Knowledge

Short linear motif

Source đź“ť

568:, among others). ANCHOR identifies stretches of intrinsically disordered regions that cannot form favorable intrachain interactions to fold without additional stabilising energy contributed by a globular interaction partner. α-MoRF-Pred uses the inherent propensity of many SLiM to undergo a disorder to order transition upon binding to discover α-helical forming stretches within disordered regions. MoRFPred and MoRFchibi SYSTEM are SVM based predictors which utilize multiple features including local sequence physicochemical properties, long stretches of disordered regions and conservation in their predictions. SLiMPred is neural network–based method for the de novo discovery of SLiMs from the protein sequence. Information about the structural context of the motif (predicted secondary structure, structural motifs, solvent accessibility, and disorder) are used during the predictive process. Importantly, no previous knowledge about the protein (i.e., no evolutionary or experimental information) is required. 294:
the UEV domain binding PTAP late domain. The short generation times and high mutation rates of viruses, in association with natural selection, has led to multiple examples of mimicry of host SLiMs in every step of the viral life cycle (Src binding motif PxxP in Nef modulates replication, WW domain binding PPxY mediates budding in Ebola virus, A Dynein Light Chain binding motif in Rabies virus is vital for host infection). The extent of human SLiM mimicry is surprising with many viral proteins containing several functional SLiMs, for example, the Adenovirus protein E1A.
81:"The sequences of many proteins contain short, conserved motifs that are involved in recognition and targeting activities, often separate from other functional properties of the molecule in which they occur. These motifs are linear, in the sense that three-dimensional organization is not required to bring distant segments of the molecule together to make the recognizable unit. The conservation of these motifs varies: some are highly conserved while others, for example, allow substitutions that retain only a certain pattern of charge across the motif." 17: 306: 488:(MnM) represent the two largest motif databases as they attempt to capture all motifs from the available literature. Several more specific and specialised databases also exist, PepCyber and ScanSite focus on smaller subsets of motifs, phosphopeptide binding and important signaling domains respectively. PDZBase focuses solely on PDZ domain ligands. 537:
Enrichment in groupings of similar proteins – Motif often evolve convergently to carry out similar tasks in different proteins such as mediating binding to a specific partner or targeting proteins to a particular subcellular localisation. Often in such cases these grouping the motif occurs more often
501:
SLiMs are short and degenerate and as a result the proteome is littered with stochastically occurring peptides that resemble functional motifs. The biologically relevant cellular partners can easily distinguish functional motifs, however computational tools have yet to reach a level of sophistication
297:
Pathogenic bacteria also mimic host motifs (as well as having their own motifs), however, not to the same extent as the obligate parasite viruses. E. Coli injects a protein, EspF(U), that mimics an autoinhibitory element of N-WASP into the host cell to activate actin-nucleating factors WASP. The KDEL
107:
directly contact the binding partner, has two major consequences. First, only few or even a single mutation can result in the generation of a functional motif, with further mutations of flanking residues allowing tuning affinity and specificity. This results in SLiMs having an increased propensity to
492:
and CutDB curate available proteolytic event data including protease specificity and cleavage sites. There has been a large increase in the number of publications describing motif mediated interactions over past decade and as a result a large amount of the available literature remains to be curated.
563:
More recently computational methods have been developed that can identify new Short Linear Motifs de novo. Interactome-based tools rely on identifying a set of proteins that are likely to share a common function, such as binding the same protein or being cleaved by the same peptidase. Two examples
293:
Viruses often mimic human SLiMs to hijack and disrupt a host's cellular machinery, thereby adding functionality to their compact genomes without necessitating new virally encoded proteins. In fact, many motifs were originally discovered in viruses, such as the Retinoblastoma binding LxCxE motif and
155:
SLiM functions in almost every pathway due to their critical role in regulatory function, protein-protein interaction and signal transduction. SLiM act as interaction modules that are recognised by additional biomolecules. The majority of known interaction partners of SLiMs are globular protein
106:
and determine most of the affinity and specificity of the interaction. Although most motifs have no positional preference, several of them are required to be localized at the protein termini in order to be functional. The key defining attribute of SLiMs, having a limited number of residues that
505:
Motif discovery tools can be split into two major categories, discovery of novel instance of known functional motifs class and discovery of functional motifs class, however, they all use a limited and overlapping set of attributes to discriminate true and false positives. The main discrimatory
239:– Many classes of ligand SLiMs recruit enzymes to their substrate by binding to sites that are distinct from the enzyme's active site. These site, known as docking motifs, act as additional specificity determinants for these enzymes and decrease the likelihood of off-target modification events. 207:
Ligand binding site SLiMs recruit binding partners to the SLiM containing proteins, often mediating transient interactions, or acting co-operatively to produce more stable complexes. Ligand SLiMs are often central to the formation of dynamic multi-protein complexes, however, they more commonly
475:
in the motif literature with the important residues defined based on a combination of experimental, structural and evolutionary evidence. However, high throughput screening such as phage display has seen a large increase in the available information for many motifs classes allowing them to be
529:
Conservation – the conservation of a motif correlates strongly with functionality and many experimental motifs are seen as islands of strong constraint in regions of weak conservation. Alignment of homologous proteins can be used to calculate conservation metric for a
254:
Disordered protein elements like SLiMs are frequently found in factors that regulate gene expression. As a result, several diseases have been linked to mutations that alter key SLiM-mediated functions. For instance, one cause of
533:
Physicochemical properties – Certain intrinsic properties of residues or stretches of amino acids are strong discriminators of functionality, for example, the propensity of a region of disorder to undergo a disorder to order
156:
domains, though, SLiMs that recognise other intrinsically disordered regions, RNA and lipids have also been characterised. SLiMs can be broadly split into two high level classes, modification sites and ligand binding sites.
119:. Second, SLiMs have relatively low affinity for their interaction partners (generally between 1 and 150 ÎĽM), which makes these interactions transient and reversible, and thus ideal to mediate dynamic processes such as 163:
Modification sites SLiMs encompass sites with intrinsic specificity determinant that are recognised and modified by the active site of a catalytic domain of an enzyme. These SLiMs include many classical
225:– A large number of SLiMs act as zipcodes that are recognized by the cellular transport machinery mediating the relocalisation of the containing protein to the correct sub-cellular compartment (e.g. 1086:
Pandit B, Sarkozy A, Pennacchio LA, Carta C, Oishi K, Martinelli S, et al. (August 2007). "Gain-of-function RAF1 mutations cause Noonan and LEOPARD syndromes with hypertrophic cardiomyopathy".
215:– Ligand SLiMs often function as simple interfaces that recruit proteins to multi-protein complexes (e.g. the Retinoblastoma-binding LxCxE motif) or act as aggregators in scaffold proteins (e.g. 1186:
Kalay E, de Brouwer AP, Caylan R, Nabuurs SB, Wollnik B, Karaguzel A, et al. (December 2005). "A novel D458V mutation in the SANS PDZ binding motif causes atypical Usher syndrome".
1557:
Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, et al. (February 2004). "In vivo activation of the p53 pathway by small-molecule antagonists of MDM2".
555:(MnM) both provide servers to search for novel instance of known functional motifs in protein sequences. SLiMSearch allows similar searches on a proteome-wide scale. 102:, with an average of just over 6 residues. However, only few hotspot residues (on average 1 hotspot for each 3 residues in the motif) contribute the majority of the 1608:
Goodman SL, Hölzemann G, Sulyok GA, Kessler H (February 2002). "Nanomolar small molecule inhibitors for alphav(beta)6, alphav(beta)5, and alphav(beta)3 integrins".
564:
of such software are DILIMOT and SLiMFinder. Anchor and α-MoRF-Pred use physicochemical properties to search for motif-like peptides in disordered regions (termed
259:
is a mutation in the protein Raf-1 which abrogates the interaction with 14-3-3 proteins mediated by corresponding short linear motifs and thereby deregulate the
245:– A subset of docking motifs recruit E3 ubiquitin ligase to their substrates. The resulting polyubiquitination targets the substrate for proteosomal destruction. 2625:"MoRFpred, a computational tool for sequence-based prediction and characterization of short disorder-to-order transitioning binding regions in proteins" 2372:
Hugo W, Song F, Aung Z, Ng SK, Sung WK (April 2010). "SLiM on Diet: finding short linear motifs on domain interaction interfaces in Protein Data Bank".
1696:"Grb2-SH3 ligand inhibits the growth of HER2+ cancer cells and has antitumor effects in human cancer xenografts alone and in combination with docetaxel" 278:
has been implicated with autosomal dominant activating mutations in the WW interaction motif in the β-(SCNNB_HUMA) and γ-(SCNNG_HUMA) subunits of the
2997: 328:
Linear motif mediated protein-protein interactions have shown promise in recent years as novel drug targets. Success stories include the
1645:"Cilengitide induces cellular detachment and apoptosis in endothelial and glioma cells mediated by inhibition of FAK/src/AKT pathway" 519: 400: 790:
Davey NE, Van Roey K, Weatheritt RJ, Toedt G, Uyar B, Altenberg B, et al. (January 2012). "Attributes of short linear motifs".
2876: 493:
Recent work has created the tool MiMosa to expedite the annotation process and encourage semantically robust motif descriptions.
127:
that change the structural and physicochemical properties of the motif. Also, regions of high functional density can mediate
1506:
Wells JA, McClendon CL (December 2007). "Reaching for high-hanging fruit in drug discovery at protein-protein interfaces".
1272:"Liddle's syndrome caused by a novel mutation in the proline-rich PY motif of the epithelial sodium channel beta-subunit" 511: 193:-SLiMs can act as recognition sites of endo-peptidases resulting in the irreversible cleavage of the peptide at the SLiM. 91: 3079: 878:"The conservation pattern of short linear motifs is highly correlated with the function of interacting protein domains" 1459:"Targeting of cholera toxin and Escherichia coli heat labile toxin in polarized epithelia: role of COOH-terminal KDEL" 2990: 2829:
Mooney C, Pollastri G, Shields DC, Haslam NJ (January 2012). "Prediction of short linear protein binding regions".
697:"Short Linear Motifs recognized by SH2, SH3 and Ser/Thr Kinase domains are conserved in disordered protein regions" 1745:"Potential disease targets for drugs that disrupt protein-- protein interactions of Grb2 and Crk family adaptors" 111:, which facilitates their proliferation, as is evidenced by their conservation and increased incidence in higher 67: 184: 165: 124: 1988:"PepCyber:P~PEP: a database of human protein protein interactions mediated by phosphoprotein-binding domains" 226: 208:
mediate regulatory interactions that control the stability, localisation or modification state of a protein.
3089: 2983: 2963: 270:
is the most frequent cause of hereditary deaf-blindness in humans and can be caused by mutations in either
2958: 2953: 2723:"Computational Identification of MoRFs in Protein Sequences Using Hierarchical Application of Bayes Rule" 199:– SLiMs can be recognised by isomerases resulting in the cis-trans isomerisation of the peptide backbone. 2948: 1643:
Oliveira-Ferrer L, Hauschild J, Fiedler W, Bokemeyer C, Nippgen J, Celik I, Schuch G (December 2008).
2918: 2174:
Igarashi Y, Eroshkin A, Gramatikova S, Gramatikoff K, Zhang Y, Smith JW, et al. (January 2007).
660:
Dice JF (August 1990). "Peptide sequences that target cytosolic proteins for lysosomal proteolysis".
287: 279: 63: 2386: 1885:
Gould CM, Diella F, Via A, Puntervoll P, GemĂĽnd C, Chabanis-Davidson S, et al. (January 2010).
3084: 2037:"Scansite 2.0: Proteome-wide prediction of cell signaling interactions using short sequence motifs" 625:
Neduva V, Russell RB (October 2006). "Peptides mediating interaction networks: new leads at last".
404: 2576:"Mining alpha-helix-forming molecular recognition features with cross species sequence alignments" 2274:
Praefcke GJ, Ford MG, Schmid EM, Olesen LE, Gallop JL, Peak-Chew SY, et al. (November 2004).
548: 481: 480:. Several diverse repositories currently curate the available motif data. In terms of scope, the 399:
domain. This tactic has shown promise in the treatments of various forms of cancer. For example,
443:
converting enzymes inhibitors. Other drugs that target post-translational modifications include
2381: 290:, ultimately resulting in increased Na reabsorption, plasma volume extension and hypertension. 168:(PTMs), proteolytic cleavage sites recognised by proteases and bonds recognised by isomerases. 2468:"SLiMFinder: a web server to find novel, significantly over-represented, short protein motifs" 1937:
Rajasekaran S, Balla S, Gradie P, Gryk MR, Kadaveru K, Kundeti V, et al. (January 2009).
230: 21: 2223:
Vyas J, Nowling RJ, Meusburger T, Sargeant D, Kadaveru K, Gryk MR, et al. (June 2010).
115:. It has been hypothesized that this might increase and restructure the connectivity of the 2734: 2528: 2276:"Evolving nature of the AP2 alpha-appendage hub during clathrin-coated vesicle endocytosis" 1566: 1515: 1457:
Lencer WI, Constable C, Moe S, Jobling MG, Webb HM, Ruston S, et al. (November 1995).
1413: 1270:
Furuhashi M, Kitamura K, Adachi M, Miyoshi T, Wakida N, Ura N, et al. (January 2005).
940: 275: 108: 1402:"The pathogen protein EspF(U) hijacks actin polymerization using mimicry and multivalency" 1400:
Sallee NA, Rivera GM, Dueber JE, Vasilescu D, Mullins RD, Mayer BJ, Lim WA (August 2008).
8: 2623:
Disfani FM, Hsu WL, Mizianty MJ, Oldfield CJ, Xue B, Dunker AK, et al. (June 2012).
95: 2738: 2532: 1570: 1519: 1417: 1155: 1130: 1063: 1028: 944: 586:"Understanding eukaryotic linear motifs and their role in cell signaling and regulation" 94:
regions (over 80% of known SLiMs), however, upon interaction with a structured partner
2806: 2782:"MoRFchibi SYSTEM: software tools for the identification of MoRFs in protein sequences" 2781: 2757: 2722: 2698: 2673: 2649: 2624: 2600: 2575: 2551: 2516: 2492: 2467: 2443: 2418: 2349: 2324: 2251: 2224: 2200: 2175: 2151: 2126: 2012: 1987: 1963: 1938: 1911: 1886: 1859: 1832: 1808: 1783: 1720: 1695: 1671: 1644: 1590: 1539: 1483: 1458: 1434: 1401: 1377: 1352: 1211: 1168: 1111: 966: 904: 877: 853: 826: 723: 696: 472: 2300: 2275: 2061: 2036: 274:
in Harmonin or the corresponding PDZ interaction motifs in the SANS protein. Finally,
140: 2856: 2811: 2762: 2703: 2654: 2605: 2556: 2497: 2448: 2399: 2354: 2305: 2256: 2205: 2156: 2107: 2066: 2017: 1968: 1916: 1864: 1813: 1764: 1725: 1676: 1625: 1582: 1543: 1531: 1488: 1439: 1382: 1328: 1293: 1252: 1247: 1230: 1203: 1160: 1103: 1068: 1050: 1004: 958: 909: 858: 807: 769: 728: 677: 673: 642: 607: 523: 311: 34: 2689: 2640: 2395: 2102: 2085: 1594: 1215: 1115: 970: 2846: 2838: 2801: 2793: 2752: 2742: 2693: 2685: 2644: 2636: 2595: 2587: 2546: 2536: 2487: 2479: 2438: 2430: 2391: 2344: 2336: 2295: 2287: 2246: 2236: 2195: 2187: 2146: 2138: 2097: 2056: 2048: 2007: 1999: 1958: 1950: 1906: 1898: 1854: 1844: 1803: 1795: 1756: 1715: 1707: 1666: 1656: 1617: 1574: 1523: 1478: 1470: 1429: 1421: 1372: 1364: 1320: 1283: 1242: 1195: 1172: 1150: 1142: 1095: 1058: 1040: 996: 948: 899: 889: 848: 838: 799: 759: 718: 708: 669: 634: 597: 128: 953: 928: 584:
Diella F, Haslam N, Chica C, Budd A, Michael S, Brown NP, et al. (May 2008).
2937: 2922: 2893: 2747: 2541: 1311:
Davey NE, Travé G, Gibson TJ (March 2011). "How viruses hijack cell regulation".
638: 552: 485: 392: 256: 176: 2975: 538:
than is expected by chance and can be detected by searching for enriched motifs.
98:
is often induced. The majority of annotated SLiMs consist of 3 to 11 contiguous
16: 3007: 2574:
Cheng Y, Oldfield CJ, Meng J, Romero P, Uversky VN, Dunker AK (November 2007).
1799: 1760: 1324: 1045: 1000: 713: 448: 415:® is a broad-based tyrosine kinase inhibitor whose targets include Bcr-Abl and 267: 120: 103: 29: 2842: 1199: 987:(October 2009). "Cell regulation: determined to signal discrete cooperation". 843: 764: 747: 3073: 2291: 2241: 1849: 1054: 477: 175:– SLiMs are often targeted for the addition of a small chemical groups (e.g. 123:. In addition, this means that these interactions can be easily modulated by 1661: 1578: 894: 2860: 2815: 2766: 2707: 2658: 2609: 2560: 2501: 2452: 2403: 2358: 2309: 2260: 2209: 2160: 2111: 2070: 2021: 1972: 1920: 1868: 1817: 1768: 1729: 1680: 1629: 1586: 1535: 1443: 1386: 1332: 1297: 1207: 1164: 1107: 1072: 1008: 962: 913: 862: 811: 773: 732: 646: 611: 361: 1986:
Gong W, Zhou D, Ren Y, Wang Y, Zuo Z, Shen Y, et al. (January 2008).
1902: 1492: 1474: 1256: 1146: 681: 3053: 3028: 3018: 2898: 2797: 2483: 2434: 2340: 2191: 2142: 2052: 2003: 1954: 1939:"Minimotif miner 2nd release: a database and web system for motif search" 1288: 1271: 984: 514:
prediction tools (such as IUPred or GlobPlot), domain databases (such as
440: 369: 353: 341: 286:, thereby inhibiting channel degradation and prolonging the half-life of 180: 144: 116: 2325:"SLiMSearch 2.0: biological context for short linear motifs in proteins" 1642: 1527: 1425: 3048: 3043: 3038: 3033: 2084:
Beuming T, Skrabanek L, Niv MY, Mukherjee P, Weinstein H (March 2005).
803: 452: 416: 385: 381: 305: 271: 216: 99: 2851: 2591: 2173: 1711: 1621: 745: 526:) can be used to check the accessibility of predicted motif instances. 510:
Accessibility – the motif must be accessible for the binding partner.
315: 38: 3058: 3023: 1694:
Gril B, Vidal M, Assayag F, Poupon MF, Liu WQ, Garbay C (July 2007).
420: 419:. Cleavage is another process directed by motif recognition with the 365: 112: 695:
Ren S, Uversky VN, Chen Z, Dunker AK, Obradovic Z (September 2008).
1231:"Liddle syndrome: an autosomal dominant form of human hypertension" 1099: 1029:"Interaction modules that impart specificity to disordered protein" 522:) and experimentally derived structural data (from sources such as 502:
where motif discovery can be accomplished with high success rates.
436: 432: 357: 345: 337: 333: 299: 132: 74: 25: 746:
London N, Movshovitz-Attias D, Schueler-Furman O (February 2010).
2927: 2086:"PDZBase: a protein-protein interaction database for PDZ-domains" 1368: 827:"Short linear motifs - ex nihilo evolution of protein regulation" 602: 585: 444: 428: 424: 412: 408: 136: 391:
There are at present no drugs on the market specially targeting
302:
encoded cholera toxin mediates cell entry of the cholera toxin.
489: 396: 373: 309:
MDM2 SWIB domain-binding motif mimic drug Nutlin bound to MDM2(
282:. These mutations abrogate the binding to the ubiquitin ligase 263: 2517:"Prediction of protein binding regions in disordered proteins" 2515:
Mészáros B, Simon I, Dosztányi Z (May 2009). Casadio R (ed.).
1887:"ELM: the status of the 2010 eukaryotic linear motif resource" 1784:"Intrinsically disordered proteins are potential drug targets" 1269: 352:
thus stabilising p53 and inducing senescence in cancer cells.
2222: 1607: 1353:"Viral infection and human disease--insights from minimotifs" 565: 451:
inhibitor and Farnysyl Transferase inhibitors that block the
283: 260: 131:
by means of overlapping motifs (e.g. the C-terminal tails of
2828: 2674:"Computational identification of MoRFs in protein sequences" 2083: 1185: 1085: 789: 748:"The structural basis of peptide-protein binding strategies" 139:
interactions by multiple low affinity motifs (e.g. multiple
2970: 2903: 1744: 1399: 515: 423:
responsible for cleavage a good drug target. For example,
377: 329: 2915: 2721:
Malhis N, Wong ET, Nassar R, Gsponer J (30 October 2015).
2622: 1936: 876:
Ren S, Yang G, He Y, Wang Y, Li Y, Chen Z (October 2008).
2942: 2466:
Davey NE, Haslam NJ, Shields DC, Edwards RJ (July 2010).
2465: 2323:
Davey NE, Haslam NJ, Shields DC, Edwards RJ (July 2011).
2322: 1456: 349: 2273: 1884: 1556: 2720: 2573: 1027:
Cermakova, Katerina; Hodges, H. Courtney (2023-02-06).
348:
antagonises the interaction of MDM2's SWIB domain with
2514: 2124: 1693: 1649:
Journal of Experimental & Clinical Cancer Research
407:(RTK) inhibitor for treating gastrointestinal cancer, 2932: 2888: 2779: 583: 323: 2034: 1833:"Profile-based short linear protein motif discovery" 1350: 1276:
The Journal of Clinical Endocrinology and Metabolism
694: 542: 2125:Rawlings ND, Barrett AJ, Bateman A (January 2010). 929:"Linear motifs: evolutionary interaction switches" 3005: 2419:"DILIMOT: discovery of linear motifs in proteins" 1122: 360:-dependent signaling, causing the disassembly of 28:mimic of the LxCxE motif (red) bound to the host 3071: 2822: 2567: 2508: 2216: 2167: 2118: 2077: 2028: 1979: 1824: 1775: 1736: 1687: 1636: 1601: 1550: 1499: 1393: 1339: 1310: 1263: 1179: 1079: 977: 558: 461: 2035:Obenauer JC, Cantley LC, Yaffe MB (July 2003). 1985: 1932: 1930: 1880: 1878: 1450: 1346: 1344: 1342: 1222: 1026: 920: 869: 824: 818: 780: 739: 688: 2371: 1742: 1505: 825:Davey NE, Cyert MS, Moses AM (November 2015). 785: 783: 388:adaptor domains are also under investigation. 2991: 2877:Pawsons Lab Resource on motif-binding domains 2780:Malhis N, Jacobson M, Gsponer J (July 2016). 2671: 2416: 1830: 926: 875: 624: 395:sites, however, a number of drugs target the 2459: 2410: 2365: 2267: 1927: 1875: 1351:Kadaveru K, Vyas J, Schiller MR (May 2008). 1304: 2225:"MimoSA: a system for minimotif annotation" 376:cells. In addition, peptides targeting the 364:, cellular detachment and the induction of 2998: 2984: 2316: 1128: 2850: 2805: 2756: 2746: 2697: 2648: 2599: 2550: 2540: 2491: 2442: 2385: 2348: 2299: 2250: 2240: 2199: 2150: 2101: 2060: 2011: 1962: 1910: 1858: 1848: 1807: 1719: 1670: 1660: 1482: 1433: 1376: 1287: 1246: 1154: 1062: 1044: 952: 903: 893: 852: 842: 763: 722: 712: 601: 506:attributes used in motif discovery are: 304: 15: 2909: 2773: 1781: 1228: 135:beta subunits), or they can allow high 3072: 1131:"Molecular genetics of Usher syndrome" 983: 2979: 2176:"CutDB: a proteolytic event database" 1022: 1020: 1018: 166:post translational modification sites 1135:Cellular and Molecular Life Sciences 659: 1788:Current Opinion in Chemical Biology 13: 2417:Neduva V, Russell RB (July 2006). 1831:Haslam NJ, Shields DC (May 2012). 1129:Eudy JD, Sumegi J (October 1999). 1015: 927:Neduva V, Russell RB (June 2005). 496: 455:modification to a CAAX-box motif. 324:Potential as leads for drug design 249: 185:post translational moiety addition 73:The first definition was given by 14: 3101: 2882: 2870: 2672:Malhis N, Gsponer J (June 2015). 543:Novel functional motifs instances 219:-binding proline-rich sequences). 2933:Eukaryotic Linear Motif Database 2889:Eukaryotic Linear Motif Database 2127:"MEROPS: the peptidase database" 1248:10.1046/j.1523-1755.1998.00728.x 831:Cell Communication and Signaling 627:Current Opinion in Biotechnology 411:® specially targets bcr-abl and 125:post-translational modifications 90:SLiMs are generally situated in 2714: 2665: 2616: 1700:International Journal of Cancer 471:SLiMs are usually described by 1743:Feller SM, Lewitzky M (2006). 1610:Journal of Medicinal Chemistry 1313:Trends in Biochemical Sciences 1033:Trends in Biochemical Sciences 989:Trends in Biochemical Sciences 662:Trends in Biochemical Sciences 653: 618: 577: 280:Epithelial sodium channel ENaC 1: 2690:10.1093/bioinformatics/btv060 2641:10.1093/bioinformatics/bts209 2396:10.1093/bioinformatics/btq065 2103:10.1093/bioinformatics/bti098 1749:Current Pharmaceutical Design 1188:Journal of Molecular Medicine 954:10.1016/j.febslet.2005.04.005 571: 559:Novel functional motifs class 462:Computational motif resources 458:Recommended further reading: 85: 2831:Journal of Molecular Biology 2748:10.1371/journal.pone.0141603 2542:10.1371/journal.pcbi.1000376 2478:(Web Server issue): W534-9. 2429:(Web Server issue): W350-5. 2335:(Web Server issue): W56-60. 1039:(5): S0968–0004(23)00008–7. 674:10.1016/0968-0004(90)90019-8 639:10.1016/j.copbio.2006.08.002 466: 227:Nuclear localisation signals 7: 2137:(Database issue): D227-33. 1998:(Database issue): D679-83. 1949:(Database issue): D185-90. 1897:(Database issue): D167-80. 1463:The Journal of Cell Biology 1229:Warnock DG (January 1998). 150: 68:protein–protein interaction 10: 3106: 2521:PLOS Computational Biology 2186:(Database issue): D546-9. 1800:10.1016/j.cbpa.2010.06.169 1782:Metallo SJ (August 2010). 1761:10.2174/138161206775474369 1325:10.1016/j.tibs.2010.10.002 1046:10.1016/j.tibs.2023.01.004 1001:10.1016/j.tibs.2009.06.007 714:10.1186/1471-2164-9-S2-S26 183:) or other moieties (e.g. 3080:Protein structural motifs 3014: 2843:10.1016/j.jmb.2011.10.025 1200:10.1007/s00109-005-0719-4 844:10.1186/s12964-015-0120-z 765:10.1016/j.str.2009.11.012 2292:10.1038/sj.emboj.7600445 2242:10.1186/1471-2105-11-328 1850:10.1186/1471-2105-13-104 439:® are substrate mimetic 405:receptor tyrosine kinase 197:Structural modifications 92:intrinsically disordered 1662:10.1186/1756-9966-27-86 1579:10.1126/science.1092472 1357:Frontiers in Bioscience 895:10.1186/1471-2164-9-452 590:Frontiers in Bioscience 549:Eukaryotic Linear Motif 482:Eukaryotic Linear Motif 62:are short stretches of 2786:Nucleic Acids Research 2472:Nucleic Acids Research 2423:Nucleic Acids Research 2329:Nucleic Acids Research 2180:Nucleic Acids Research 2131:Nucleic Acids Research 2041:Nucleic Acids Research 1992:Nucleic Acids Research 1943:Nucleic Acids Research 1891:Nucleic Acids Research 340:targeting RGD-mimetic 320: 231:Nuclear export signals 104:free energy of binding 83: 43: 1475:10.1083/jcb.131.4.951 1147:10.1007/s000180050427 308: 79: 46:In molecular biology 32:protein (dark grey) ( 22:human papilloma virus 19: 2910:SLiM discovery tools 1289:10.1210/jc.2004-1027 1235:Kidney International 792:Molecular BioSystems 204:Ligand binding sites 191:Proteolytic cleavage 3090:Short linear motifs 2739:2015PLoSO..1041603M 2533:2009PLSCB...5E0376M 1903:10.1093/nar/gkp1016 1571:2004Sci...303..844V 1528:10.1038/nature06526 1520:2007Natur.450.1001W 1426:10.1038/nature07170 1418:2008Natur.454.1005S 945:2005FEBSL.579.3342N 551:resource (ELM) and 484:resource (ELM) and 473:regular expressions 129:molecular switching 109:evolve convergently 96:secondary structure 48:short linear motifs 2921:2009-10-23 at the 2798:10.1093/nar/gkw409 2484:10.1093/nar/gkq440 2435:10.1093/nar/gkl159 2341:10.1093/nar/gkr402 2229:BMC Bioinformatics 2192:10.1093/nar/gkl813 2143:10.1093/nar/gkp971 2053:10.1093/nar/gkg584 2004:10.1093/nar/gkm854 1955:10.1093/nar/gkn865 1837:BMC Bioinformatics 804:10.1039/c1mb05231d 512:Intrinsic disorder 321: 237:Modification state 179:), proteins (e.g. 160:Modification sites 141:AP2-binding motifs 44: 3067: 3066: 2592:10.1021/bi7012273 1712:10.1002/ijc.22674 1622:10.1021/jm0102598 276:Liddle's Syndrome 213:Complex formation 3097: 3000: 2993: 2986: 2977: 2976: 2865: 2864: 2854: 2826: 2820: 2819: 2809: 2777: 2771: 2770: 2760: 2750: 2733:(10): e0141603. 2718: 2712: 2711: 2701: 2669: 2663: 2662: 2652: 2620: 2614: 2613: 2603: 2586:(47): 13468–77. 2571: 2565: 2564: 2554: 2544: 2512: 2506: 2505: 2495: 2463: 2457: 2456: 2446: 2414: 2408: 2407: 2389: 2369: 2363: 2362: 2352: 2320: 2314: 2313: 2303: 2280:The EMBO Journal 2271: 2265: 2264: 2254: 2244: 2220: 2214: 2213: 2203: 2171: 2165: 2164: 2154: 2122: 2116: 2115: 2105: 2081: 2075: 2074: 2064: 2032: 2026: 2025: 2015: 1983: 1977: 1976: 1966: 1934: 1925: 1924: 1914: 1882: 1873: 1872: 1862: 1852: 1828: 1822: 1821: 1811: 1779: 1773: 1772: 1740: 1734: 1733: 1723: 1691: 1685: 1684: 1674: 1664: 1640: 1634: 1633: 1605: 1599: 1598: 1554: 1548: 1547: 1514:(7172): 1001–9. 1503: 1497: 1496: 1486: 1454: 1448: 1447: 1437: 1412:(7207): 1005–8. 1397: 1391: 1390: 1380: 1348: 1337: 1336: 1308: 1302: 1301: 1291: 1267: 1261: 1260: 1250: 1226: 1220: 1219: 1183: 1177: 1176: 1158: 1126: 1120: 1119: 1083: 1077: 1076: 1066: 1048: 1024: 1013: 1012: 981: 975: 974: 956: 924: 918: 917: 907: 897: 873: 867: 866: 856: 846: 822: 816: 815: 787: 778: 777: 767: 743: 737: 736: 726: 716: 707:(Suppl 2): S26. 692: 686: 685: 657: 651: 650: 622: 616: 615: 605: 596:(13): 6580–603. 581: 447:®, an antiviral 318: 268:Usher's Syndrome 64:protein sequence 41: 3105: 3104: 3100: 3099: 3098: 3096: 3095: 3094: 3085:Protein domains 3070: 3069: 3068: 3063: 3010: 3008:protein domains 3004: 2938:MiniMotif Miner 2923:Wayback Machine 2912: 2894:MiniMotif Miner 2885: 2873: 2868: 2827: 2823: 2792:(W1): W488-93. 2778: 2774: 2719: 2715: 2684:(11): 1738–44. 2670: 2666: 2621: 2617: 2572: 2568: 2527:(5): e1000376. 2513: 2509: 2464: 2460: 2415: 2411: 2387:10.1.1.720.9626 2370: 2366: 2321: 2317: 2286:(22): 4371–83. 2272: 2268: 2221: 2217: 2172: 2168: 2123: 2119: 2082: 2078: 2047:(13): 3635–41. 2033: 2029: 1984: 1980: 1935: 1928: 1883: 1876: 1829: 1825: 1780: 1776: 1741: 1737: 1692: 1688: 1641: 1637: 1606: 1602: 1565:(5659): 844–8. 1555: 1551: 1504: 1500: 1455: 1451: 1398: 1394: 1363:(13): 6455–71. 1349: 1340: 1309: 1305: 1268: 1264: 1227: 1223: 1194:(12): 1025–32. 1184: 1180: 1141:(3–4): 258–67. 1127: 1123: 1088:Nature Genetics 1084: 1080: 1025: 1016: 982: 978: 925: 921: 874: 870: 823: 819: 788: 781: 744: 740: 693: 689: 658: 654: 623: 619: 582: 578: 574: 561: 553:MiniMotif Miner 545: 499: 497:Discovery tools 486:MiniMotif Miner 476:described with 469: 464: 393:phosphorylation 326: 310: 257:Noonan Syndrome 252: 250:Role in disease 206: 177:Phosphorylation 173:Moiety addition 162: 153: 88: 33: 12: 11: 5: 3103: 3093: 3092: 3087: 3082: 3065: 3064: 3062: 3061: 3056: 3051: 3046: 3041: 3036: 3031: 3026: 3021: 3015: 3012: 3011: 3006:Motif binding 3003: 3002: 2995: 2988: 2980: 2974: 2973: 2968: 2967: 2966: 2961: 2956: 2951: 2940: 2935: 2930: 2925: 2911: 2908: 2907: 2906: 2901: 2896: 2891: 2884: 2883:SLiM databases 2881: 2880: 2879: 2872: 2871:External links 2869: 2867: 2866: 2837:(1): 193–204. 2821: 2772: 2713: 2678:Bioinformatics 2664: 2635:(12): i75-83. 2629:Bioinformatics 2615: 2566: 2507: 2458: 2409: 2380:(8): 1036–42. 2374:Bioinformatics 2364: 2315: 2266: 2215: 2166: 2117: 2090:Bioinformatics 2076: 2027: 1978: 1926: 1874: 1823: 1774: 1735: 1686: 1635: 1616:(5): 1045–51. 1600: 1549: 1498: 1449: 1392: 1338: 1303: 1262: 1221: 1178: 1121: 1100:10.1038/ng2073 1094:(8): 1007–12. 1078: 1014: 995:(10): 471–82. 976: 939:(15): 3342–5. 919: 868: 817: 779: 738: 687: 652: 617: 575: 573: 570: 560: 557: 544: 541: 540: 539: 535: 531: 527: 498: 495: 478:sequence logos 468: 465: 463: 460: 449:myristoylation 325: 322: 251: 248: 247: 246: 240: 234: 220: 201: 200: 194: 188: 152: 149: 121:cell signaling 87: 84: 30:retinoblastoma 9: 6: 4: 3: 2: 3102: 3091: 3088: 3086: 3083: 3081: 3078: 3077: 3075: 3060: 3057: 3055: 3052: 3050: 3047: 3045: 3042: 3040: 3037: 3035: 3032: 3030: 3027: 3025: 3022: 3020: 3017: 3016: 3013: 3009: 3001: 2996: 2994: 2989: 2987: 2982: 2981: 2978: 2972: 2969: 2965: 2962: 2960: 2957: 2955: 2952: 2950: 2947: 2946: 2944: 2941: 2939: 2936: 2934: 2931: 2929: 2926: 2924: 2920: 2917: 2914: 2913: 2905: 2902: 2900: 2897: 2895: 2892: 2890: 2887: 2886: 2878: 2875: 2874: 2862: 2858: 2853: 2848: 2844: 2840: 2836: 2832: 2825: 2817: 2813: 2808: 2803: 2799: 2795: 2791: 2787: 2783: 2776: 2768: 2764: 2759: 2754: 2749: 2744: 2740: 2736: 2732: 2728: 2724: 2717: 2709: 2705: 2700: 2695: 2691: 2687: 2683: 2679: 2675: 2668: 2660: 2656: 2651: 2646: 2642: 2638: 2634: 2630: 2626: 2619: 2611: 2607: 2602: 2597: 2593: 2589: 2585: 2581: 2577: 2570: 2562: 2558: 2553: 2548: 2543: 2538: 2534: 2530: 2526: 2522: 2518: 2511: 2503: 2499: 2494: 2489: 2485: 2481: 2477: 2473: 2469: 2462: 2454: 2450: 2445: 2440: 2436: 2432: 2428: 2424: 2420: 2413: 2405: 2401: 2397: 2393: 2388: 2383: 2379: 2375: 2368: 2360: 2356: 2351: 2346: 2342: 2338: 2334: 2330: 2326: 2319: 2311: 2307: 2302: 2297: 2293: 2289: 2285: 2281: 2277: 2270: 2262: 2258: 2253: 2248: 2243: 2238: 2234: 2230: 2226: 2219: 2211: 2207: 2202: 2197: 2193: 2189: 2185: 2181: 2177: 2170: 2162: 2158: 2153: 2148: 2144: 2140: 2136: 2132: 2128: 2121: 2113: 2109: 2104: 2099: 2095: 2091: 2087: 2080: 2072: 2068: 2063: 2058: 2054: 2050: 2046: 2042: 2038: 2031: 2023: 2019: 2014: 2009: 2005: 2001: 1997: 1993: 1989: 1982: 1974: 1970: 1965: 1960: 1956: 1952: 1948: 1944: 1940: 1933: 1931: 1922: 1918: 1913: 1908: 1904: 1900: 1896: 1892: 1888: 1881: 1879: 1870: 1866: 1861: 1856: 1851: 1846: 1842: 1838: 1834: 1827: 1819: 1815: 1810: 1805: 1801: 1797: 1793: 1789: 1785: 1778: 1770: 1766: 1762: 1758: 1755:(5): 529–48. 1754: 1750: 1746: 1739: 1731: 1727: 1722: 1717: 1713: 1709: 1706:(2): 407–15. 1705: 1701: 1697: 1690: 1682: 1678: 1673: 1668: 1663: 1658: 1654: 1650: 1646: 1639: 1631: 1627: 1623: 1619: 1615: 1611: 1604: 1596: 1592: 1588: 1584: 1580: 1576: 1572: 1568: 1564: 1560: 1553: 1545: 1541: 1537: 1533: 1529: 1525: 1521: 1517: 1513: 1509: 1502: 1494: 1490: 1485: 1480: 1476: 1472: 1469:(4): 951–62. 1468: 1464: 1460: 1453: 1445: 1441: 1436: 1431: 1427: 1423: 1419: 1415: 1411: 1407: 1403: 1396: 1388: 1384: 1379: 1374: 1370: 1366: 1362: 1358: 1354: 1347: 1345: 1343: 1334: 1330: 1326: 1322: 1319:(3): 159–69. 1318: 1314: 1307: 1299: 1295: 1290: 1285: 1281: 1277: 1273: 1266: 1258: 1254: 1249: 1244: 1240: 1236: 1232: 1225: 1217: 1213: 1209: 1205: 1201: 1197: 1193: 1189: 1182: 1174: 1170: 1166: 1162: 1157: 1152: 1148: 1144: 1140: 1136: 1132: 1125: 1117: 1113: 1109: 1105: 1101: 1097: 1093: 1089: 1082: 1074: 1070: 1065: 1060: 1056: 1052: 1047: 1042: 1038: 1034: 1030: 1023: 1021: 1019: 1010: 1006: 1002: 998: 994: 990: 986: 980: 972: 968: 964: 960: 955: 950: 946: 942: 938: 934: 930: 923: 915: 911: 906: 901: 896: 891: 887: 883: 879: 872: 864: 860: 855: 850: 845: 840: 836: 832: 828: 821: 813: 809: 805: 801: 798:(1): 268–81. 797: 793: 786: 784: 775: 771: 766: 761: 758:(2): 188–99. 757: 753: 749: 742: 734: 730: 725: 720: 715: 710: 706: 702: 698: 691: 683: 679: 675: 671: 667: 663: 656: 648: 644: 640: 636: 633:(5): 465–71. 632: 628: 621: 613: 609: 604: 599: 595: 591: 587: 580: 576: 569: 567: 556: 554: 550: 536: 532: 528: 525: 521: 517: 513: 509: 508: 507: 503: 494: 491: 487: 483: 479: 474: 459: 456: 454: 450: 446: 442: 438: 434: 430: 426: 422: 418: 414: 410: 406: 402: 398: 394: 389: 387: 383: 379: 375: 371: 367: 363: 359: 355: 351: 347: 343: 339: 335: 332:motif analog 331: 317: 313: 307: 303: 301: 298:motif of the 295: 291: 289: 285: 281: 277: 273: 269: 265: 262: 258: 244: 241: 238: 235: 232: 228: 224: 221: 218: 214: 211: 210: 209: 205: 198: 195: 192: 189: 186: 182: 178: 174: 171: 170: 169: 167: 161: 157: 148: 146: 142: 138: 134: 130: 126: 122: 118: 114: 110: 105: 101: 97: 93: 82: 78: 76: 71: 69: 66:that mediate 65: 61: 57: 56:linear motifs 53: 49: 40: 36: 31: 27: 23: 18: 2964:Comparimotif 2834: 2830: 2824: 2789: 2785: 2775: 2730: 2726: 2716: 2681: 2677: 2667: 2632: 2628: 2618: 2583: 2580:Biochemistry 2579: 2569: 2524: 2520: 2510: 2475: 2471: 2461: 2426: 2422: 2412: 2377: 2373: 2367: 2332: 2328: 2318: 2283: 2279: 2269: 2232: 2228: 2218: 2183: 2179: 2169: 2134: 2130: 2120: 2096:(6): 827–8. 2093: 2089: 2079: 2044: 2040: 2030: 1995: 1991: 1981: 1946: 1942: 1894: 1890: 1840: 1836: 1826: 1794:(4): 481–8. 1791: 1787: 1777: 1752: 1748: 1738: 1703: 1699: 1689: 1652: 1648: 1638: 1613: 1609: 1603: 1562: 1558: 1552: 1511: 1507: 1501: 1466: 1462: 1452: 1409: 1405: 1395: 1369:10.2741/3166 1360: 1356: 1316: 1312: 1306: 1282:(1): 340–4. 1279: 1275: 1265: 1241:(1): 18–24. 1238: 1234: 1224: 1191: 1187: 1181: 1138: 1134: 1124: 1091: 1087: 1081: 1036: 1032: 992: 988: 979: 936: 933:FEBS Letters 932: 922: 885: 882:BMC Genomics 881: 871: 834: 830: 820: 795: 791: 755: 751: 741: 704: 701:BMC Genomics 700: 690: 668:(8): 305–9. 665: 661: 655: 630: 626: 620: 603:10.2741/3175 593: 589: 579: 562: 546: 504: 500: 470: 457: 390: 362:cytoskeleton 327: 296: 292: 253: 242: 236: 223:Localisation 222: 212: 203: 202: 196: 190: 172: 159: 158: 154: 89: 80: 72: 59: 55: 51: 47: 45: 534:transition. 441:Angiotensin 370:endothelial 354:Cilengitide 342:Cilengitide 272:PDZ domains 229:(NLSs) and 181:SUMOylation 117:interactome 100:amino acids 26:oncoprotein 3074:Categories 2959:SLiMSearch 2954:SLiMFinder 2852:10197/3395 572:References 453:lipidation 266:activity. 217:SH3 domain 113:Eukaryotes 86:Attributes 60:minimotifs 2943:SLiMSuite 2382:CiteSeerX 1655:(1): 86. 1544:205211934 1055:0968-0004 985:Gibson TJ 837:(1): 43. 752:Structure 467:Databases 421:proteases 366:apoptosis 356:inhibits 243:Stability 2971:ScanSite 2949:SLiMPred 2945: : 2919:Archived 2904:ScanSite 2899:PepCyber 2861:22079048 2816:27174932 2767:26517836 2727:PLOS ONE 2708:25637562 2659:22689782 2610:17973494 2561:19412530 2502:20497999 2453:16845024 2404:20167627 2359:21622654 2310:15496985 2261:20565705 2210:17142225 2161:19892822 2112:15513994 2071:12824383 2022:18160410 1973:18978024 1921:19920119 1869:22607209 1818:20598937 1769:16472145 1730:17372910 1681:19114005 1630:11855984 1595:16132757 1587:14704432 1536:18075579 1444:18650806 1387:18508672 1333:21146412 1298:15483078 1216:41415771 1208:16283141 1165:11212353 1156:11146852 1116:19335210 1108:17603483 1073:36754681 1064:10106370 1009:19744855 971:41014984 963:15943979 914:18828911 863:26589632 812:21909575 774:20159464 733:18831792 647:16962311 612:18508681 437:Lotensin 433:Accupril 380:and Crk 358:integrin 346:Nutlin-3 338:integrin 334:Nutlin-3 319:​) 300:bacteria 151:Function 133:integrin 75:Tim Hunt 42:​) 2928:DiLiMot 2807:4987941 2758:4627796 2735:Bibcode 2699:4443681 2650:3371841 2601:2570644 2552:2671142 2529:Bibcode 2493:2896084 2444:1538856 2350:3125787 2252:2905367 2235:: 328. 2201:1669773 2152:2808883 2013:2238930 1964:2686579 1912:2808914 1860:3534220 1843:: 104. 1809:2918680 1721:2755772 1672:2648308 1567:Bibcode 1559:Science 1516:Bibcode 1493:7490296 1484:2200010 1435:2749708 1414:Bibcode 1378:2628544 1257:9452995 1173:2028106 941:Bibcode 905:2576256 888:: 452. 854:4654906 724:2559891 682:2204156 445:Zovirax 435:®, and 429:Vasotec 425:Tritace 413:Sprycel 409:Gleevec 403:® is a 401:Stutnet 233:(NESs)) 137:avidity 2916:ANCHOR 2859:  2814:  2804:  2765:  2755:  2706:  2696:  2657:  2647:  2608:  2598:  2559:  2549:  2500:  2490:  2451:  2441:  2402:  2384:  2357:  2347:  2308:  2301:526462 2298:  2259:  2249:  2208:  2198:  2159:  2149:  2110:  2069:  2062:168990 2059:  2020:  2010:  1971:  1961:  1919:  1909:  1867:  1857:  1816:  1806:  1767:  1728:  1718:  1679:  1669:  1628:  1593:  1585:  1542:  1534:  1508:Nature 1491:  1481:  1442:  1432:  1406:Nature 1385:  1375:  1331:  1296:  1255:  1214:  1206:  1171:  1163:  1153:  1114:  1106:  1071:  1061:  1053:  1007:  969:  961:  912:  902:  861:  851:  810:  772:  731:  721:  680:  645:  610:  530:motif. 490:MEROPS 397:kinase 374:glioma 264:kinase 1591:S2CID 1540:S2CID 1212:S2CID 1169:S2CID 1112:S2CID 967:S2CID 566:MoRFs 520:SMART 284:NEDD4 261:Raf-1 145:Eps15 52:SLiMs 3054:WD40 3029:EVH1 3019:BRCT 2857:PMID 2812:PMID 2763:PMID 2704:PMID 2655:PMID 2606:PMID 2557:PMID 2498:PMID 2449:PMID 2400:PMID 2355:PMID 2306:PMID 2257:PMID 2206:PMID 2157:PMID 2108:PMID 2067:PMID 2018:PMID 1969:PMID 1917:PMID 1865:PMID 1814:PMID 1765:PMID 1726:PMID 1677:PMID 1626:PMID 1583:PMID 1532:PMID 1489:PMID 1440:PMID 1383:PMID 1329:PMID 1294:PMID 1253:PMID 1204:PMID 1161:PMID 1104:PMID 1069:PMID 1051:ISSN 1005:PMID 959:PMID 910:PMID 859:PMID 808:PMID 770:PMID 729:PMID 678:PMID 643:PMID 608:PMID 547:The 518:and 516:Pfam 378:Grb2 372:and 336:and 330:MDM2 316:3lbk 288:ENaC 39:1gux 20:The 3049:SH3 3044:SH2 3039:PDZ 3034:PTB 2847:hdl 2839:doi 2835:415 2802:PMC 2794:doi 2753:PMC 2743:doi 2694:PMC 2686:doi 2645:PMC 2637:doi 2596:PMC 2588:doi 2547:PMC 2537:doi 2488:PMC 2480:doi 2439:PMC 2431:doi 2392:doi 2345:PMC 2337:doi 2296:PMC 2288:doi 2247:PMC 2237:doi 2196:PMC 2188:doi 2147:PMC 2139:doi 2098:doi 2057:PMC 2049:doi 2008:PMC 2000:doi 1959:PMC 1951:doi 1907:PMC 1899:doi 1855:PMC 1845:doi 1804:PMC 1796:doi 1757:doi 1716:PMC 1708:doi 1704:121 1667:PMC 1657:doi 1618:doi 1575:doi 1563:303 1524:doi 1512:450 1479:PMC 1471:doi 1467:131 1430:PMC 1422:doi 1410:454 1373:PMC 1365:doi 1321:doi 1284:doi 1243:doi 1196:doi 1151:PMC 1143:doi 1096:doi 1059:PMC 1041:doi 997:doi 949:doi 937:579 900:PMC 890:doi 849:PMC 839:doi 800:doi 760:doi 719:PMC 709:doi 670:doi 635:doi 598:doi 524:PDB 431:®, 427:®, 417:Src 386:SH3 382:SH2 368:in 350:p53 312:PDB 147:). 143:in 58:or 54:), 35:PDB 24:E7 3076:: 3059:WW 3024:EH 2855:. 2845:. 2833:. 2810:. 2800:. 2790:44 2788:. 2784:. 2761:. 2751:. 2741:. 2731:10 2729:. 2725:. 2702:. 2692:. 2682:31 2680:. 2676:. 2653:. 2643:. 2633:28 2631:. 2627:. 2604:. 2594:. 2584:46 2582:. 2578:. 2555:. 2545:. 2535:. 2523:. 2519:. 2496:. 2486:. 2476:38 2474:. 2470:. 2447:. 2437:. 2427:34 2425:. 2421:. 2398:. 2390:. 2378:26 2376:. 2353:. 2343:. 2333:39 2331:. 2327:. 2304:. 2294:. 2284:23 2282:. 2278:. 2255:. 2245:. 2233:11 2231:. 2227:. 2204:. 2194:. 2184:35 2182:. 2178:. 2155:. 2145:. 2135:38 2133:. 2129:. 2106:. 2094:21 2092:. 2088:. 2065:. 2055:. 2045:31 2043:. 2039:. 2016:. 2006:. 1996:36 1994:. 1990:. 1967:. 1957:. 1947:37 1945:. 1941:. 1929:^ 1915:. 1905:. 1895:38 1893:. 1889:. 1877:^ 1863:. 1853:. 1841:13 1839:. 1835:. 1812:. 1802:. 1792:14 1790:. 1786:. 1763:. 1753:12 1751:. 1747:. 1724:. 1714:. 1702:. 1698:. 1675:. 1665:. 1653:27 1651:. 1647:. 1624:. 1614:45 1612:. 1589:. 1581:. 1573:. 1561:. 1538:. 1530:. 1522:. 1510:. 1487:. 1477:. 1465:. 1461:. 1438:. 1428:. 1420:. 1408:. 1404:. 1381:. 1371:. 1361:13 1359:. 1355:. 1341:^ 1327:. 1317:36 1315:. 1292:. 1280:90 1278:. 1274:. 1251:. 1239:53 1237:. 1233:. 1210:. 1202:. 1192:83 1190:. 1167:. 1159:. 1149:. 1139:56 1137:. 1133:. 1110:. 1102:. 1092:39 1090:. 1067:. 1057:. 1049:. 1037:48 1035:. 1031:. 1017:^ 1003:. 993:34 991:. 965:. 957:. 947:. 935:. 931:. 908:. 898:. 884:. 880:. 857:. 847:. 835:13 833:. 829:. 806:. 794:. 782:^ 768:. 756:18 754:. 750:. 727:. 717:. 703:. 699:. 676:. 666:15 664:. 641:. 631:17 629:. 606:. 594:13 592:. 588:. 384:/ 344:: 314:: 187:). 77:: 70:. 37:: 2999:e 2992:t 2985:v 2863:. 2849:: 2841:: 2818:. 2796:: 2769:. 2745:: 2737:: 2710:. 2688:: 2661:. 2639:: 2612:. 2590:: 2563:. 2539:: 2531:: 2525:5 2504:. 2482:: 2455:. 2433:: 2406:. 2394:: 2361:. 2339:: 2312:. 2290:: 2263:. 2239:: 2212:. 2190:: 2163:. 2141:: 2114:. 2100:: 2073:. 2051:: 2024:. 2002:: 1975:. 1953:: 1923:. 1901:: 1871:. 1847:: 1820:. 1798:: 1771:. 1759:: 1732:. 1710:: 1683:. 1659:: 1632:. 1620:: 1597:. 1577:: 1569:: 1546:. 1526:: 1518:: 1495:. 1473:: 1446:. 1424:: 1416:: 1389:. 1367:: 1335:. 1323:: 1300:. 1286:: 1259:. 1245:: 1218:. 1198:: 1175:. 1145:: 1118:. 1098:: 1075:. 1043:: 1011:. 999:: 973:. 951:: 943:: 916:. 892:: 886:9 865:. 841:: 814:. 802:: 796:8 776:. 762:: 735:. 711:: 705:9 684:. 672:: 649:. 637:: 614:. 600:: 50:(

Index


human papilloma virus
oncoprotein
retinoblastoma
PDB
1gux
protein sequence
protein–protein interaction
Tim Hunt
intrinsically disordered
secondary structure
amino acids
free energy of binding
evolve convergently
Eukaryotes
interactome
cell signaling
post-translational modifications
molecular switching
integrin
avidity
AP2-binding motifs
Eps15
post translational modification sites
Phosphorylation
SUMOylation
post translational moiety addition
SH3 domain
Nuclear localisation signals
Nuclear export signals

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑