Knowledge

Schoen–Yau conjecture

Source 📝

456:(It is not clear how Yau's name became associated with the conjecture: in unpublished correspondence with Harold Rosenberg, both Schoen and Yau identify Schoen as having postulated the conjecture). The Schoen(-Yau) conjecture has since been disproved. 353: 781: 217: 451: 405: 704: 665: 228: 709:
so the question is whether or not they are "harmonically diffeomorphic". However, as the truth of Heinz's theorem and the falsity of the Schoen–Yau conjecture demonstrate,
112: 82: 735: 552: 504: 727: 615: 583: 127: 875: 786:
Thus, being "harmonically diffeomorphic" is a much stronger property than simply being diffeomorphic, and can be a "one-way" relation.
468:
diffeomorphism, and that this property is a "one-way" property. In more detail: suppose that we consider two Riemannian manifolds
911: 868: 416: 370: 676: 51: 1012: 861: 1017: 627: 986: 809:
Collin, Pascal; Rosenberg, Harold (2010). "Construction of harmonic diffeomorphisms and minimal graphs".
348:{\displaystyle \mathrm {d} s^{2}=4{\frac {\mathrm {d} x^{2}+\mathrm {d} y^{2}}{(1-(x^{2}+y^{2}))^{2}}}.} 921: 594: 776:{\displaystyle \mathbb {C} \propto \mathbb {H} {\text{ but }}\mathbb {H} \not \propto \mathbb {C} .} 906: 590: 95: 65: 531: 981: 941: 936: 896: 482: 712: 991: 670:
It can be shown that the hyperbolic plane and (flat) complex plane are indeed diffeomorphic:
976: 848: 600: 586: 568: 410:
In light of this theorem, Schoen conjectured that there exists no harmonic diffeomorphism
8: 961: 951: 89: 25: 956: 971: 946: 901: 818: 618: 931: 836: 916: 828: 115: 845: 832: 926: 362: 47: 36: 32: 1006: 840: 85: 29: 212:{\displaystyle \mathbb {H} :=\{(x,y)\in \mathbb {R} ^{2}|x^{2}+y^{2}<1\}} 359: 43: 17: 853: 885: 796:
Heinz, Erhard (1952). "Über die Lösungen der Minimalflächengleichung".
823: 119: 798:
Nachr. Akad. Wiss. Göttingen. Math.-Phys. Kl. Math.-Phys.-Chem. Abt
57: 464:
The emphasis is on the existence or non-existence of an
808: 738: 715: 679: 630: 603: 571: 534: 485: 419: 373: 231: 130: 98: 68: 775: 721: 698: 659: 609: 577: 546: 498: 445: 399: 347: 211: 106: 76: 446:{\displaystyle g:\mathbb {C} \to \mathbb {H} .\,} 400:{\displaystyle f:\mathbb {H} \to \mathbb {C} .\,} 1004: 557:if there exists an harmonic diffeomorphism from 358:E. Heinz proved in 1952 that there can exist no 699:{\displaystyle \mathbb {H} \sim \mathbb {C} ,} 869: 92:with its usual (flat) Riemannian metric. Let 46:(1952). One method of disproof is the use of 206: 139: 476:(with their respective metrics), and write 876: 862: 644: 640: 883: 822: 766: 758: 748: 740: 689: 681: 495: 442: 435: 427: 396: 389: 381: 162: 132: 100: 70: 597:of Riemannian manifolds. In particular, 58:Setting and statement of the conjecture 1005: 509:if there exists a diffeomorphism from 857: 795: 660:{\displaystyle M\sim N\iff N\sim M.} 565:. It is not difficult to show that 222:endowed with the hyperbolic metric 13: 275: 257: 233: 14: 1029: 42:It was inspired by a theorem of 641: 431: 385: 330: 326: 300: 291: 173: 154: 142: 1: 789: 729:is not a symmetric relation: 24:is a disproved conjecture in 833:10.4007/annals.2010.172.1879 585:(being diffeomorphic) is an 107:{\displaystyle \mathbb {H} } 77:{\displaystyle \mathbb {C} } 7: 517:(in the usual terminology, 459: 10: 1034: 547:{\displaystyle M\propto N} 525:are diffeomorphic). Write 54:and Pascal Collin (2006). 892: 499:{\displaystyle M\sim N\,} 722:{\displaystyle \propto } 777: 723: 700: 661: 611: 579: 548: 500: 447: 401: 349: 213: 108: 78: 1013:Disproved conjectures 912:Euler's sum of powers 778: 724: 701: 662: 612: 610:{\displaystyle \sim } 580: 578:{\displaystyle \sim } 549: 501: 448: 402: 350: 214: 109: 79: 22:Schoen–Yau conjecture 736: 713: 677: 628: 601: 587:equivalence relation 569: 532: 483: 417: 371: 229: 128: 96: 66: 1018:Hyperbolic geometry 90:Riemannian manifold 26:hyperbolic geometry 902:Chinese hypothesis 773: 719: 696: 657: 619:symmetric relation 607: 575: 544: 496: 443: 397: 345: 209: 104: 74: 28:, named after the 1000: 999: 755: 340: 1025: 952:Ono's inequality 878: 871: 864: 855: 854: 844: 826: 817:(3): 1879–1906. 805: 782: 780: 779: 774: 769: 763:∝ ̸ 761: 756: 753: 751: 743: 728: 726: 725: 720: 705: 703: 702: 697: 692: 684: 666: 664: 663: 658: 616: 614: 613: 608: 584: 582: 581: 576: 553: 551: 550: 545: 505: 503: 502: 497: 452: 450: 449: 444: 438: 430: 406: 404: 403: 398: 392: 384: 354: 352: 351: 346: 341: 339: 338: 337: 325: 324: 312: 311: 289: 288: 287: 278: 270: 269: 260: 254: 246: 245: 236: 218: 216: 215: 210: 199: 198: 186: 185: 176: 171: 170: 165: 135: 116:hyperbolic plane 113: 111: 110: 105: 103: 88:considered as a 83: 81: 80: 75: 73: 52:Harold Rosenberg 1033: 1032: 1028: 1027: 1026: 1024: 1023: 1022: 1003: 1002: 1001: 996: 888: 882: 792: 765: 757: 754: but  752: 747: 739: 737: 734: 733: 714: 711: 710: 688: 680: 678: 675: 674: 629: 626: 625: 602: 599: 598: 570: 567: 566: 533: 530: 529: 484: 481: 480: 462: 434: 426: 418: 415: 414: 388: 380: 372: 369: 368: 333: 329: 320: 316: 307: 303: 290: 283: 279: 274: 265: 261: 256: 255: 253: 241: 237: 232: 230: 227: 226: 194: 190: 181: 177: 172: 166: 161: 160: 131: 129: 126: 125: 99: 97: 94: 93: 69: 67: 64: 63: 60: 48:Scherk surfaces 12: 11: 5: 1031: 1021: 1020: 1015: 998: 997: 995: 994: 989: 984: 979: 974: 969: 964: 959: 954: 949: 944: 939: 934: 929: 927:Hauptvermutung 924: 919: 914: 909: 904: 899: 893: 890: 889: 881: 880: 873: 866: 858: 852: 851: 806: 791: 788: 784: 783: 772: 768: 764: 760: 750: 746: 742: 718: 707: 706: 695: 691: 687: 683: 668: 667: 656: 653: 650: 647: 643: 639: 636: 633: 606: 574: 555: 554: 543: 540: 537: 507: 506: 494: 491: 488: 461: 458: 454: 453: 441: 437: 433: 429: 425: 422: 408: 407: 395: 391: 387: 383: 379: 376: 363:diffeomorphism 356: 355: 344: 336: 332: 328: 323: 319: 315: 310: 306: 302: 299: 296: 293: 286: 282: 277: 273: 268: 264: 259: 252: 249: 244: 240: 235: 220: 219: 208: 205: 202: 197: 193: 189: 184: 180: 175: 169: 164: 159: 156: 153: 150: 147: 144: 141: 138: 134: 102: 72: 59: 56: 37:Shing-Tung Yau 33:Richard Schoen 30:mathematicians 9: 6: 4: 3: 2: 1030: 1019: 1016: 1014: 1011: 1010: 1008: 993: 990: 988: 985: 983: 980: 978: 975: 973: 970: 968: 965: 963: 960: 958: 955: 953: 950: 948: 945: 943: 940: 938: 935: 933: 930: 928: 925: 923: 920: 918: 915: 913: 910: 908: 905: 903: 900: 898: 895: 894: 891: 887: 879: 874: 872: 867: 865: 860: 859: 856: 850: 847: 842: 838: 834: 830: 825: 820: 816: 812: 807: 803: 799: 794: 793: 787: 770: 762: 744: 732: 731: 730: 716: 693: 685: 673: 672: 671: 654: 651: 648: 645: 637: 634: 631: 624: 623: 622: 620: 604: 596: 592: 588: 572: 564: 560: 541: 538: 535: 528: 527: 526: 524: 520: 516: 512: 492: 489: 486: 479: 478: 477: 475: 471: 467: 457: 439: 423: 420: 413: 412: 411: 393: 377: 374: 367: 366: 365: 364: 361: 342: 334: 321: 317: 313: 308: 304: 297: 294: 284: 280: 271: 266: 262: 250: 247: 242: 238: 225: 224: 223: 203: 200: 195: 191: 187: 182: 178: 167: 157: 151: 148: 145: 136: 124: 123: 122: 121: 117: 91: 87: 86:complex plane 55: 53: 50:, as used by 49: 45: 40: 38: 34: 31: 27: 23: 19: 966: 922:Hedetniemi's 824:math/0701547 814: 811:Ann. of Math 810: 801: 797: 785: 708: 669: 562: 558: 556: 522: 518: 514: 510: 508: 473: 469: 465: 463: 455: 409: 357: 221: 61: 44:Erhard Heinz 41: 21: 15: 982:Von Neumann 886:conjectures 118:, i.e. the 114:denote the 18:mathematics 1007:Categories 992:Williamson 987:Weyl–Berry 967:Schoen–Yau 884:Disproved 790:References 841:0003-486X 745:∝ 717:∝ 686:∼ 649:∼ 642:⟺ 635:∼ 605:∼ 573:∼ 539:∝ 490:∼ 432:→ 386:→ 298:− 158:∈ 120:unit disc 962:Ragsdale 942:Keller's 937:Kalman's 897:Borsuk's 804:: 51–56. 595:category 466:harmonic 460:Comments 360:harmonic 972:Seifert 947:Mertens 849:2726102 593:of the 591:objects 589:on the 84:be the 977:Tait's 932:Hirsch 907:Connes 839:  20:, the 957:Pólya 917:Ganea 819:arXiv 813:. 2. 617:is a 561:onto 513:onto 837:ISSN 802:1952 521:and 472:and 201:< 62:Let 35:and 829:doi 815:172 16:In 1009:: 846:MR 835:. 827:. 800:. 621:: 137::= 39:. 877:e 870:t 863:v 843:. 831:: 821:: 771:. 767:C 759:H 749:H 741:C 694:, 690:C 682:H 655:. 652:M 646:N 638:N 632:M 563:N 559:M 542:N 536:M 523:N 519:M 515:N 511:M 493:N 487:M 474:N 470:M 440:. 436:H 428:C 424:: 421:g 394:. 390:C 382:H 378:: 375:f 343:. 335:2 331:) 327:) 322:2 318:y 314:+ 309:2 305:x 301:( 295:1 292:( 285:2 281:y 276:d 272:+ 267:2 263:x 258:d 251:4 248:= 243:2 239:s 234:d 207:} 204:1 196:2 192:y 188:+ 183:2 179:x 174:| 168:2 163:R 155:) 152:y 149:, 146:x 143:( 140:{ 133:H 101:H 71:C

Index

mathematics
hyperbolic geometry
mathematicians
Richard Schoen
Shing-Tung Yau
Erhard Heinz
Scherk surfaces
Harold Rosenberg
complex plane
Riemannian manifold
hyperbolic plane
unit disc
harmonic
diffeomorphism
equivalence relation
objects
category
symmetric relation
arXiv
math/0701547
doi
10.4007/annals.2010.172.1879
ISSN
0003-486X
MR
2726102
v
t
e
conjectures

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.