Knowledge

Schmidt number

Source 📝

471:, which is concerned with turbulent heat transfer rather than turbulent mass transfer. It is useful for solving the mass transfer problem of turbulent boundary layer flows. The simplest model for Sct is the Reynolds analogy, which yields a turbulent Schmidt number of 1. From experimental data and CFD simulations, Sct ranges from 0.2 to 6. 199: 108: 933:
Contigiani, C. C.; Colli, A. N.; GonzĂĄlez PĂ©rez, O.; Bisang, J. M. (April 2020). "The Effect of a Conical Inner Electrode on the Mass-transfer Behavior in a Cylindrical Electrochemical Reactor under Single-Phase and Two-Phase (Gas-Liquid) Swirling Flow".
571: 396: 844:
Colli, A. N.; Bisang, J. M. (July 2019). "Time-dependent mass-transfer behaviour under laminar and turbulent flow conditions in rotating electrodes: A CFD study with analytical and experimental validation".
194:{\displaystyle \mathrm {Sc} ={\frac {\nu }{D}}={\frac {\mu }{\rho D}}={\frac {\mbox{viscous diffusion rate}}{\mbox{molecular (mass) diffusion rate}}}={\frac {\mathrm {Pe} }{\mathrm {Re} }}} 244: 467:
The turbulent Schmidt number describes the ratio between the rates of turbulent transport of momentum and the turbulent transport of mass (or any passive scalar). It is related to the
1082: 77: 431: 888:
Colli, A. N.; Bisang, J. M. (January 2020). "Coupling k Convection-Diffusion and Laplace Equations in an Open-Source CFD Model for Tertiary Current Distribution Calculations".
602: 807:
Colli, A. N.; Bisang, J. M. (January 2018). "A CFD Study with Analytical and Experimental Validation of Laminar and Turbulent Mass-Transfer in Electrochemical Reactors".
655: 687: 624: 457: 1075: 497: 1427: 1068: 1432: 345: 1026: 1010: 762:"The effect of rotation on rapidly sheared homogeneous turbulence and passive scalar transport. Linear theory and direct numerical simulation" 1051: 1091: 744: 214: 487:. Gustav Schmidt of the German Polytechnic Institute of Prague published an analysis in 1871 for the now-famous 1237: 707: 407: 72:, and it is used to characterize fluid flows in which there are simultaneous momentum and mass diffusion 434: 1030: 1007: 977:
Donzis, D. A.; Aditya, K.; Sreenivasan, K. R.; Yeung, P. K. (2014). "The Turbulent Schmidt Number".
1314: 1297: 582: 468: 1437: 1292: 631: 1192: 488: 866: 28: 662: 1147: 1060: 943: 854: 773: 736: 95:. It physically relates the relative thickness of the hydrodynamic layer and mass-transfer 53: 20: 1152: 8: 316: 247: 65: 1217: 947: 858: 777: 339:
The turbulent Schmidt number is commonly used in turbulence research and is defined as:
1401: 1187: 1127: 959: 915: 870: 789: 609: 442: 61: 1356: 1321: 1102: 1045: 963: 919: 874: 793: 740: 267: 1406: 1277: 1262: 1227: 1137: 990: 951: 905: 897: 862: 824: 816: 781: 320: 257: 69: 1282: 1371: 1351: 1309: 1304: 1132: 1014: 566:{\displaystyle \mathrm {Sc} ={\frac {\sum {\left|{Q}\right|}}{{\bar {p}}V_{sw}}}} 480: 296: 1381: 1361: 1346: 1287: 1272: 1247: 1242: 1232: 1212: 1202: 1167: 1112: 955: 460: 308: 96: 35: 24: 785: 1421: 1391: 1386: 1376: 1366: 1331: 1326: 1267: 1207: 1197: 1177: 1172: 1142: 1107: 484: 391:{\displaystyle \mathrm {Sc} _{\mathrm {t} }={\frac {\nu _{\mathrm {t} }}{K}}} 304: 287: 1396: 1336: 1252: 1222: 1182: 1157: 1117: 324: 84: 1257: 1162: 1122: 901: 820: 910: 829: 73: 994: 986: 932: 761: 205: 277: 88: 57: 49: 1090: 976: 491:
solution for an idealized isothermal Stirling engine model.
16:
Ratio of a fluid's kinematic viscosity to mass diffusivity
926: 225: 161: 156: 881: 837: 800: 665: 634: 612: 585: 500: 445: 410: 348: 217: 111: 970: 681: 649: 618: 596: 565: 451: 425: 390: 238: 193: 1419: 847:International Journal of Heat and Mass Transfer 730: 731:Incropera, Frank P.; DeWitt, David P. (1990), 626:is the heat transferred into the working fluid 76:processes. It was named after German engineer 1076: 887: 843: 806: 705: 334: 239:{\displaystyle \nu ={\tfrac {\mu }{\rho }}} 1083: 1069: 759: 909: 828: 657:is the mean pressure of the working fluid 1428:Dimensionless numbers of fluid mechanics 1092:Dimensionless numbers in fluid mechanics 867:10.1016/j.ijheatmasstransfer.2019.03.152 1433:Dimensionless numbers of thermodynamics 483:, the Schmidt number is related to the 91:) to the diffusivity for mass transfer 83:The Schmidt number is the ratio of the 1420: 1050:: CS1 maint: archived copy as title ( 936:Journal of the Electrochemical Society 890:Journal of the Electrochemical Society 809:Journal of the Electrochemical Society 733:Fundamentals of Heat and Mass Transfer 87:for diffusivity (viscosity divided by 1064: 307:analog of the Schmidt number is the 270:of the fluid (Pa·s = N·s/m = kg/m·s) 1008:Schmidt Analysis (updated 12/05/07) 474: 426:{\displaystyle \nu _{\mathrm {t} }} 13: 689:is the volume swept by the piston. 590: 587: 505: 502: 417: 377: 360: 354: 351: 185: 182: 177: 174: 116: 113: 14: 1449: 987:https://doi.org/10.1115/1.4026619 1019: 163:molecular (mass) diffusion rate 1001: 753: 724: 699: 641: 541: 78:Ernst Heinrich Wilhelm Schmidt 1: 979:Journal of Fluids Engineering 693: 597:{\displaystyle \mathrm {Sc} } 7: 10: 1454: 706:tec-science (2020-05-10). 650:{\displaystyle {\bar {p}}} 18: 1098: 786:10.1017/s0022112005006427 956:10.1149/1945-7111/ab8477 469:turbulent Prandtl number 335:Turbulent Schmidt Number 760:Brethouwer, G. (2005). 19:For the measure of the 683: 682:{\displaystyle V_{sw}} 651: 620: 598: 567: 453: 427: 392: 240: 195: 158:viscous diffusion rate 737:John Wiley & Sons 684: 652: 621: 604:is the Schmidt number 599: 568: 454: 428: 393: 241: 196: 29:Schmidt decomposition 902:10.1149/2.0132001JES 821:10.1149/2.0971802jes 663: 632: 610: 583: 498: 443: 408: 346: 215: 109: 62:momentum diffusivity 54:dimensionless number 21:quantum entanglement 948:2020JElS..167h3501C 859:2019IJHMT.137..835C 778:2005JFM...542..305B 317:thermal diffusivity 280:of the fluid (kg/m) 248:kinematic viscosity 66:kinematic viscosity 1238:Keulegan–Carpenter 1013:2008-05-18 at the 679: 647: 616: 594: 563: 449: 423: 388: 236: 234: 191: 165: 160: 102:It is defined as: 1415: 1414: 995:10.1115/1.4026619 746:978-0-471-51729-0 644: 619:{\displaystyle Q} 561: 544: 452:{\displaystyle K} 437:in units of (m/s) 386: 268:dynamic viscosity 233: 189: 166: 164: 159: 149: 131: 1445: 1085: 1078: 1071: 1062: 1061: 1056: 1055: 1049: 1041: 1039: 1038: 1029:. Archived from 1023: 1017: 1005: 999: 998: 974: 968: 967: 930: 924: 923: 913: 885: 879: 878: 841: 835: 834: 832: 804: 798: 797: 757: 751: 749: 735:(3rd ed.), 728: 722: 721: 719: 718: 708:"Schmidt number" 703: 688: 686: 685: 680: 678: 677: 656: 654: 653: 648: 646: 645: 637: 625: 623: 622: 617: 603: 601: 600: 595: 593: 572: 570: 569: 564: 562: 560: 559: 558: 546: 545: 537: 533: 532: 531: 527: 513: 508: 481:Stirling engines 475:Stirling engines 461:eddy diffusivity 458: 456: 455: 450: 432: 430: 429: 424: 422: 421: 420: 397: 395: 394: 389: 387: 382: 381: 380: 370: 365: 364: 363: 357: 330: 321:mass diffusivity 315:). The ratio of 314: 294: 285: 275: 265: 258:mass diffusivity 255: 245: 243: 242: 237: 235: 226: 200: 198: 197: 192: 190: 188: 180: 172: 167: 162: 157: 155: 150: 148: 137: 132: 124: 119: 94: 70:mass diffusivity 47: 1453: 1452: 1448: 1447: 1446: 1444: 1443: 1442: 1418: 1417: 1416: 1411: 1094: 1089: 1059: 1043: 1042: 1036: 1034: 1027:"Archived copy" 1025: 1024: 1020: 1015:Wayback Machine 1006: 1002: 975: 971: 931: 927: 886: 882: 842: 838: 805: 801: 758: 754: 747: 739:, p. 345, 729: 725: 716: 714: 704: 700: 696: 670: 666: 664: 661: 660: 636: 635: 633: 630: 629: 611: 608: 607: 586: 584: 581: 580: 551: 547: 536: 535: 534: 523: 519: 518: 514: 512: 501: 499: 496: 495: 477: 444: 441: 440: 416: 415: 411: 409: 406: 405: 376: 375: 371: 369: 359: 358: 350: 349: 347: 344: 343: 337: 328: 312: 297:Reynolds Number 292: 283: 273: 263: 253: 224: 216: 213: 212: 181: 173: 171: 154: 141: 136: 123: 112: 110: 107: 106: 92: 85:shear component 56:defined as the 43: 32: 17: 12: 11: 5: 1451: 1441: 1440: 1438:Fluid dynamics 1435: 1430: 1413: 1412: 1410: 1409: 1404: 1399: 1394: 1389: 1384: 1379: 1374: 1369: 1364: 1359: 1354: 1349: 1344: 1339: 1334: 1329: 1324: 1319: 1318: 1317: 1307: 1302: 1301: 1300: 1295: 1285: 1280: 1275: 1270: 1265: 1260: 1255: 1250: 1245: 1240: 1235: 1230: 1225: 1220: 1215: 1210: 1205: 1200: 1195: 1190: 1185: 1180: 1175: 1170: 1165: 1160: 1155: 1150: 1145: 1140: 1135: 1130: 1125: 1120: 1115: 1110: 1105: 1099: 1096: 1095: 1088: 1087: 1080: 1073: 1065: 1058: 1057: 1018: 1000: 969: 925: 880: 836: 815:(2): E81–E88. 799: 752: 745: 723: 697: 695: 692: 691: 690: 676: 673: 669: 658: 643: 640: 627: 615: 605: 592: 589: 574: 573: 557: 554: 550: 543: 540: 530: 526: 522: 517: 511: 507: 504: 485:specific power 476: 473: 465: 464: 448: 438: 435:eddy viscosity 419: 414: 399: 398: 385: 379: 374: 368: 362: 356: 353: 336: 333: 309:Prandtl number 301: 300: 290: 281: 271: 261: 251: 232: 229: 223: 220: 202: 201: 187: 184: 179: 176: 170: 153: 147: 144: 140: 135: 130: 127: 122: 118: 115: 97:boundary layer 40:Schmidt number 36:fluid dynamics 25:density matrix 15: 9: 6: 4: 3: 2: 1450: 1439: 1436: 1434: 1431: 1429: 1426: 1425: 1423: 1408: 1405: 1403: 1400: 1398: 1395: 1393: 1390: 1388: 1385: 1383: 1380: 1378: 1375: 1373: 1370: 1368: 1365: 1363: 1360: 1358: 1355: 1353: 1350: 1348: 1345: 1343: 1340: 1338: 1335: 1333: 1330: 1328: 1325: 1323: 1320: 1316: 1313: 1312: 1311: 1308: 1306: 1303: 1299: 1296: 1294: 1291: 1290: 1289: 1286: 1284: 1281: 1279: 1276: 1274: 1271: 1269: 1266: 1264: 1261: 1259: 1256: 1254: 1251: 1249: 1246: 1244: 1241: 1239: 1236: 1234: 1231: 1229: 1226: 1224: 1221: 1219: 1216: 1214: 1211: 1209: 1206: 1204: 1201: 1199: 1196: 1194: 1191: 1189: 1186: 1184: 1181: 1179: 1176: 1174: 1171: 1169: 1166: 1164: 1161: 1159: 1156: 1154: 1151: 1149: 1148:Chandrasekhar 1146: 1144: 1141: 1139: 1136: 1134: 1131: 1129: 1126: 1124: 1121: 1119: 1116: 1114: 1111: 1109: 1106: 1104: 1101: 1100: 1097: 1093: 1086: 1081: 1079: 1074: 1072: 1067: 1066: 1063: 1053: 1047: 1033:on 2009-04-26 1032: 1028: 1022: 1016: 1012: 1009: 1004: 996: 992: 988: 984: 980: 973: 965: 961: 957: 953: 949: 945: 942:(8): 083501. 941: 937: 929: 921: 917: 912: 907: 903: 899: 895: 891: 884: 876: 872: 868: 864: 860: 856: 852: 848: 840: 831: 826: 822: 818: 814: 810: 803: 795: 791: 787: 783: 779: 775: 771: 767: 766:J. Fluid Mech 763: 756: 748: 742: 738: 734: 727: 713: 709: 702: 698: 674: 671: 667: 659: 638: 628: 613: 606: 579: 578: 577: 555: 552: 548: 538: 528: 524: 520: 515: 509: 494: 493: 492: 490: 486: 482: 472: 470: 462: 446: 439: 436: 412: 404: 403: 402: 383: 372: 366: 342: 341: 340: 332: 326: 322: 318: 310: 306: 305:heat transfer 298: 291: 289: 288:Peclet Number 282: 279: 272: 269: 262: 259: 252: 249: 230: 227: 221: 218: 211: 210: 209: 207: 168: 151: 145: 142: 138: 133: 128: 125: 120: 105: 104: 103: 100: 98: 90: 86: 81: 80:(1892–1975). 79: 75: 71: 67: 63: 59: 55: 51: 46: 41: 37: 30: 26: 22: 1341: 1035:. Retrieved 1031:the original 1021: 1003: 982: 978: 972: 939: 935: 928: 911:11336/150891 893: 889: 883: 850: 846: 839: 812: 808: 802: 769: 765: 755: 732: 726: 715:. Retrieved 711: 701: 575: 478: 466: 400: 338: 325:Lewis number 302: 203: 101: 82: 44: 39: 33: 1402:Weissenberg 853:: 835–846. 830:11336/90612 772:: 305–342. 712:tec-science 489:closed-form 1422:Categories 1322:Richardson 1103:Archimedes 1037:2008-04-29 896:: 013513. 717:2020-06-25 694:References 204:where (in 74:convection 1407:Womersley 1298:turbulent 1278:Ohnesorge 1263:Marangoni 1228:Iribarren 1153:Damköhler 1138:Capillary 964:219085593 920:208732876 875:132955462 794:120121519 750:Eq. 6.71. 642:¯ 542:¯ 516:∑ 413:ν 373:ν 231:ρ 228:μ 219:ν 143:ρ 139:μ 126:ν 42:(denoted 1382:Suratman 1372:Strouhal 1352:Sherwood 1315:magnetic 1310:Reynolds 1305:Rayleigh 1293:magnetic 1133:Brinkman 1046:cite web 1011:Archived 206:SI units 1362:Stanton 1357:Shields 1347:Scruton 1342:Schmidt 1288:Prandtl 1273:Nusselt 1248:Laplace 1243:Knudsen 1233:Kapitza 1218:Görtler 1213:Grashof 1203:Galilei 1168:Deborah 1113:Bagnold 944:Bibcode 855:Bibcode 774:Bibcode 576:where: 459:is the 433:is the 401:where: 323:is the 295:is the 286:is the 278:density 276:is the 266:is the 256:is the 246:is the 89:density 48:) of a 1392:Ursell 1387:Taylor 1377:Stuart 1367:Stokes 1332:Rossby 1327:Roshko 1283:PĂ©clet 1268:Morton 1208:Graetz 1198:Froude 1188:Eötvös 1178:Eckert 1173:Dukhin 1143:Cauchy 1108:Atwood 962:  918:  873:  792:  743:  463:(m/s). 260:(m/s). 68:) and 38:, the 27:, see 1397:Weber 1337:Rouse 1253:Lewis 1223:Hagen 1193:Euler 1183:Ekman 1158:Darcy 1118:Bejan 985:(6): 960:S2CID 916:S2CID 871:S2CID 790:S2CID 250:(m/s) 58:ratio 52:is a 50:fluid 23:of a 1258:Mach 1163:Dean 1128:Bond 1123:Biot 1052:link 741:ISBN 479:For 303:The 991:doi 983:136 952:doi 940:167 906:hdl 898:doi 894:167 863:doi 851:137 825:hdl 817:doi 813:165 782:doi 770:542 331:). 319:to 208:): 60:of 34:In 1424:: 1048:}} 1044:{{ 989:. 981:. 958:. 950:. 938:. 914:. 904:. 892:. 869:. 861:. 849:. 823:. 811:. 788:. 780:. 768:. 764:. 710:. 329:Le 313:Pr 293:Re 284:Pe 99:. 45:Sc 1084:e 1077:t 1070:v 1054:) 1040:. 997:. 993:: 966:. 954:: 946:: 922:. 908:: 900:: 877:. 865:: 857:: 833:. 827:: 819:: 796:. 784:: 776:: 720:. 675:w 672:s 668:V 639:p 614:Q 591:c 588:S 556:w 553:s 549:V 539:p 529:| 525:Q 521:| 510:= 506:c 503:S 447:K 418:t 384:K 378:t 367:= 361:t 355:c 352:S 327:( 311:( 299:. 274:ρ 264:ÎŒ 254:D 222:= 186:e 183:R 178:e 175:P 169:= 152:= 146:D 134:= 129:D 121:= 117:c 114:S 93:D 64:( 31:.

Index

quantum entanglement
density matrix
Schmidt decomposition
fluid dynamics
fluid
dimensionless number
ratio
momentum diffusivity
kinematic viscosity
mass diffusivity
convection
Ernst Heinrich Wilhelm Schmidt
shear component
density
boundary layer
SI units
kinematic viscosity
mass diffusivity
dynamic viscosity
density
Peclet Number
Reynolds Number
heat transfer
Prandtl number
thermal diffusivity
mass diffusivity
Lewis number
eddy viscosity
eddy diffusivity
turbulent Prandtl number

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑