: 992: 13: 1: 3212:Factorial and binomial topics 1937:Compt. Rend. Acad. Sci. Paris 1820: 1260:can be generated by taking a 889:, which follows from solving 782: 349: 88:with the overall shape of an 27:Fractal composed of triangles 2610: 2510:10.1371/journal.pbio.0020424 2320:10.1007/978-4-431-68456-5_27 1966:10.1007/978-3-319-95588-9_49 1764: 701:approaches infinity of this 639:Life-like cellular automaton 7: 3232:Cellular automaton patterns 3179:Chaos: Making a New Science 2460:Encyclopedia of Mathematics 2089:10.4169/mathhorizons.23.1.5 1931:Sierpinski, Waclaw (1915). 1784: 10: 3265: 3247:Eponymous geometric shapes 2239:Helmberg, Gilbert (2007), 2198:Falconer, Kenneth (1990). 1908:Prusinkiewicz, P. (1986), 1879:Feldman, David P. (2012), 1734: 572:, and is an example of an 561:Plot the current position. 3130: 3054: 3003: 2974: 2890: 2860: 2842: 2683: 2618: 1680:; here "log" denotes the 166:Shrinking and duplication 146:Each removed triangle (a 2036:10.1162/1064546054407167 1724:orthographic projections 644:Ulam-Warburton automaton 574:iterated function system 1753:was first described by 1544:, so the total area is 1220:if a different modulus 983:barycentric coordinates 915:{\displaystyle 2^{d}=3} 249:Iterating from a square 181:Shrink the triangle to 160:finite subdivision rule 3171:The Beauty of Fractals 1996:Rumpf, Thomas (2010), 1731: 1709: 1674: 1618: 1538: 1509: 1475: 1455: 1428:Sierpinski tetrahedron 1423: 1404: 1355: 1325: 1305: 1285: 1254: 1234: 1201: 1179: 1116: 972: 936: 916: 883: 828: 801: 726: 687: 659: 589: 359: 331: 250: 143: 69: 43: 35: 2559:Pythagorean triangles 2109:Stewart, Ian (2006), 1881:"17.4 The chaos game" 1773:such as are found in 1721: 1710: 1675: 1619: 1539: 1510: 1476: 1456: 1421: 1405: 1356: 1354:{\displaystyle P^{2}} 1326: 1306: 1286: 1284:{\displaystyle P^{n}} 1255: 1235: 1202: 1180: 1117: 973: 937: 917: 884: 829: 827:{\displaystyle 2^{d}} 802: 727: 725:{\displaystyle 2^{n}} 688: 686:{\displaystyle 2^{n}} 657: 635:Conway's Game of Life 587: 485:. If the first point 357: 332: 248: 141: 49: 41: 33: 3117:Lewis Fry Richardson 3112:Hamid Naderi Yeganeh 2902:Burning Ship fractal 2834:Weierstrass function 1688: 1633: 1548: 1519: 1485: 1465: 1445: 1368: 1338: 1315: 1295: 1268: 1244: 1224: 1191: 1130: 989: 953: 926: 893: 842: 811: 791: 709: 670: 637:. For instance, the 615:Sierpinski arrowhead 344:attractive fixed set 282: 176:equilateral triangle 122:equilateral triangle 90:equilateral triangle 2875:Space-filling curve 2852:Multifractal system 2735:Space-filling curve 2720:Sierpinski triangle 2455:"Sierpinski gasket" 1755:Apollonius of Perga 1627:Hausdorff dimension 1240:is used. Iteration 837:Hausdorff dimension 743:tends to infinity. 564:Repeat from step 3. 74:Sierpiński triangle 34:Sierpiński triangle 18:Sierpinski triangle 3227:Types of triangles 3222:Topological spaces 3102:Aleksandr Lyapunov 3082:Desmond Paul Henry 3046:Self-avoiding walk 3041:Percolation theory 2685:Iterated function 2626:Fractal dimensions 2477:"Sierpinski Sieve" 2474:Weisstein, Eric W. 2355:10.1007/bf03024339 2007:, pp. 459–462 1919:, pp. 247–253 1732: 1705: 1703: 1670: 1662: 1614: 1571: 1534: 1532: 1505: 1471: 1451: 1424: 1400: 1398: 1351: 1321: 1301: 1281: 1250: 1230: 1197: 1175: 1112: 968: 966: 932: 912: 879: 871: 824: 797: 769:intersection graph 722: 683: 660: 590: 386:Start by labeling 360: 327: 251: 144: 116:Removing triangles 76:, also called the 70: 44: 36: 3199: 3198: 3145:Coastline paradox 3122:Wacław Sierpiński 3107:Benoit Mandelbrot 3031:Fractal landscape 2939:Misiurewicz point 2844:Strange attractor 2725:Apollonian gasket 2715:Sierpinski carpet 2422:978-1-4200-6817-7 2398:978-0-7167-1186-5 2335:(December 1997). 2217:978-0-471-92287-2 2169:10.1137/050628660 2020:Bilotta, Eleonora 1810:, a relic in the 1802:Sierpiński carpet 1791:Apollonian gasket 1779:Benoit Mandelbrot 1759:Gottfried Leibniz 1751:Apollonian gasket 1746:inlay stonework. 1740:Wacław Sierpiński 1715:without overlap. 1702: 1701: 1682:natural logarithm 1661: 1612: 1592: 1570: 1531: 1503: 1474:{\displaystyle L} 1454:{\displaystyle L} 1397: 1324:{\displaystyle n} 1304:{\displaystyle P} 1262:Pascal's triangle 1253:{\displaystyle n} 1233:{\displaystyle P} 1218:Pascal's triangle 1200:{\displaystyle i} 965: 935:{\displaystyle d} 870: 800:{\displaystyle d} 664:Pascal's triangle 650:Pascal's triangle 627:cellular automata 621:Cellular automata 102:Wacław Sierpiński 78:Sierpiński gasket 56:lexicographically 16:(Redirected from 3254: 3062:Michael Barnsley 2929:Lyapunov fractal 2787:Sierpiński curve 2740:Blancmange curve 2605: 2598: 2591: 2582: 2581: 2532: 2522: 2512: 2487: 2486: 2468: 2442: 2441: 2433: 2427: 2426: 2402: 2386: 2373: 2367: 2366: 2329: 2323: 2322: 2307: 2301: 2300: 2298: 2296: 2277: 2271: 2270: 2263: 2257: 2255: 2236: 2230: 2229: 2205: 2195: 2189: 2187: 2162: 2142: 2136: 2133: 2127: 2125: 2106: 2100: 2099: 2082: 2062: 2056: 2054: 2016: 2010: 2008: 2002: 1993: 1987: 1986: 1951: 1945: 1944: 1928: 1922: 1920: 1914: 1905: 1899: 1897: 1876: 1870: 1867: 1861: 1860: 1859: 1848:Michael Barnsley 1844: 1838: 1837: 1830: 1714: 1712: 1711: 1706: 1704: 1697: 1693: 1679: 1677: 1676: 1671: 1663: 1660: 1649: 1638: 1623: 1621: 1620: 1615: 1613: 1608: 1606: 1605: 1593: 1588: 1586: 1585: 1580: 1579: 1572: 1563: 1560: 1559: 1543: 1541: 1540: 1535: 1533: 1524: 1514: 1512: 1511: 1506: 1504: 1499: 1497: 1496: 1480: 1478: 1477: 1472: 1460: 1458: 1457: 1452: 1409: 1407: 1406: 1401: 1399: 1393: 1373: 1360: 1358: 1357: 1352: 1350: 1349: 1330: 1328: 1327: 1322: 1310: 1308: 1307: 1302: 1290: 1288: 1287: 1282: 1280: 1279: 1259: 1257: 1256: 1251: 1239: 1237: 1236: 1231: 1208: 1206: 1204: 1203: 1198: 1184: 1182: 1181: 1176: 1168: 1167: 1155: 1154: 1142: 1141: 1121: 1119: 1118: 1113: 1105: 1104: 1095: 1094: 1085: 1084: 1066: 1065: 1056: 1055: 1046: 1045: 1027: 1026: 1017: 1016: 1007: 1006: 977: 975: 974: 969: 967: 958: 947:Lebesgue measure 941: 939: 938: 933: 921: 919: 918: 913: 905: 904: 888: 886: 885: 880: 872: 869: 858: 847: 833: 831: 830: 825: 823: 822: 806: 804: 803: 798: 778: 774: 761:undirected graph 758: 731: 729: 728: 723: 721: 720: 700: 692: 690: 689: 684: 682: 681: 545:Or more simply: 463: 440: 438: 437: 434: 431: 338: 336: 334: 333: 328: 326: 325: 324: 311: 310: 309: 296: 295: 294: 275: 273: 272: 269: 266: 240:Michael Barnsley 229: 227: 226: 223: 220: 212: 210: 209: 206: 203: 196: 194: 193: 190: 187: 82:Sierpiński sieve 63: 21: 3264: 3263: 3257: 3256: 3255: 3253: 3252: 3251: 3202: 3201: 3200: 3195: 3126: 3077:Felix Hausdorff 3050: 3014:Brownian motion 2999: 2970: 2893: 2886: 2856: 2838: 2829:Pythagoras tree 2686: 2679: 2675:Self-similarity 2619:Characteristics 2614: 2609: 2453: 2450: 2445: 2434: 2430: 2423: 2403: 2399: 2374: 2370: 2330: 2326: 2308: 2304: 2294: 2292: 2278: 2274: 2265: 2264: 2260: 2253: 2237: 2233: 2218: 2196: 2192: 2160:math.CO/0310109 2143: 2139: 2134: 2130: 2123: 2107: 2103: 2063: 2059: 2024:Artificial Life 2017: 2013: 2000: 1994: 1990: 1976: 1952: 1948: 1929: 1925: 1912: 1906: 1902: 1895: 1877: 1873: 1868: 1864: 1845: 1841: 1832: 1831: 1827: 1823: 1813:Legend of Zelda 1787: 1767: 1737: 1691: 1689: 1686: 1685: 1650: 1639: 1636: 1634: 1631: 1630: 1607: 1601: 1597: 1587: 1581: 1575: 1574: 1573: 1561: 1555: 1554: 1549: 1546: 1545: 1522: 1520: 1517: 1516: 1498: 1492: 1488: 1486: 1483: 1482: 1466: 1463: 1462: 1446: 1443: 1442: 1416: 1374: 1371: 1369: 1366: 1365: 1345: 1341: 1339: 1336: 1335: 1316: 1313: 1312: 1296: 1293: 1292: 1275: 1271: 1269: 1266: 1265: 1245: 1242: 1241: 1225: 1222: 1221: 1214: 1192: 1189: 1188: 1186: 1163: 1159: 1150: 1146: 1137: 1133: 1131: 1128: 1127: 1124:binary numerals 1122:, expressed as 1100: 1096: 1090: 1086: 1080: 1076: 1061: 1057: 1051: 1047: 1041: 1037: 1022: 1018: 1012: 1008: 1002: 998: 990: 987: 986: 956: 954: 951: 950: 927: 924: 923: 900: 896: 894: 891: 890: 859: 848: 845: 843: 840: 839: 818: 814: 812: 809: 808: 792: 789: 788: 785: 776: 772: 756: 753:Towers of Hanoi 749: 747:Towers of Hanoi 716: 712: 710: 707: 706: 698: 677: 673: 671: 668: 667: 652: 623: 582: 541: 532: 523: 516: 507: 500: 491: 484: 477: 469: 461: 459: 449: 435: 432: 429: 428: 426: 424: 415: 413: 406: 399: 392: 382: 375: 368: 352: 320: 319: 315: 305: 304: 300: 290: 289: 285: 283: 280: 279: 277: 270: 267: 264: 263: 261: 259: 224: 221: 218: 217: 215: 207: 204: 201: 200: 198: 191: 188: 185: 184: 182: 168: 118: 110: 59: 28: 23: 22: 15: 12: 11: 5: 3262: 3261: 3250: 3249: 3244: 3239: 3234: 3229: 3224: 3219: 3214: 3197: 3196: 3194: 3193: 3188: 3183: 3175: 3167: 3159: 3154: 3149: 3148: 3147: 3134: 3132: 3128: 3127: 3125: 3124: 3119: 3114: 3109: 3104: 3099: 3094: 3092:Helge von Koch 3089: 3084: 3079: 3074: 3069: 3064: 3058: 3056: 3052: 3051: 3049: 3048: 3043: 3038: 3033: 3028: 3027: 3026: 3024:Brownian motor 3021: 3010: 3008: 3001: 3000: 2998: 2997: 2995:Pickover stalk 2992: 2987: 2981: 2979: 2972: 2971: 2969: 2968: 2963: 2958: 2953: 2951:Newton fractal 2948: 2943: 2942: 2941: 2934:Mandelbrot set 2931: 2926: 2925: 2924: 2919: 2917:Newton fractal 2914: 2904: 2898: 2896: 2888: 2887: 2885: 2884: 2883: 2882: 2872: 2870:Fractal canopy 2866: 2864: 2858: 2857: 2855: 2854: 2848: 2846: 2840: 2839: 2837: 2836: 2831: 2826: 2821: 2816: 2814:Vicsek fractal 2811: 2806: 2801: 2796: 2795: 2794: 2789: 2784: 2779: 2774: 2769: 2764: 2759: 2754: 2753: 2752: 2742: 2732: 2730:Fibonacci word 2727: 2722: 2717: 2712: 2707: 2705:Koch snowflake 2702: 2697: 2691: 2689: 2681: 2680: 2678: 2677: 2672: 2667: 2666: 2665: 2660: 2655: 2650: 2645: 2644: 2643: 2633: 2622: 2620: 2616: 2615: 2608: 2607: 2600: 2593: 2585: 2579: 2578: 2573: 2562: 2556: 2551: 2542: 2533: 2488: 2469: 2449: 2448:External links 2446: 2444: 2443: 2440:. p. 408. 2428: 2421: 2397: 2368: 2324: 2302: 2272: 2258: 2251: 2231: 2216: 2190: 2137: 2128: 2121: 2101: 2057: 2030:(3): 339–362, 2011: 1988: 1974: 1946: 1923: 1900: 1893: 1871: 1862: 1839: 1824: 1822: 1819: 1818: 1817: 1805: 1799: 1794: 1786: 1783: 1766: 1763: 1736: 1733: 1700: 1696: 1669: 1666: 1659: 1656: 1653: 1648: 1645: 1642: 1611: 1604: 1600: 1596: 1591: 1584: 1578: 1569: 1566: 1558: 1553: 1530: 1527: 1502: 1495: 1491: 1470: 1450: 1415: 1412: 1396: 1392: 1389: 1386: 1383: 1380: 1377: 1348: 1344: 1320: 1300: 1278: 1274: 1249: 1229: 1213: 1210: 1196: 1174: 1171: 1166: 1162: 1158: 1153: 1149: 1145: 1140: 1136: 1111: 1108: 1103: 1099: 1093: 1089: 1083: 1079: 1075: 1072: 1069: 1064: 1060: 1054: 1050: 1044: 1040: 1036: 1033: 1030: 1025: 1021: 1015: 1011: 1005: 1001: 997: 994: 964: 961: 931: 911: 908: 903: 899: 878: 875: 868: 865: 862: 857: 854: 851: 821: 817: 796: 784: 781: 748: 745: 719: 715: 680: 676: 651: 648: 622: 619: 610: 609: 605: 598:Koch snowflake 581: 578: 566: 565: 562: 559: 556: 553: 550: 537: 528: 521: 512: 505: 496: 489: 482: 475: 467: 457: 454: 445: 419: 411: 404: 397: 390: 380: 373: 366: 351: 348: 323: 318: 314: 308: 303: 299: 293: 288: 257: 235: 234: 231: 179: 167: 164: 136: 135: 132: 129: 117: 114: 109: 106: 26: 9: 6: 4: 3: 2: 3260: 3259: 3248: 3245: 3243: 3240: 3238: 3235: 3233: 3230: 3228: 3225: 3223: 3220: 3218: 3215: 3213: 3210: 3209: 3207: 3192: 3189: 3187: 3184: 3181: 3180: 3176: 3173: 3172: 3168: 3165: 3164: 3160: 3158: 3155: 3153: 3150: 3146: 3143: 3142: 3140: 3136: 3135: 3133: 3129: 3123: 3120: 3118: 3115: 3113: 3110: 3108: 3105: 3103: 3100: 3098: 3095: 3093: 3090: 3088: 3085: 3083: 3080: 3078: 3075: 3073: 3070: 3068: 3065: 3063: 3060: 3059: 3057: 3053: 3047: 3044: 3042: 3039: 3037: 3034: 3032: 3029: 3025: 3022: 3020: 3019:Brownian tree 3017: 3016: 3015: 3012: 3011: 3009: 3006: 3002: 2996: 2993: 2991: 2988: 2986: 2983: 2982: 2980: 2977: 2973: 2967: 2964: 2962: 2959: 2957: 2954: 2952: 2949: 2947: 2946:Multibrot set 2944: 2940: 2937: 2936: 2935: 2932: 2930: 2927: 2923: 2922:Douady rabbit 2920: 2918: 2915: 2913: 2910: 2909: 2908: 2905: 2903: 2900: 2899: 2897: 2895: 2889: 2881: 2878: 2877: 2876: 2873: 2871: 2868: 2867: 2865: 2863: 2859: 2853: 2850: 2849: 2847: 2845: 2841: 2835: 2832: 2830: 2827: 2825: 2822: 2820: 2817: 2815: 2812: 2810: 2807: 2805: 2802: 2800: 2797: 2793: 2792:Z-order curve 2790: 2788: 2785: 2783: 2780: 2778: 2775: 2773: 2770: 2768: 2765: 2763: 2762:Hilbert curve 2760: 2758: 2755: 2751: 2748: 2747: 2746: 2745:De Rham curve 2743: 2741: 2738: 2737: 2736: 2733: 2731: 2728: 2726: 2723: 2721: 2718: 2716: 2713: 2711: 2710:Menger sponge 2708: 2706: 2703: 2701: 2698: 2696: 2695:Barnsley fern 2693: 2692: 2690: 2688: 2682: 2676: 2673: 2671: 2668: 2664: 2661: 2659: 2656: 2654: 2651: 2649: 2646: 2642: 2639: 2638: 2637: 2634: 2632: 2629: 2628: 2627: 2624: 2623: 2621: 2617: 2613: 2606: 2601: 2599: 2594: 2592: 2587: 2586: 2583: 2577: 2574: 2572: 2569: 2566: 2563: 2560: 2557: 2555: 2552: 2550: 2546: 2543: 2541: 2537: 2534: 2530: 2526: 2521: 2516: 2511: 2506: 2502: 2498: 2494: 2489: 2484: 2483: 2478: 2475: 2470: 2466: 2462: 2461: 2456: 2452: 2451: 2439: 2432: 2424: 2418: 2414: 2413: 2408: 2400: 2394: 2390: 2385: 2384: 2378: 2372: 2364: 2360: 2356: 2352: 2348: 2344: 2343: 2338: 2334: 2333:Williams, Kim 2328: 2321: 2317: 2313: 2306: 2291: 2287: 2283: 2276: 2268: 2262: 2254: 2252:9783110190922 2248: 2244: 2243: 2235: 2227: 2223: 2219: 2213: 2209: 2204: 2203: 2194: 2186: 2182: 2178: 2174: 2170: 2166: 2161: 2156: 2153:(3): 610–62, 2152: 2148: 2141: 2132: 2124: 2122:9780191500718 2118: 2114: 2113: 2105: 2098: 2094: 2090: 2086: 2081: 2076: 2072: 2068: 2067:Math Horizons 2061: 2053: 2049: 2045: 2041: 2037: 2033: 2029: 2025: 2021: 2015: 2006: 1999: 1992: 1985: 1981: 1977: 1975:9783319955872 1971: 1967: 1963: 1959: 1958: 1950: 1942: 1938: 1934: 1927: 1918: 1911: 1904: 1896: 1894:9780199566440 1890: 1886: 1882: 1875: 1866: 1858: 1853: 1849: 1843: 1835: 1829: 1825: 1815: 1814: 1809: 1806: 1803: 1800: 1798: 1795: 1792: 1789: 1788: 1782: 1780: 1776: 1772: 1762: 1760: 1756: 1752: 1747: 1745: 1741: 1729: 1725: 1720: 1716: 1698: 1694: 1683: 1667: 1664: 1657: 1654: 1651: 1646: 1643: 1640: 1628: 1609: 1602: 1598: 1594: 1589: 1582: 1567: 1564: 1551: 1528: 1525: 1500: 1493: 1489: 1468: 1448: 1439: 1437: 1433: 1429: 1420: 1411: 1394: 1387: 1384: 1381: 1375: 1362: 1346: 1342: 1332: 1318: 1298: 1276: 1272: 1263: 1247: 1227: 1219: 1209: 1194: 1172: 1169: 1164: 1160: 1156: 1151: 1147: 1143: 1138: 1134: 1125: 1106: 1101: 1097: 1091: 1087: 1081: 1077: 1073: 1070: 1067: 1062: 1058: 1052: 1048: 1042: 1038: 1034: 1031: 1028: 1023: 1019: 1013: 1009: 1003: 999: 995: 984: 979: 962: 959: 948: 943: 929: 909: 906: 901: 897: 876: 873: 866: 863: 860: 855: 852: 849: 838: 819: 815: 794: 780: 770: 766: 762: 754: 744: 742: 738: 733: 717: 713: 704: 696: 678: 674: 665: 662:If one takes 656: 647: 645: 640: 636: 632: 628: 618: 616: 606: 603: 602: 601: 599: 595: 586: 577: 575: 571: 563: 560: 557: 554: 551: 548: 547: 546: 543: 540: 536: 531: 527: 520: 515: 511: 504: 499: 495: 488: 481: 474: 470: 460: 453: 448: 444: 422: 418: 410: 403: 396: 389: 384: 379: 372: 365: 356: 347: 345: 340: 316: 312: 301: 297: 286: 256: 247: 243: 241: 232: 180: 177: 173: 172: 171: 163: 161: 157: 153: 152:topologically 149: 140: 133: 130: 127: 126: 125: 123: 113: 108:Constructions 105: 103: 99: 95: 92:, subdivided 91: 87: 83: 79: 75: 67: 62: 57: 53: 48: 40: 32: 19: 3191:Chaos theory 3186:Kaleidoscope 3177: 3169: 3161: 3087:Gaston Julia 3067:Georg Cantor 2892:Escape-time 2824:Gosper curve 2772:Lévy C curve 2757:Dragon curve 2636:Box-counting 2567: 2549:cut-the-knot 2540:cut-the-knot 2503:(12): e424. 2500: 2497:PLOS Biology 2496: 2480: 2458: 2437: 2431: 2411: 2382: 2377:Mandelbrot B 2371: 2349:(1): 41–45. 2346: 2340: 2337:Stewart, Ian 2327: 2311: 2305: 2293:. Retrieved 2285: 2275: 2261: 2241: 2234: 2201: 2193: 2150: 2146: 2140: 2131: 2111: 2104: 2070: 2066: 2060: 2027: 2023: 2014: 2004: 1991: 1956: 1949: 1940: 1936: 1926: 1916: 1903: 1884: 1874: 1865: 1857:math/0312314 1842: 1828: 1811: 1768: 1748: 1738: 1440: 1431: 1427: 1425: 1363: 1333: 1215: 980: 944: 786: 750: 740: 736: 734: 661: 624: 611: 591: 567: 544: 538: 534: 529: 525: 518: 513: 509: 502: 497: 493: 486: 479: 472: 465: 455: 451: 446: 442: 420: 416: 408: 401: 394: 387: 385: 377: 370: 363: 361: 341: 254: 252: 236: 169: 147: 145: 119: 111: 98:self-similar 81: 77: 73: 71: 52:conjunctions 3182:(1987 book) 3174:(1986 book) 3166:(1982 book) 3152:Fractal art 3072:Bill Gosper 3036:Lévy flight 2782:Peano curve 2777:Moore curve 2663:Topological 2648:Correlation 2286:Convergence 1744:Cosmatesque 1436:tetrahedron 765:Hanoi graph 342:This is an 197:height and 94:recursively 3206:Categories 2990:Orbit trap 2985:Buddhabrot 2978:techniques 2966:Mandelbulb 2767:Koch curve 2700:Cantor set 2226:0689.28003 2073:(1): 5–9, 1943:: 302–305. 1821:References 783:Properties 570:chaos game 350:Chaos game 3242:L-systems 3097:Paul Lévy 2976:Rendering 2961:Mandelbox 2907:Julia set 2819:Hexaflake 2750:Minkowski 2670:Recursion 2653:Hausdorff 2482:MathWorld 2465:EMS Press 2363:189885713 2097:125503155 2080:1408.5937 1984:125313277 1765:Etymology 1655:⁡ 1644:⁡ 1107:… 1068:… 1029:… 874:≈ 864:⁡ 853:⁡ 705:-colored 629:(such as 313:∪ 298:∪ 3007:fractals 2894:fractals 2862:L-system 2804:T-square 2612:Fractals 2529:15583715 2409:(2008). 2407:Weaire D 2405:Aste T, 2379:(1983). 2295:29 March 2044:16053574 1808:Triforce 1785:See also 464:, where 156:open set 84:, is a 2956:Tricorn 2809:n-flake 2658:Packing 2641:Higuchi 2631:Assouad 2467:, 2001 2185:8342396 2177:2272218 2052:7842605 1771:gaskets 1735:History 631:Rule 90 439:⁠ 427:⁠ 337:⁠ 278:⁠ 274:⁠ 262:⁠ 228:⁠ 216:⁠ 211:⁠ 199:⁠ 195:⁠ 183:⁠ 86:fractal 64:in the 61:A001317 3217:Curves 3055:People 3005:Random 2912:Filled 2880:H tree 2799:String 2687:system 2527:  2520:534809 2517:  2419:  2395:  2361:  2249:  2224:  2214:  2183:  2175:  2119:  2095:  2050:  2042:  1982:  1972:  1891:  1816:series 1775:motors 1432:tetrix 763:, the 703:parity 414:. Set 376:, and 3131:Other 2359:S2CID 2181:S2CID 2155:arXiv 2093:S2CID 2075:arXiv 2048:S2CID 2001:(PDF) 1980:S2CID 1913:(PDF) 1852:arXiv 1311:. As 1264:with 877:1.585 695:limit 666:with 594:curve 150:) is 148:trema 2571:OEIS 2525:PMID 2417:ISBN 2393:ISBN 2297:2015 2247:ISBN 2212:ISBN 2117:ISBN 2040:PMID 1970:ISBN 1889:ISBN 1749:The 1426:The 1187:all 1185:for 922:for 751:The 400:and 72:The 66:OEIS 2547:at 2538:at 2515:PMC 2505:doi 2389:170 2351:doi 2316:doi 2222:Zbl 2208:120 2165:doi 2085:doi 2032:doi 1962:doi 1941:160 1652:log 1641:log 1629:is 1481:is 1430:or 861:log 850:log 697:as 608:it. 478:to 154:an 80:or 54:of 3208:: 3141:" 2568:at 2523:. 2513:. 2499:. 2495:. 2479:. 2463:, 2457:, 2391:. 2357:. 2347:19 2345:. 2288:. 2284:. 2220:. 2210:. 2179:, 2173:MR 2171:, 2163:, 2151:20 2149:, 2091:, 2083:, 2071:23 2069:, 2046:, 2038:, 2028:11 2026:, 2003:, 1978:, 1968:, 1939:. 1935:. 1915:, 1883:, 1074:0. 1035:0. 996:0. 942:. 600:: 450:+ 425:= 423:+1 393:, 369:, 339:. 162:. 3137:" 2604:e 2597:t 2590:v 2531:. 2507:: 2501:2 2485:. 2425:. 2401:. 2365:. 2353:: 2318:: 2299:. 2269:. 2256:. 2228:. 2188:. 2167:: 2157:: 2126:. 2087:: 2077:: 2055:. 2034:: 2009:. 1964:: 1921:. 1898:. 1854:: 1836:. 1699:2 1695:L 1668:2 1665:= 1658:2 1647:4 1610:3 1603:2 1599:L 1595:= 1590:3 1583:2 1577:) 1568:2 1565:L 1557:( 1552:4 1529:2 1526:L 1501:3 1494:2 1490:L 1469:L 1449:L 1395:2 1391:) 1388:1 1385:+ 1382:n 1379:( 1376:n 1347:2 1343:P 1319:n 1299:P 1277:n 1273:P 1248:n 1228:P 1207:. 1195:i 1173:1 1170:= 1165:i 1161:w 1157:+ 1152:i 1148:v 1144:+ 1139:i 1135:u 1110:) 1102:3 1098:w 1092:2 1088:w 1082:1 1078:w 1071:, 1063:3 1059:v 1053:2 1049:v 1043:1 1039:v 1032:, 1024:3 1020:u 1014:2 1010:u 1004:1 1000:u 993:( 963:4 960:3 930:d 910:3 907:= 902:d 898:2 867:2 856:3 820:d 816:2 795:d 777:n 773:n 757:n 741:n 737:n 718:n 714:2 699:n 679:n 675:2 539:n 535:v 530:n 526:v 522:1 519:v 514:n 510:v 506:1 503:v 498:n 494:v 490:1 487:v 483:∞ 480:v 476:1 473:v 468:n 466:r 462:) 458:n 456:r 452:p 447:n 443:v 441:( 436:2 433:/ 430:1 421:n 417:v 412:1 409:v 405:3 402:p 398:2 395:p 391:1 388:p 381:C 378:d 374:B 371:d 367:A 364:d 322:C 317:d 307:B 302:d 292:A 287:d 271:2 268:/ 265:1 258:A 255:d 225:4 222:/ 219:3 208:2 205:/ 202:1 192:2 189:/ 186:1 68:) 20:)

Index

Sierpinski triangle



conjunctions
lexicographically
A001317
OEIS
fractal
equilateral triangle
recursively
self-similar
Wacław Sierpiński
equilateral triangle

topologically
open set
finite subdivision rule
equilateral triangle
Michael Barnsley

attractive fixed set

chaos game
iterated function system

curve
Koch snowflake
Sierpinski arrowhead
cellular automata

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.