Knowledge

Scheme (mathematics)

Source 📝

9033: 5463: 3450: 10585:). These sheaves admit algebraic operations that are associative and commutative only up to an equivalence relation. Taking the quotient by this equivalence relation yields the structure sheaf of an ordinary scheme. Not taking the quotient, however, leads to a theory that can remember higher information, in the same way that 520:
most often over the complex numbers. Grothendieck developed a large body of theory for arbitrary schemes extending much of the geometric intuition for varieties. For example, it is common to construct a moduli space first as a scheme, and only later study whether it is a more concrete object such as
321:
developed commutative algebra in the 1920s and 1930s. Their work generalizes algebraic geometry in a purely algebraic direction, generalizing the study of points (maximal ideals in a polynomial ring) to the study of prime ideals in any commutative ring. For example, Krull defined the
10484:
Considered as its functor of points, a scheme is a functor that is a sheaf of sets for the Zariski topology on the category of commutative rings, and that, locally in the Zariski topology, is an affine scheme. This can be generalized in several ways. One is to use the
9457: 2286: 3677: 6811: 1868: 2101: 7707: 3763: 10554:. In that formulation, stacks are (informally speaking) sheaves of categories. From this general notion, Artin defined the narrower class of algebraic stacks (or "Artin stacks"), which can be considered geometric objects. These include 9557: 10499:
as a functor that is a sheaf in the étale topology and that, locally in the étale topology, is an affine scheme. Equivalently, an algebraic space is the quotient of a scheme by an étale equivalence relation. A powerful result, the
7974: 4512: 5156: 8086: 7161: 4021: 1755: 9354: 8953: 7089: 1633: 613:. One can think of a scheme as being covered by "coordinate charts" that are affine schemes. The definition means exactly that schemes are obtained by gluing together affine schemes using the Zariski topology. 10161: 2716: 9063:
It is also fruitful to consider examples of morphisms as examples of schemes since they demonstrate their technical effectiveness for encapsulating many objects of study in algebraic and arithmetic geometry.
3538: 3256: 4344: 1975: 7594: 4108: 2951: 8585: 5236: 3326: 9259:, as a scheme, are its complex points (one for each complex number) together with one generic point (whose closure is the whole scheme). The generic point is the image of a natural morphism Spec( 5277: 3862: 260:. The early 20th century saw analogies between algebraic geometry and number theory, suggesting the question: can algebraic geometry be developed over other fields, such as those with positive 7622: 2138: 8844: 3543: 8512: 6232: 4742: 1353: 7828: 7427: 5078: 3047: 8677: 6683: 4198: 2411: 1784: 8290: 8462: 6465: 145:
of open sets, each endowed with a coordinate ring of regular functions, with specified coordinate changes between the functions over intersecting open sets. Such a structure is called a
9942: 6960: 6384: 4927: 6678: 6139: 5603: 5328: 4154: 2889: 1683: 8763: 3440: 3369: 1411: 2796: 2611: 2006: 5775: 10501: 9702: 8376: 8245: 8199: 7207: 7006: 6302: 4999: 3160: 1538: 5552: 4843: 4812: 4670: 4624: 4571: 4378: 4249: 3944: 2642: 1899: 7631: 7240: 6501: 6050: 2756: 2553: 2321: 1253: 7525: 3893: 3482: 3397: 2516: 372:
For applications to number theory, van der Waerden and Weil formulated algebraic geometry over any field, not necessarily algebraically closed. Weil was the first to define an
9466: 8714: 8319: 7736: 6840: 6530: 3122: 1214: 1185: 7837: 2484: 1934: 1779: 10049: 9559:
Thus, having an actual generic point of a variety yields a geometric relation between a degree-2 morphism of algebraic varieties and the corresponding degree-2 extension of
8997: 415:. This worked awkwardly: there were many different generic points for the same variety. (In the later theory of schemes, each algebraic variety has a single generic point.) 1125: 8607: 6582: 5187: 4949: 3286: 2986: 9996: 10547:. More generally, moduli spaces in algebraic geometry are often best viewed as stacks, thereby keeping track of the automorphism groups of the objects being classified. 9865: 6624: 5961: 2440: 6866: 8119: 3682: 9823: 7342: 6014: 5813: 7304: 5733: 2130: 7999: 6922: 5847: 9790: 8873: 7391: 7269: 6895: 5876: 5632: 5516: 5377: 2825: 8145: 6410: 6258: 6096: 5698: 4540: 4404: 1492: 10224: 10204: 9757: 9722: 8213:
along open subsets. This is the fundamental example that motivates going beyond affine schemes. The key advantage of projective space over affine space is that
7994: 7450: 7362: 7026: 6070: 5981: 5916: 5896: 5672: 5652: 5487: 5457: 5437: 5417: 5397: 5348: 5023: 4863: 4766: 4444: 4424: 4289: 4269: 4218: 4045: 3913: 3067: 2573: 2460: 2341: 1998: 1653: 1431: 1304: 434:
relating number theory and algebraic geometry, further extended the objects of algebraic geometry, for example by generalizing the base rings allowed. The word
4449: 521:
a projective variety. Applying Grothendieck's theory to schemes over the integers and other number fields led to powerful new perspectives in number theory.
5091: 624:
prescheme. The term prescheme has fallen out of use, but can still be found in older books, such as Grothendieck's "Éléments de géométrie algébrique" and
8537:, and gluing together the two open subsets A − 0 by the identity map. This is a simple example of a non-separated scheme. In particular, it is not affine. 365:
is a useful topology on a variety over any algebraically closed field, replacing to some extent the classical topology on a complex variety (based on the
10058: 10581:
or "spectral algebraic geometry", the structure sheaf is replaced by a homotopical analog of a sheaf of commutative rings (for example, a sheaf of
7094: 770:
with certain properties. There are different conventions about exactly which schemes should be called varieties. One standard choice is that a
3949: 1688: 11018: 10692: 86: 11134: 8901: 7031: 1543: 119: 3125: 2650: 17: 8959:
of the positive integers (with the discrete topology). In fact, the prime ideals of this ring are in one-to-one correspondence with the
446:
who suggested to Serre the possibility of using the spectrum of an arbitrary commutative ring as a foundation for algebraic geometry.
3487: 184: 10562:
in topology), for which the stabilizer groups are finite, and algebraic spaces, for which the stabilizer groups are trivial. The
8389: 3165: 4294: 1939: 9560: 9452:{\displaystyle \operatorname {Spec} \mathbf {C} (x)\left({\sqrt {x(x-1)(x-5)}}\right)\to \operatorname {Spec} \mathbf {C} (x).} 7530: 4053: 2898: 645:
which are not necessarily functions, can neverthess be patched together from their restrictions in the same way as functions.
11273: 11235: 11177: 11103: 11064: 9638:
but not zero. To indicate the meaning of this scheme: two regular functions on the affine line have the same restriction to
8543: 8540:
A simple reason to go beyond affine schemes is that an open subset of an affine scheme need not be affine. For example, let
3446:. Closed sets are finite sets, and open sets are their complements, the cofinite sets; any infinite set of points is dense. 462:(SGA), bringing to a conclusion a generation of experimental suggestions and partial developments. Grothendieck defined the 10440:
of a smooth variety over a field. However, coherent sheaves are richer; for example, a vector bundle on a closed subscheme
9015:, this is an example of a non-Noetherian quasi-compact scheme with infinitely many irreducible components. (By contrast, a 5192: 3291: 400: 2281:{\displaystyle {\mathcal {O}}_{X}(U_{f})=R=\{{\tfrac {r}{f^{m}}}\ \ {\text{for}}\ \ r\in R,\ m\in \mathbb {Z} _{\geq 0}\}} 11016:(2001), "A mad day's work: from Grothendieck to Connes and Kontsevich. The evolution of concepts of space and symmetry", 9290:
in one variable. To see why it is useful to have an actual "generic point" in the scheme, consider the following example.
5241: 3672:{\displaystyle {\mathcal {O}}_{Z}(U_{p})=\mathbb {Z} =\{{\tfrac {n}{p^{m}}}\ {\text{for}}\ n\in \mathbb {Z} ,\ m\geq 0\}} 3768: 11204: 7599: 177: 10274:. This again indicates that non-reduced subschemes have geometric meaning, related to derivatives and tangent vectors. 8956: 8768: 6806:{\displaystyle k({\mathfrak {m}})=\mathbb {Z} /{\mathfrak {m}}=\mathbb {F} _{p}/(f(x))\cong \mathbb {F} _{p}(\alpha )} 1863:{\displaystyle V({\mathfrak {p}})=\{{\mathfrak {q}}\in X\ \ {\text{with}}\ \ {\mathfrak {p}}\subset {\mathfrak {q}}\}} 8481: 6144: 4675: 1309: 213:. In many cases, the family of all varieties of a given type can itself be viewed as a variety or scheme, known as a 7741: 7396: 5028: 11095: 9072:
Here are some of the ways in which schemes go beyond older notions of algebraic varieties, and their significance.
8620: 4159: 2991: 2349: 8261: 10973: 10582: 6415: 346: 9103:
is algebraically closed (for example the complex numbers), then one can base algebraic geometry on sets such as
919:. In examples, this definition reconstructs the old notion of the set of solutions of the defining equations of 407:
of an algebraic variety. What is true for the generic point is true for "most" points of the variety. In Weil's
11013: 9870: 7472:
overcomes this obstacle by compactifying affine arithmetic schemes, adding points at infinity corresponding to
6927: 6307: 4868: 2096:{\displaystyle U_{f}=X\smallsetminus V(f)=\{{\mathfrak {p}}\in X\ \ {\text{with}}\ \ f\notin {\mathfrak {p}}\}} 779: 439: 357:
applied commutative algebra as a new foundation for algebraic geometry in the richer setting of projective (or
6632: 6101: 5557: 5282: 4113: 2833: 1658: 11296: 8727: 3402: 3331: 1358: 857: 829:). In the case of affine schemes, this construction gives a one-to-one correspondence between morphisms Spec( 411:(1946), generic points are constructed by taking points in a very large algebraically closed field, called a 2761: 2578: 137:
consisting of closed points which correspond to geometric points, together with non-closed points which are
10345: 10229:
For a more elaborate example, one can describe all the zero-dimensional closed subschemes of degree 2 in a
9945: 9044: 7702:{\displaystyle X_{p}=X\times _{\operatorname {Spec} (\mathbb {Z} )}\operatorname {Spec} (\mathbb {F} _{p})} 5738: 4745: 275: 176:. The coordinate ring of an affine scheme is the ring itself, and the coordinate rings of open subsets are 11258:
The Red Book of Varieties and Schemes: Includes the Michigan Lectures (1974) on Curves and Their Jacobians
9673: 8347: 8216: 8170: 7166: 6965: 6267: 4954: 3131: 1497: 783: 9460: 5521: 4817: 4771: 4629: 4583: 4545: 4352: 4223: 3918: 2616: 1873: 129:
of regular algebraic functions defined on it (or on its subsets), and each subvariety corresponds to the
10849: 7212: 6470: 6019: 4271:
as a kind of "regular function" on the closed points, a very special type among the arbitrary functions
2721: 2525: 2295: 1223: 11085: 10667: 10578: 10573:
Another type of generalization is to enrich the structure sheaf, bringing algebraic geometry closer to
10522: 7487: 3870: 3459: 3374: 2489: 1092: 438:
was first used in the 1956 Chevalley Seminar, in which Chevalley pursued Zariski's ideas. According to
257: 62:= 0 define the same algebraic variety but different schemes) and allowing "varieties" defined over any 51: 11355:- the comment section contains some interesting discussion on scheme theory (including the posts from 11337: 9580: 8690: 8295: 7712: 6816: 6506: 3072: 1190: 1161: 11167: 10555: 10473: 10418: 2465: 1904: 1760: 892: 221: 10001: 330:, he proved that this definition satisfies many of the intuitive properties of geometric dimension. 11352: 8966: 8256: 1097: 1076: 261: 10521:
attached to each point, which is viewed as the automorphism group of that point. For example, any
8590: 6539: 5161: 4932: 3269: 2959: 11227: 11089: 9951: 8379: 3758:{\displaystyle U=Z\smallsetminus \{{\mathfrak {m}}_{p_{1}},\ldots ,{\mathfrak {m}}_{p_{\ell }}\}} 1267: 513:) are the affine schemes; a general scheme is then obtained by "gluing together" affine schemes. 10253:) as in the previous paragraph. Subschemes of the latter type are determined by a complex point 9828: 6587: 5924: 2416: 11372: 11121: 10658: 8325: 6845: 81: 43: 10971:
Arapura, Donu (2011), "Frobenius amplitude, ultraproducts, and vanishing on singular spaces",
8091: 7457: 125:
Schemes elaborate the fundamental idea that an algebraic variety is best analyzed through the
10563: 10551: 9795: 9008: 7461: 7309: 5986: 5780: 1540:
is a topological space with the Zariski topology, whose closed points are the maximal ideals
7274: 5703: 2109: 516:
Much of algebraic geometry focuses on projective or quasi-projective varieties over a field
388:
of a curve over any field. (Later, Jacobians were shown to be projective varieties by Weil,
11322: 11310: 11283: 11245: 11214: 11187: 11155: 11113: 11074: 11041: 11006: 10379: 10324: 7465: 6900: 5818: 534: 338: 241: 11291:
Vistoli, Angelo (2005), "Grothendieck topologies, fibered categories and descent theory",
9766: 8849: 7367: 7245: 6871: 5852: 5608: 5492: 5353: 2801: 8: 10632: 10567: 10540: 10508: 10164: 10055:
axis tangent direction (the common tangent of the two curves) and having coordinate ring:
9667: 9552:{\displaystyle \mathbf {C} (x)\subset \mathbf {C} (x)\left({\sqrt {x(x-1)(x-5)}}\right).} 8124: 7473: 6389: 6237: 6075: 5677: 4517: 4383: 1436: 971: 707: 485: 249: 150: 130: 111: 103: 11314: 10637: 7969:{\displaystyle \Delta _{f}=-4a^{3}c+a^{2}b^{2}+18abc-4b^{3}-27c^{2}=0\ {\text{mod}}\ p,} 164:
Formally, a scheme is a ringed space covered by affine schemes. An affine scheme is the
11300: 11053: 10982: 10745: 10472:
has good properties for coherent (and quasi-coherent) sheaves. The resulting theory of
10209: 10174: 10168: 9727: 9707: 9119:), consider polynomial mappings between different sets of this type, and so on. But if 8721: 7979: 7625: 7435: 7347: 7011: 6261: 6055: 5966: 5901: 5881: 5657: 5637: 5472: 5442: 5422: 5402: 5382: 5333: 5008: 5002: 4848: 4751: 4507:{\displaystyle k({\mathfrak {p}}_{0})=\operatorname {Frac} (\mathbb {Z} )=\mathbb {Q} } 4429: 4409: 4274: 4254: 4203: 4030: 3898: 3052: 2558: 2445: 2326: 1983: 1638: 1416: 1289: 538: 463: 393: 165: 91: 35: 5151:{\displaystyle \mathbb {A} _{\mathbb {Z} }^{1}=\{a\ {\text{for}}\ a\in \mathbb {Z} \}} 443: 11269: 11231: 11200: 11173: 11099: 11060: 9564: 9325: 9287: 9016: 8383: 4577: 1069: 427: 206: 154: 134: 90:(EGA); one of its aims was developing the formalism needed to solve deep problems of 47: 11125: 11048: 10622: 10486: 5379:
is a non-constant polynomial with no integer factor and which is irreducible modulo
845:. In this sense, scheme theory completely subsumes the theory of commutative rings. 11261: 11163: 11143: 11027: 10992: 10469: 10307: 10302: 8617:≥ 2. (However, the affine line minus the origin is isomorphic to the affine scheme 6626:
is a kind of fusion of two Galois-symmetric horizonal lines, a curve of degree 2.
621: 470: 431: 423: 419: 385: 377: 362: 358: 337:
algebraic varieties. However, many arguments in algebraic geometry work better for
269: 245: 142: 95: 63: 11032: 10766: 333:
Noether and Krull's commutative algebra can be viewed as an algebraic approach to
248:) that algebraic geometry over the real numbers is simplified by working over the 11318: 11279: 11241: 11210: 11183: 11151: 11129: 11109: 11070: 11037: 11002: 10871: 10662: 10654: 10618: 10614: 10610: 10586: 10574: 10518: 10513: 10504:, gives simple conditions for a functor to be represented by an algebraic space. 10495: 9576: 9004: 8519: 8248: 7469: 6532:; since we cannot distinguish between these values (they are symmetric under the 5419:
as two-dimensional, with a "characteristic direction" measured by the coordinate
2954: 1262:
Since the category of schemes has fiber products and also a terminal object Spec(
1022: 865: 703: 484:
with a natural topology (known as the Zariski topology), but augmented it with a
366: 327: 323: 287: 158: 126: 11260:. Lecture Notes in Mathematics. Vol. 1358 (2nd ed.). Springer-Verlag. 11081: 10907: 10672: 10590: 10535: 10437: 10396:-module that is the sheaf associated to a module on each affine open subset of 10290: 10284: 9651: 9568: 8515: 7831: 1655:. The scheme also contains a non-closed point for each non-maximal prime ideal 1017:. (This generalizes the old observation that given some equations over a field 948: 853: 661: 389: 318: 278:
suggests an approach to algebraic geometry over any algebraically closed field
253: 99: 8999:
corresponding to the principal ultrafilter associated to the positive integer
8081:{\displaystyle X=\operatorname {Spec} {\frac {\mathbb {Z} }{(y^{2}-x^{3}-p)}}} 326:
of a commutative ring in terms of prime ideals and, at least when the ring is
209:, it can be useful to consider families of algebraic surfaces over any scheme 11366: 11253: 10997: 10606: 10490: 10294: 10262: 10230: 9660: 9012: 7453: 2323:
which gives the usual ring of rational functions regular on a given open set
625: 404: 354: 342: 283: 173: 138: 115: 10710: 8533:) is the scheme defined by starting with two copies of the affine line over 4426:
is equal to zero in the residue field. The field of "rational functions" on
350: 10938: 10809: 10650: 10645: 10627: 10457: 9572: 6533: 4024: 2892: 706:, with morphisms defined as morphisms of locally ringed spaces. (See also: 380:), by gluing affine varieties along open subsets, on the model of abstract 314: 214: 146: 67: 10830: 7156:{\displaystyle r({\mathfrak {m}})=r(\alpha )\in \mathbb {F} _{p}(\alpha )} 505:), which may be thought of as the coordinate ring of regular functions on 11356: 10594: 10589:
in homological algebra yield higher information about operations such as
10433: 8960: 5189:, the polynomials with integer coefficients. The corresponding scheme is 477: 306: 265: 237: 169: 31: 10818: 9032: 4016:{\displaystyle k({\mathfrak {m}}_{p})=\mathbb {Z} /(p)=\mathbb {F} _{p}} 1750:{\displaystyle {\bar {V}}={\bar {V}}({\mathfrak {p}})\subset {\bar {X}}} 133:
of functions which vanish on the subvariety. Intuitively, a scheme is a
11147: 10895: 10641: 9645: 2000:
has a basis of open subsets given by the complements of hypersurfaces,
233: 220:
For some of the detailed definitions in the theory of schemes, see the
10859: 10550:
Grothendieck originally introduced stacks as a tool for the theory of
9583:
treats the fundamental group and the Galois group on the same footing.
8948:{\textstyle \operatorname {Spec} \left(\prod _{n=1}^{\infty }k\right)} 8887:
is not surjective and hence not an isomorphism. Therefore, the scheme
187:
is that much of algebraic geometry should be developed for a morphism
11305: 10698: 10237:. Such a subscheme consists of either two distinct complex points of 9635: 7084:{\displaystyle r({\mathfrak {m}})=r\ \mathrm {mod} \ {\mathfrak {m}}} 3443: 1628:{\displaystyle {\mathfrak {m}}_{a}=(x_{1}-a_{1},\ldots ,x_{n}-a_{n})} 10727: 10725: 8724:
in complex analysis, though easier to prove. That is, the inclusion
2132:. This set is endowed with its coordinate ring of regular functions 11344: 11265: 10559: 10156:{\displaystyle {\frac {k}{(x^{2},\,y)}}\cong {\frac {k}{(x^{2})}}.} 9656: 2711:{\displaystyle k({\mathfrak {m}}_{a})=R/{\mathfrak {m}}_{a}\cong k} 384:
in topology. He needed this generality for his construction of the
381: 107: 10987: 10432:, which are the sheaves that locally come from finitely generated 205:), rather than for an individual scheme. For example, in studying 10947: 10919: 10778: 10722: 10566:
says that an algebraic stack with finite stabilizer groups has a
1053: 71: 11353:
https://quomodocumque.wordpress.com/2012/09/03/mochizuki-on-abc/
9347:→ A over the generic point of A is exactly the generic point of 1060:-algebras to sets. It is an important observation that a scheme 1021:, one can consider the set of solutions of the equations in any 575:(as a locally ringed space) is an affine scheme. In particular, 8255:; this is an algebro-geometric version of compactness. Indeed, 240:. By the 19th century, it became clear (notably in the work of 9867:. Their scheme-theoretic intersection is defined by the ideal 8955:
is an affine scheme whose underlying topological space is the
11130:"Éléments de géométrie algébrique: I. Le langage des schémas" 9313:−5) over the complex numbers. This is a closed subscheme of A 3533:{\displaystyle U_{p}=Z\smallsetminus \{{\mathfrak {m}}_{p}\}} 232:
The origins of algebraic geometry mostly lie in the study of
114:. Scheme theory also unifies algebraic geometry with much of 10883: 10790: 3456:
The basis open set corresponding to the irreducible element
8683:
is not affine, one computes that every regular function on
3251:{\displaystyle V=\operatorname {Spec} k/(x^{2}-y^{2}(y+1))} 10476:
is perhaps the main technical tool in algebraic geometry.
9131:) is not rich enough. Indeed, one can study the solutions 4339:{\displaystyle f({\mathfrak {m}}_{p})\in \mathbb {F} _{p}} 3049:, a closed subscheme of affine space. For example, taking 1970:{\displaystyle {\mathfrak {p}}\subset {\mathfrak {m}}_{a}} 1870:, including all the closed points of the subvariety, i.e. 1278:
Here and below, all the rings considered are commutative.
11197:
Basic Algebraic Geometry 2: Schemes and Complex Manifolds
10754: 10460:
construction). In this way, coherent sheaves on a scheme
7589:{\displaystyle X=\operatorname {Spec} (\mathbb {Z} /(f))} 5462: 4103:{\displaystyle n({\mathfrak {m}}_{p})=n\ {\text{mod}}\ p} 2946:{\displaystyle {\bar {V}}(f)\subset \mathbb {A} _{k}^{n}} 9155:) in any reasonable sense. For example, the plane curve 3449: 686:-space can in fact be defined over any commutative ring 141:
of irreducible subvarieties. The space is covered by an
3288:
can be considered as the coordinate ring of the scheme
313:, known as affine varieties. Motivated by these ideas, 11342: 8969: 8904: 8580:{\displaystyle X=\mathbb {A} ^{n}\smallsetminus \{0\}} 8292:
is a compact space in the classical topology, whereas
7834:, then the fibers over its discriminant locus, where 3611: 2994: 2442:, also defines a function on the points of the scheme 2204: 454:
The theory took its definitive form in Grothendieck's
272:
used to study complex varieties do not seem to apply.
106:, scheme theory allows a systematic use of methods of 11120: 10212: 10177: 10061: 10004: 9954: 9873: 9831: 9798: 9769: 9730: 9710: 9676: 9469: 9357: 8852: 8771: 8730: 8693: 8623: 8593: 8546: 8484: 8392: 8350: 8298: 8264: 8219: 8173: 8127: 8094: 8002: 7982: 7840: 7744: 7715: 7634: 7602: 7533: 7490: 7438: 7399: 7370: 7350: 7312: 7277: 7248: 7215: 7169: 7097: 7034: 7014: 6968: 6930: 6903: 6874: 6848: 6819: 6686: 6635: 6590: 6542: 6509: 6473: 6418: 6392: 6310: 6270: 6240: 6147: 6104: 6078: 6058: 6022: 5989: 5969: 5927: 5904: 5884: 5855: 5821: 5783: 5741: 5706: 5680: 5660: 5640: 5611: 5560: 5524: 5495: 5475: 5445: 5425: 5405: 5385: 5356: 5336: 5285: 5244: 5231:{\displaystyle Y=\operatorname {Spec} (\mathbb {Z} )} 5195: 5164: 5094: 5031: 5011: 4957: 4935: 4871: 4851: 4820: 4774: 4754: 4678: 4632: 4626:
have no common prime factor, then there are integers
4586: 4573:
corresponding to prime divisors of the denominator.
4548: 4520: 4452: 4432: 4412: 4386: 4355: 4297: 4277: 4257: 4226: 4206: 4162: 4116: 4056: 4033: 3952: 3921: 3901: 3873: 3771: 3685: 3546: 3490: 3462: 3405: 3377: 3334: 3321:{\displaystyle Z=\operatorname {Spec} (\mathbb {Z} )} 3294: 3272: 3168: 3134: 3075: 3055: 2962: 2901: 2836: 2804: 2764: 2724: 2653: 2619: 2581: 2561: 2528: 2492: 2468: 2448: 2419: 2352: 2329: 2298: 2141: 2112: 2009: 1986: 1942: 1907: 1876: 1787: 1763: 1691: 1661: 1641: 1546: 1500: 1439: 1419: 1361: 1312: 1292: 1226: 1193: 1164: 1100: 1685:, whose vanishing defines an irreducible subvariety 1158:-schemes. For example, the product of affine spaces 11194: 10464:include information about all closed subschemes of 9095:) of solutions of the equations in the product set 5279:. The closed points are maximal ideals of the form 5272:{\displaystyle {\mathfrak {p}}\subset \mathbb {Z} } 4446:is the fraction field of the generic residue ring, 1306:be an algebraically closed field. The affine space 268:like the integers, where the tools of topology and 11052: 10218: 10198: 10155: 10043: 9990: 9936: 9859: 9817: 9784: 9751: 9716: 9696: 9551: 9451: 8991: 8947: 8867: 8838: 8757: 8708: 8671: 8601: 8579: 8506: 8456: 8370: 8313: 8284: 8239: 8193: 8139: 8113: 8080: 7988: 7968: 7822: 7730: 7701: 7616: 7588: 7519: 7444: 7421: 7385: 7356: 7336: 7298: 7271:is the vanishing locus of the constant polynomial 7263: 7234: 7201: 7155: 7083: 7020: 7000: 6954: 6916: 6889: 6860: 6834: 6805: 6672: 6618: 6576: 6524: 6495: 6459: 6404: 6378: 6296: 6252: 6226: 6133: 6090: 6064: 6044: 6008: 5975: 5955: 5910: 5890: 5870: 5841: 5807: 5769: 5727: 5692: 5666: 5646: 5626: 5597: 5546: 5510: 5481: 5451: 5431: 5411: 5391: 5371: 5342: 5322: 5271: 5230: 5181: 5150: 5072: 5017: 4993: 4943: 4921: 4857: 4837: 4806: 4760: 4736: 4664: 4618: 4565: 4534: 4506: 4438: 4418: 4398: 4372: 4338: 4283: 4263: 4243: 4212: 4192: 4148: 4102: 4039: 4015: 3938: 3907: 3887: 3857:{\displaystyle {\mathcal {O}}_{Z}(U)=\mathbb {Z} } 3856: 3757: 3671: 3532: 3476: 3434: 3391: 3363: 3320: 3280: 3250: 3154: 3116: 3061: 3041: 2980: 2945: 2883: 2819: 2790: 2750: 2710: 2636: 2605: 2567: 2547: 2510: 2478: 2454: 2434: 2405: 2335: 2315: 2280: 2124: 2095: 1992: 1969: 1928: 1893: 1862: 1773: 1749: 1677: 1647: 1627: 1532: 1486: 1425: 1405: 1347: 1298: 1247: 1208: 1179: 1119: 10289:A central part of scheme theory is the notion of 7709:are then algebraic curves over the finite fields 7617:{\displaystyle \operatorname {Spec} \mathbb {Z} } 403:had often used the somewhat foggy concept of the 11364: 10428:Coherent sheaves include the important class of 9139:) of the given equations in any field extension 8839:{\displaystyle O(\mathbb {A} ^{n})=\mathbb {C} } 8121:. This curve is singular over the prime numbers 5083: 3069:to be the complex or real numbers, the equation 309:correspond to the irreducible algebraic sets in 9019:has only finitely many irreducible components.) 8507:{\displaystyle \mathbb {P} _{\mathbb {Q} }^{2}} 6227:{\displaystyle (5,x^{2}+1)=(5,x-2)\cap (5,x+2)} 4744:. Geometrically, this is a version of the weak 4737:{\displaystyle a_{1}n_{1}+\cdots +a_{r}n_{r}=1} 1348:{\displaystyle {\bar {X}}=\mathbb {A} _{k}^{n}} 11080: 10901: 10836: 10743: 7823:{\displaystyle f(x,y)=y^{2}-x^{3}+ax^{2}+bx+c} 7422:{\displaystyle {\overline {\mathbb {F} }}_{p}} 5073:{\displaystyle U_{i}=Z\smallsetminus V(n_{i})} 3042:{\textstyle V(f)=\operatorname {Spec} (R/(f))} 1757:; the topological closure of the scheme point 293:are in one-to-one correspondence with the set 11019:Bulletin of the American Mathematical Society 9563:. This generalizes to a relation between the 8672:{\displaystyle \mathrm {Spec} \,\mathbb {C} } 4576:This also gives a geometric interpretaton of 4193:{\displaystyle \mathbb {Z} /(0)=\mathbb {Z} } 2406:{\displaystyle r=r(x_{1},\ldots ,x_{n})\in R} 1433:; its coordinate ring is the polynomial ring 153:of rings. The cases of main interest are the 9595:be the closed subscheme of the affine line A 9203:has enough information to determine the set 8574: 8568: 8285:{\displaystyle \mathbb {C} \mathbb {P} ^{n}} 5921:A higher degree "horizontal" subscheme like 5439:, and a "spatial direction" with coordinate 5145: 5117: 3752: 3698: 3666: 3607: 3527: 3510: 3371:, the principal ideals of the prime numbers 2275: 2200: 2090: 2044: 1857: 1807: 9223:. (In particular, the closed subscheme of A 9215:-rational points for every extension field 8457:{\displaystyle \operatorname {Proj} R/(f).} 7364:corresponding to Galois orbits of roots of 7344:contains the points in each characteristic 6460:{\displaystyle {\mathfrak {m}}=(3,x^{2}+1)} 6052:. This behaves differently under different 5674:-coordinate, we have the "horizontal line" 5238:, whose points are all of the prime ideals 50:in several ways, such as taking account of 11162: 10925: 10877: 10865: 10824: 10784: 10507:A further generalization is the idea of a 10417:-module that is the sheaf associated to a 9123:is not algebraically closed, then the set 8331:of positive degree in the polynomial ring 7976:are all singular schemes. For example, if 4220:is determined by its values at the points 697: 168:of a commutative ring; its points are the 11304: 11047: 11031: 10996: 10986: 10913: 10772: 10731: 10716: 10704: 10517:generalize algebraic spaces by having an 10319:, which are sheaves of abelian groups on 10293:, generalizing the notion of (algebraic) 10101: 9937:{\displaystyle (y)+(x^{2}-y)=(x^{2},\,y)} 9927: 9679: 9067: 8963:on the positive integers, with the ideal 8797: 8780: 8745: 8696: 8640: 8638: 8595: 8555: 8493: 8487: 8353: 8301: 8272: 8266: 8222: 8201:can be constructed as a scheme by gluing 8176: 8019: 7718: 7686: 7666: 7610: 7550: 7498: 7404: 7186: 7134: 6985: 6955:{\displaystyle d=\operatorname {deg} (f)} 6822: 6784: 6737: 6707: 6512: 6379:{\displaystyle (2,x^{2}+1)=(2,(x-1)^{2})} 5815:corresponding to the rational coordinate 5489:defines a "vertical line", the subscheme 5256: 5212: 5166: 5141: 5103: 5097: 4937: 4922:{\displaystyle (n_{1},\ldots ,n_{r})=(1)} 4500: 4489: 4326: 4186: 4164: 4003: 3980: 3881: 3799: 3647: 3581: 3470: 3385: 3328:. The Zariski topology has closed points 3311: 3274: 3137: 2928: 2262: 1330: 1229: 1196: 1167: 682:. In the spirit of scheme theory, affine 11224:Algebraic Geometry and Arithmetic Curves 11221: 10051:, but rather a fat point containing the 9642:if and only if they have the same value 9579:). Indeed, Grothendieck's theory of the 9023: 7460:. This is a major obstacle to analyzing 7458:intersect with the expected multiplicity 7008:corresponds to a function on the scheme 6673:{\displaystyle {\mathfrak {m}}=(p,f(x))} 6134:{\displaystyle x=\pm 2\ {\text{mod}}\ 5} 5598:{\displaystyle {\mathfrak {m}}=(p,f(x))} 5323:{\displaystyle {\mathfrak {m}}=(p,f(x))} 4149:{\displaystyle n({\mathfrak {p}}_{0})=n} 3895:corresponds to a function on the scheme 2884:{\displaystyle f=f(x_{1},\ldots ,x_{n})} 1678:{\displaystyle {\mathfrak {p}}\subset R} 1079:always exists. That is, for any schemes 11290: 11252: 11012: 10970: 10953: 10889: 10796: 10760: 9626:); in particular, the regular function 9343:-coordinate. The fiber of the morphism 9147:, but these sets are not determined by 8758:{\displaystyle f:X\to \mathbb {A} ^{n}} 4380:is the vanishing locus of the function 3435:{\displaystyle {\mathfrak {p}}_{0}=(0)} 3364:{\displaystyle {\mathfrak {m}}_{p}=(p)} 3261: 1406:{\displaystyle a=(a_{1},\ldots ,a_{n})} 1355:is the algebraic variety of all points 678:is the spectrum of the polynomial ring 648:A basic example of an affine scheme is 628:'s "Red Book". The sheaf properties of 172:of the ring, and its closed points are 14: 11365: 11338:Can one explain schemes to biologists? 10931: 10802: 10691:Introduction of the first edition of " 9666:Nilpotent elements arise naturally in 9242:= −1 is a nonempty topological space.) 9007:, and in particular, each point is an 7479: 7456:, so that pairs of curves may fail to 2791:{\displaystyle r({\mathfrak {m}}_{a})} 2606:{\displaystyle R\to R/{\mathfrak {p}}} 1635:, the set of polynomials vanishing at 1127:exists in the category of schemes. If 120:Wiles's proof of Fermat's Last Theorem 10750:, Séminaire Henri Cartan, vol. 8 10448:can be viewed as a coherent sheaf on 8150: 5770:{\displaystyle {\mathfrak {p}}=(x-a)} 616:In the early days, this was called a 588:, which assigns to every open subset 11135:Publications Mathématiques de l'IHÉS 10327:over the sheaf of regular functions 10241:, or else a subscheme isomorphic to 9697:{\displaystyle \mathbb {A} _{k}^{2}} 9027: 8371:{\displaystyle \mathbb {P} _{R}^{n}} 8240:{\displaystyle \mathbb {P} _{R}^{n}} 8194:{\displaystyle \mathbb {P} _{R}^{n}} 7202:{\displaystyle r(x)\in \mathbb {Z} } 7001:{\displaystyle r(x)\in \mathbb {Z} } 6297:{\displaystyle x=1\ {\text{mod}}\ 2} 4994:{\displaystyle \rho _{i}=a_{i}n_{i}} 4951:. Indeed, we may consider the terms 4865:, then they generate the unit ideal 3155:{\displaystyle \mathbb {A} _{k}^{2}} 2830:The vanishing locus of a polynomial 1533:{\displaystyle X=\mathrm {Spec} (R)} 837:) of schemes and ring homomorphisms 449: 157:, in which the coordinate rings are 10278: 9614:. The ring of regular functions on 9079:Given some polynomial equations in 8386:, this subscheme can be written as 7224: 7106: 7076: 7043: 6727: 6695: 6638: 6421: 5744: 5563: 5547:{\displaystyle {\mathfrak {p}}=(p)} 5527: 5288: 5247: 4838:{\displaystyle {\mathfrak {m}}_{p}} 4824: 4807:{\displaystyle n_{1},\ldots ,n_{r}} 4665:{\displaystyle a_{1},\ldots ,a_{r}} 4619:{\displaystyle n_{1},\ldots ,n_{r}} 4566:{\displaystyle {\mathfrak {m}}_{p}} 4552: 4462: 4373:{\displaystyle {\mathfrak {m}}_{p}} 4359: 4307: 4244:{\displaystyle {\mathfrak {m}}_{p}} 4230: 4126: 4066: 3962: 3939:{\displaystyle {\mathfrak {m}}_{p}} 3925: 3734: 3704: 3516: 3409: 3338: 2774: 2691: 2663: 2637:{\displaystyle {\mathfrak {m}}_{a}} 2623: 2598: 2537: 2503: 2471: 2085: 2049: 1956: 1945: 1894:{\displaystyle {\mathfrak {m}}_{a}} 1880: 1852: 1842: 1812: 1796: 1766: 1724: 1664: 1550: 860:, the category of schemes has Spec( 809:on the rings of regular functions, 620:, and a scheme was defined to be a 256:, which has the advantage of being 27:Generalization of algebraic variety 24: 10479: 9459:This in turn is equivalent to the 9111:): define the Zariski topology on 8932: 8879:were affine, it would follow that 8634: 8631: 8628: 8625: 8464:For example, the closed subscheme 7842: 7235:{\displaystyle r({\mathfrak {m}})} 7067: 7064: 7061: 6496:{\displaystyle x=\pm {\sqrt {-1}}} 6467:is a prime ideal corresponding to 6045:{\displaystyle x=\pm {\sqrt {-1}}} 5654:points" of the scheme. Fixing the 5461: 5158:is a variety with coordinate ring 3775: 3550: 3448: 2798:corresponds to the original value 2751:{\displaystyle x_{i}\mapsto a_{i}} 2548:{\displaystyle r({\mathfrak {p}})} 2316:{\displaystyle {\mathcal {O}}_{X}} 2302: 2145: 1517: 1514: 1511: 1508: 1248:{\displaystyle \mathbb {A} ^{m+n}} 762:An algebraic variety over a field 557:admitting a covering by open sets 25: 11384: 11330: 10775:, sections VII.4, VIII.2, VIII.3. 10206:-module, i.e. its dimension as a 9649:at the origin. Allowing such non- 9328:double cover of the affine line A 9159:over the real numbers defined by 8687:extends to a regular function on 7520:{\displaystyle f\in \mathbb {Z} } 3888:{\displaystyle n\in \mathbb {Z} } 3477:{\displaystyle p\in \mathbb {Z} } 3392:{\displaystyle p\in \mathbb {Z} } 2511:{\displaystyle R/{\mathfrak {p}}} 460:Séminaire de géométrie algébrique 409:Foundations of Algebraic Geometry 98:(the last of which was proved by 10693:Éléments de géométrie algébrique 10301:, one starts by considering the 9944:. Since the intersection is not 9488: 9471: 9433: 9365: 9031: 8709:{\displaystyle \mathbb {A} ^{n}} 8314:{\displaystyle \mathbb {C} ^{n}} 7731:{\displaystyle \mathbb {F} _{p}} 6835:{\displaystyle \mathbb {F} _{p}} 6525:{\displaystyle \mathbb {F} _{3}} 4814:have no common vanishing points 3117:{\displaystyle x^{2}=y^{2}(y+1)} 1209:{\displaystyle \mathbb {A} ^{n}} 1180:{\displaystyle \mathbb {A} ^{m}} 1139:, their fiber product over Spec( 766:can be defined as a scheme over 456:Éléments de géométrie algébrique 361:) varieties. In particular, the 87:Éléments de géométrie algébrique 10974:Illinois Journal of Mathematics 10842: 9948:, this is not merely the point 9248:The points of the affine line A 8587:, say over the complex numbers 5005:subordinate to the covering of 4406:, the point where the value of 3399:; as well as the generic point 2718:, with the natural isomorphism 2479:{\displaystyle {\mathfrak {p}}} 1929:{\displaystyle a\in {\bar {V}}} 1774:{\displaystyle {\mathfrak {p}}} 1281: 492:he assigned a commutative ring 488:of rings: to every open subset 399:The algebraic geometers of the 345:. From the 1920s to the 1940s, 341:, essentially because they are 11293:Fundamental Algebraic Geometry 10880:, Exercises I.3.6 and III.4.3. 10737: 10685: 10502:Artin representability theorem 10421:on each affine open subset of 10193: 10181: 10144: 10131: 10126: 10120: 10105: 10085: 10080: 10068: 10044:{\displaystyle (x,y)\subset k} 10038: 10026: 10017: 10005: 9985: 9973: 9967: 9955: 9931: 9911: 9905: 9886: 9880: 9874: 9854: 9835: 9779: 9773: 9746: 9734: 9537: 9525: 9522: 9510: 9498: 9492: 9481: 9475: 9443: 9437: 9423: 9414: 9402: 9399: 9387: 9375: 9369: 8992:{\textstyle \prod _{m\neq n}k} 8862: 8856: 8833: 8801: 8790: 8775: 8740: 8666: 8644: 8448: 8442: 8434: 8402: 8337:determines a closed subscheme 8072: 8040: 8035: 8023: 7760: 7748: 7696: 7681: 7670: 7662: 7583: 7580: 7574: 7566: 7554: 7546: 7514: 7502: 7380: 7374: 7331: 7328: 7322: 7316: 7287: 7281: 7258: 7252: 7229: 7219: 7196: 7190: 7179: 7173: 7150: 7144: 7126: 7120: 7111: 7101: 7048: 7038: 6995: 6989: 6978: 6972: 6949: 6943: 6897:; this is a finite field with 6884: 6878: 6800: 6794: 6776: 6773: 6767: 6761: 6753: 6747: 6717: 6711: 6700: 6690: 6667: 6664: 6658: 6646: 6613: 6594: 6584:as two fused points. Overall, 6571: 6546: 6454: 6429: 6373: 6364: 6351: 6342: 6336: 6311: 6221: 6203: 6197: 6179: 6173: 6148: 5950: 5931: 5865: 5859: 5802: 5787: 5764: 5752: 5722: 5710: 5621: 5615: 5592: 5589: 5583: 5571: 5541: 5535: 5505: 5499: 5366: 5360: 5317: 5314: 5308: 5296: 5266: 5260: 5225: 5222: 5216: 5208: 5176: 5170: 5067: 5054: 4916: 4910: 4904: 4872: 4493: 4485: 4473: 4456: 4318: 4301: 4179: 4173: 4137: 4120: 4077: 4060: 3995: 3989: 3973: 3956: 3851: 3803: 3792: 3786: 3601: 3585: 3574: 3561: 3429: 3423: 3358: 3352: 3315: 3307: 3245: 3242: 3230: 3204: 3196: 3184: 3162:, corresponding to the scheme 3111: 3099: 3036: 3033: 3027: 3016: 3004: 2998: 2988:. The corresponding scheme is 2969: 2963: 2920: 2914: 2908: 2878: 2846: 2814: 2808: 2785: 2768: 2735: 2674: 2657: 2585: 2542: 2532: 2426: 2394: 2362: 2194: 2178: 2169: 2156: 2038: 2032: 1920: 1801: 1791: 1741: 1729: 1719: 1713: 1698: 1622: 1564: 1527: 1521: 1481: 1449: 1400: 1368: 1319: 227: 13: 1: 11297:American Mathematical Society 11055:History of Algebraic Geometry 11033:10.1090/S0273-0979-01-00913-2 10963: 10916:, sections VIII.2 and VIII.3. 5084:Affine line over the integers 4580:stating that if the integers 1120:{\displaystyle X\times _{Y}Z} 958:More generally, for a scheme 858:category of commutative rings 524: 11343:The Stacks Project Authors, 11195:Igor R. Shafarevich (2013). 10678: 10577:. In this setting, known as 10570:that is an algebraic space. 10261:together with a line in the 9655:schemes brings the ideas of 9195:− 0.) By contrast, a scheme 9003:. This topological space is 8898:be a field. Then the scheme 8765:induces an isomorphism from 8602:{\displaystyle \mathbb {C} } 7596:has a canonical morphism to 7484:If we consider a polynomial 7408: 7209:is determined by its values 6577:{\displaystyle V(3,x^{2}+1)} 5182:{\displaystyle \mathbb {Z} } 4944:{\displaystyle \mathbb {Z} } 4156:in the generic residue ring 3915:, a function whose value at 3281:{\displaystyle \mathbb {Z} } 2981:{\displaystyle (f)\subset R} 2292:This induces a unique sheaf 2106:for irreducible polynomials 943:) is also called the set of 195:of schemes (called a scheme 46:that enlarges the notion of 7: 10744:Chevalley, C. (1955–1956), 10719:, sections VII.2 and VII.5. 10600: 9991:{\displaystyle (x,y)=(0,0)} 9763:axis, which is the variety 9670:. For example in the plane 9011:. Since affine schemes are 8957:Stone–Čech compactification 5983:-values which are roots of 5849:, which does not intersect 4050:the function is defined by 3444:closure is the whole scheme 2413:, a polynomial function on 1494:. The corresponding scheme 1273: 1087:with morphisms to a scheme 430:, motivated in part by the 18:Scheme (algebraic geometry) 10: 11389: 10902:Eisenbud & Harris 1998 10837:Eisenbud & Harris 1998 10668:Moduli of algebraic curves 10579:derived algebraic geometry 10336:. In particular, a module 10282: 9860:{\displaystyle V(x^{2}-y)} 9575:(which classifies certain 8720:≥ 2: this is analogous to 6619:{\displaystyle V(x^{2}+1)} 5956:{\displaystyle V(x^{2}+1)} 4542:has "poles" at the points 3946:lies in the residue field 2486:lies in the quotient ring 2435:{\displaystyle {\bar {X}}} 553:is a locally ringed space 264:, and more generally over 118:, which eventually led to 10474:coherent sheaf cohomology 10419:finitely generated module 10165:intersection multiplicity 9191:) can be identified with 8156:For any commutative ring 8088:then its discriminant is 7393:in the algebraic closure 6861:{\displaystyle x=\alpha } 6503:in an extension field of 4251:only, so we can think of 1135:are schemes over a field 1093:categorical fiber product 607:ring of regular functions 369:of the complex numbers). 276:Hilbert's Nullstellensatz 222:glossary of scheme theory 10940:Stacks Project, Tag 07Y1 10811:Stacks Project, Tag 020D 10529:on an algebraic variety 10404:(on a Noetherian scheme 10340:over a commutative ring 9663:into algebraic geometry. 9610:= 0, sometimes called a 9351:, yielding the morphism 9324:. It can be viewed as a 9087:, one can study the set 8257:complex projective space 8114:{\displaystyle -27p^{2}} 5777:. We also have the line 3442:, the zero ideal, whose 1077:fiber product of schemes 962:over a commutative ring 875:over a commutative ring 805:of schemes determines a 641:) mean that its elements 545:) of a commutative ring 84:in 1960 in his treatise 11228:Oxford University Press 11122:Grothendieck, Alexandre 11091:The Geometry of Schemes 10583:E-infinity ring spectra 10167:of 2 is defined as the 9818:{\displaystyle y=x^{2}} 9724:, with coordinate ring 9581:étale fundamental group 9463:-2 extension of fields 9183:) not empty. (In fact, 9083:variables over a field 8883:is an isomorphism, but 8380:projective hypersurface 7527:then the affine scheme 7337:{\displaystyle V(f(x))} 6813:, a field extension of 6009:{\displaystyle x^{2}+1} 5808:{\displaystyle V(bx-a)} 5399:. Thus, we may picture 5350:is a prime number, and 4929:in the coordinate ring 4746:Hilbert Nullstellensatz 3540:, with coordinate ring 2953:, corresponding to the 698:The category of schemes 301:-tuples of elements of 10998:10.1215/ijm/1373636688 10659:Linear algebraic group 10556:Deligne–Mumford stacks 10539:, which remembers the 10525:of an algebraic group 10220: 10200: 10157: 10045: 9992: 9938: 9861: 9819: 9786: 9753: 9718: 9698: 9553: 9453: 9068:Motivation for schemes 8993: 8949: 8936: 8869: 8840: 8759: 8710: 8673: 8603: 8581: 8508: 8458: 8372: 8326:homogeneous polynomial 8315: 8286: 8241: 8195: 8141: 8115: 8082: 7996:is a prime number and 7990: 7970: 7824: 7732: 7703: 7618: 7590: 7521: 7446: 7423: 7387: 7358: 7338: 7300: 7299:{\displaystyle r(x)=p} 7265: 7236: 7203: 7157: 7085: 7022: 7002: 6956: 6918: 6891: 6862: 6836: 6807: 6674: 6620: 6578: 6526: 6497: 6461: 6406: 6380: 6298: 6254: 6228: 6135: 6092: 6066: 6046: 6010: 5977: 5957: 5912: 5892: 5872: 5843: 5809: 5771: 5729: 5728:{\displaystyle V(x-a)} 5694: 5668: 5648: 5634:, the "characteristic 5628: 5599: 5548: 5512: 5483: 5466: 5453: 5433: 5413: 5393: 5373: 5344: 5324: 5273: 5232: 5183: 5152: 5074: 5019: 4995: 4945: 4923: 4859: 4839: 4808: 4762: 4738: 4666: 4620: 4567: 4536: 4508: 4440: 4420: 4400: 4374: 4340: 4285: 4265: 4245: 4214: 4194: 4150: 4104: 4041: 4017: 3940: 3909: 3889: 3858: 3759: 3673: 3534: 3478: 3453: 3436: 3393: 3365: 3322: 3282: 3252: 3156: 3118: 3063: 3043: 2982: 2947: 2885: 2821: 2792: 2752: 2712: 2638: 2607: 2575:under the natural map 2569: 2549: 2512: 2480: 2456: 2436: 2407: 2337: 2317: 2290: 2282: 2126: 2125:{\displaystyle f\in R} 2104: 2097: 1994: 1971: 1930: 1895: 1864: 1775: 1751: 1679: 1649: 1629: 1534: 1488: 1427: 1407: 1349: 1300: 1249: 1210: 1181: 1121: 1068:is determined by this 989:means a morphism Spec( 185:relative point of view 82:Alexander Grothendieck 10827:, Proposition II.2.3. 10452:that is zero outside 10221: 10201: 10158: 10046: 9998:defined by the ideal 9993: 9939: 9862: 9820: 9787: 9754: 9719: 9699: 9571:in topology) and the 9554: 9454: 9339:by projecting to the 9024:Examples of morphisms 9009:irreducible component 8994: 8950: 8916: 8870: 8841: 8760: 8711: 8674: 8604: 8582: 8527:line with two origins 8509: 8459: 8373: 8316: 8287: 8242: 8205:+ 1 copies of affine 8196: 8142: 8116: 8083: 7991: 7971: 7825: 7733: 7704: 7619: 7591: 7522: 7462:Diophantine equations 7447: 7424: 7388: 7359: 7339: 7301: 7266: 7237: 7204: 7158: 7086: 7023: 7003: 6957: 6919: 6917:{\displaystyle p^{d}} 6892: 6863: 6837: 6808: 6675: 6629:The residue field at 6621: 6579: 6536:), we should picture 6527: 6498: 6462: 6407: 6381: 6299: 6255: 6229: 6136: 6093: 6067: 6047: 6011: 5978: 5958: 5913: 5893: 5873: 5844: 5842:{\displaystyle x=a/b} 5810: 5772: 5730: 5695: 5669: 5649: 5629: 5600: 5549: 5513: 5484: 5469:A given prime number 5465: 5454: 5434: 5414: 5394: 5374: 5345: 5325: 5274: 5233: 5184: 5153: 5075: 5020: 5001:as forming a kind of 4996: 4946: 4924: 4860: 4840: 4809: 4763: 4739: 4667: 4621: 4568: 4537: 4509: 4441: 4421: 4401: 4375: 4341: 4286: 4266: 4246: 4215: 4195: 4151: 4105: 4042: 4018: 3941: 3910: 3890: 3859: 3760: 3674: 3535: 3479: 3452: 3437: 3394: 3366: 3323: 3283: 3266:The ring of integers 3253: 3157: 3119: 3064: 3044: 2983: 2948: 2886: 2822: 2793: 2753: 2713: 2639: 2608: 2570: 2550: 2513: 2481: 2457: 2437: 2408: 2338: 2318: 2283: 2134: 2127: 2098: 2002: 1995: 1972: 1931: 1896: 1865: 1776: 1752: 1680: 1650: 1630: 1535: 1489: 1428: 1408: 1350: 1301: 1266:), it has all finite 1250: 1211: 1182: 1122: 807:pullback homomorphism 740:of schemes. A scheme 509:. These objects Spec( 347:B. L. van der Waerden 102:). Strongly based on 70:are defined over the 10707:, Chapters IV and V. 10541:stabilizer subgroups 10511:. Crudely speaking, 10436:. An example is the 10380:quasi-coherent sheaf 10210: 10175: 10059: 10002: 9952: 9871: 9829: 9796: 9785:{\displaystyle V(y)} 9767: 9728: 9708: 9674: 9467: 9355: 8967: 8902: 8868:{\displaystyle O(X)} 8850: 8769: 8728: 8691: 8621: 8591: 8544: 8482: 8390: 8348: 8344:in projective space 8296: 8262: 8217: 8171: 8125: 8092: 8000: 7980: 7838: 7742: 7713: 7632: 7600: 7531: 7488: 7436: 7397: 7386:{\displaystyle f(x)} 7368: 7348: 7310: 7275: 7264:{\displaystyle V(p)} 7246: 7213: 7167: 7095: 7032: 7012: 6966: 6928: 6901: 6890:{\displaystyle f(x)} 6872: 6846: 6817: 6684: 6633: 6588: 6540: 6507: 6471: 6416: 6390: 6308: 6268: 6238: 6145: 6102: 6098:, we get two points 6076: 6056: 6020: 5987: 5967: 5925: 5902: 5882: 5871:{\displaystyle V(p)} 5853: 5819: 5781: 5739: 5704: 5678: 5658: 5638: 5627:{\displaystyle f(x)} 5609: 5558: 5522: 5511:{\displaystyle V(p)} 5493: 5473: 5443: 5423: 5403: 5383: 5372:{\displaystyle f(x)} 5354: 5334: 5283: 5242: 5193: 5162: 5092: 5029: 5009: 4955: 4933: 4869: 4849: 4818: 4772: 4752: 4676: 4630: 4584: 4546: 4518: 4450: 4430: 4410: 4384: 4353: 4349:Note that the point 4295: 4275: 4255: 4224: 4204: 4160: 4114: 4054: 4031: 3950: 3919: 3899: 3871: 3769: 3683: 3544: 3488: 3460: 3403: 3375: 3332: 3292: 3270: 3262:Spec of the integers 3166: 3132: 3128:in the affine plane 3073: 3053: 2992: 2960: 2899: 2834: 2820:{\displaystyle r(a)} 2802: 2762: 2722: 2651: 2617: 2579: 2559: 2526: 2490: 2466: 2446: 2417: 2350: 2327: 2296: 2139: 2110: 2007: 1984: 1940: 1905: 1874: 1785: 1761: 1689: 1659: 1639: 1544: 1498: 1437: 1417: 1413:with coordinates in 1359: 1310: 1290: 1224: 1191: 1162: 1143:) may be called the 1098: 966:and any commutative 535:locally ringed space 458:(EGA) and the later 339:projective varieties 258:algebraically closed 242:Jean-Victor Poncelet 11315:2004math.....12512V 11199:. Springer-Verlag. 11172:. Springer-Verlag. 10868:, Example II.4.0.1. 10839:, Proposition VI-2. 10633:Birational geometry 10568:coarse moduli space 9792:, and the parabola 9693: 9668:intersection theory 9297:be the plane curve 8503: 8367: 8236: 8190: 8160:and natural number 8140:{\displaystyle 3,p} 7480:Arithmetic surfaces 6405:{\displaystyle p=3} 6253:{\displaystyle p=2} 6091:{\displaystyle p=5} 5735:of the prime ideal 5693:{\displaystyle x=a} 5518:of the prime ideal 5113: 4768:: if the functions 4535:{\displaystyle a/b} 4399:{\displaystyle n=p} 4027:of integers modulo 3850: 3823: 3679:. For the open set 3151: 2942: 1487:{\displaystyle R=k} 1344: 1154:in the category of 747:a commutative ring 732:) means a morphism 708:morphism of schemes 592:a commutative ring 579:comes with a sheaf 236:equations over the 112:homological algebra 104:commutative algebra 11346:The Stacks Project 11299:, pp. 1–104, 11295:, Providence, RI: 11169:Algebraic Geometry 11148:10.1007/bf02684778 10543:for the action of 10216: 10196: 10153: 10041: 9988: 9934: 9857: 9815: 9782: 9749: 9714: 9694: 9677: 9589:Nilpotent elements 9567:(which classifies 9549: 9449: 9288:rational functions 9286:) is the field of 9043:. You can help by 8989: 8985: 8945: 8865: 8836: 8755: 8706: 8669: 8613:is not affine for 8599: 8577: 8504: 8485: 8454: 8382:. In terms of the 8368: 8351: 8311: 8282: 8237: 8220: 8191: 8174: 8151:Non-affine schemes 8137: 8111: 8078: 7986: 7966: 7820: 7728: 7699: 7626:arithmetic surface 7614: 7586: 7517: 7442: 7419: 7383: 7354: 7334: 7296: 7261: 7242:at closed points; 7232: 7199: 7153: 7081: 7018: 6998: 6952: 6914: 6887: 6858: 6832: 6803: 6670: 6616: 6574: 6522: 6493: 6457: 6402: 6376: 6294: 6250: 6224: 6131: 6088: 6062: 6042: 6006: 5973: 5953: 5908: 5888: 5868: 5839: 5805: 5767: 5725: 5690: 5664: 5644: 5624: 5595: 5544: 5508: 5479: 5467: 5449: 5429: 5409: 5389: 5369: 5340: 5320: 5269: 5228: 5179: 5148: 5095: 5070: 5015: 5003:partition of unity 4991: 4941: 4919: 4855: 4835: 4804: 4758: 4734: 4662: 4616: 4563: 4532: 4504: 4436: 4416: 4396: 4370: 4336: 4281: 4261: 4241: 4210: 4190: 4146: 4100: 4037: 4013: 3936: 3905: 3885: 3854: 3833: 3806: 3755: 3669: 3627: 3530: 3474: 3454: 3432: 3389: 3361: 3318: 3278: 3248: 3152: 3135: 3114: 3059: 3039: 2978: 2943: 2926: 2881: 2817: 2788: 2748: 2708: 2634: 2613:. A maximal ideal 2603: 2565: 2545: 2508: 2476: 2452: 2432: 2403: 2346:Each ring element 2333: 2313: 2278: 2220: 2122: 2093: 1990: 1967: 1936:, or equivalently 1926: 1891: 1860: 1771: 1747: 1675: 1645: 1625: 1530: 1484: 1423: 1403: 1345: 1328: 1296: 1245: 1206: 1177: 1117: 780:integral separated 667:. By definition, A 537:isomorphic to the 207:algebraic surfaces 178:rings of fractions 155:Noetherian schemes 92:algebraic geometry 80:was introduced by 36:algebraic geometry 11275:978-3-540-63293-1 11237:978-0-19-850284-5 11222:Qing Liu (2002). 11179:978-0-387-90244-9 11164:Hartshorne, Robin 11105:978-0-387-98637-1 11066:978-0-534-03723-9 10956:, Definition 4.6. 10850:"Elliptic curves" 10564:Keel–Mori theorem 10219:{\displaystyle k} 10199:{\displaystyle k} 10148: 10109: 9752:{\displaystyle k} 9717:{\displaystyle k} 9565:fundamental group 9540: 9417: 9077:Field extensions. 9061: 9060: 9017:Noetherian scheme 8970: 8384:Proj construction 8076: 7989:{\displaystyle p} 7959: 7955: 7951: 7624:and is called an 7445:{\displaystyle Y} 7411: 7357:{\displaystyle p} 7073: 7059: 7021:{\displaystyle Y} 6842:adjoining a root 6491: 6290: 6286: 6282: 6127: 6123: 6119: 6072:-coordinates. At 6065:{\displaystyle p} 6040: 5976:{\displaystyle x} 5911:{\displaystyle b} 5891:{\displaystyle p} 5667:{\displaystyle x} 5647:{\displaystyle p} 5482:{\displaystyle p} 5452:{\displaystyle x} 5432:{\displaystyle p} 5412:{\displaystyle Y} 5392:{\displaystyle p} 5343:{\displaystyle p} 5133: 5129: 5125: 5088:The affine space 5025:by the open sets 5018:{\displaystyle Z} 4858:{\displaystyle Z} 4761:{\displaystyle Z} 4439:{\displaystyle Z} 4419:{\displaystyle p} 4284:{\displaystyle f} 4264:{\displaystyle n} 4213:{\displaystyle n} 4096: 4092: 4088: 4040:{\displaystyle p} 3908:{\displaystyle Z} 3656: 3639: 3635: 3631: 3626: 3126:nodal cubic curve 3062:{\displaystyle k} 2911: 2568:{\displaystyle r} 2455:{\displaystyle X} 2429: 2336:{\displaystyle U} 2253: 2238: 2235: 2231: 2227: 2224: 2219: 2076: 2073: 2069: 2065: 2062: 1993:{\displaystyle X} 1923: 1839: 1836: 1832: 1828: 1825: 1781:is the subscheme 1744: 1716: 1701: 1648:{\displaystyle a} 1426:{\displaystyle k} 1322: 1299:{\displaystyle k} 1070:functor of points 1056:from commutative 1040:, the assignment 1009:) for the set of 911:) for the set of 751:means a morphism 566:, such that each 450:Origin of schemes 428:Jean-Pierre Serre 376:(not embedded in 135:topological space 48:algebraic variety 16:(Redirected from 11380: 11349: 11325: 11308: 11287: 11249: 11218: 11191: 11159: 11117: 11077: 11058: 11044: 11035: 11009: 11000: 10990: 10981:(4): 1367–1384, 10957: 10951: 10945: 10943: 10935: 10929: 10923: 10917: 10911: 10905: 10904:, Example II-10. 10899: 10893: 10887: 10881: 10875: 10869: 10863: 10857: 10856: 10854: 10846: 10840: 10834: 10828: 10822: 10816: 10814: 10806: 10800: 10794: 10788: 10782: 10776: 10770: 10764: 10758: 10752: 10751: 10741: 10735: 10734:, section VII.4. 10729: 10720: 10714: 10708: 10702: 10696: 10689: 10638:Étale cohomology 10587:derived functors 10514:algebraic stacks 10470:sheaf cohomology 10368: 10367: 10366: 10361: 10303:abelian category 10291:coherent sheaves 10279:Coherent sheaves 10233:complex variety 10225: 10223: 10222: 10217: 10205: 10203: 10202: 10197: 10162: 10160: 10159: 10154: 10149: 10147: 10143: 10142: 10129: 10115: 10110: 10108: 10097: 10096: 10083: 10063: 10050: 10048: 10047: 10042: 9997: 9995: 9994: 9989: 9943: 9941: 9940: 9935: 9923: 9922: 9898: 9897: 9866: 9864: 9863: 9858: 9847: 9846: 9824: 9822: 9821: 9816: 9814: 9813: 9791: 9789: 9788: 9783: 9758: 9756: 9755: 9750: 9723: 9721: 9720: 9715: 9703: 9701: 9700: 9695: 9692: 9687: 9682: 9605: 9604: 9577:field extensions 9558: 9556: 9555: 9550: 9545: 9541: 9506: 9491: 9474: 9458: 9456: 9455: 9450: 9436: 9422: 9418: 9383: 9368: 9338: 9337: 9323: 9322: 9277: 9276: 9258: 9257: 9233: 9232: 9056: 9053: 9035: 9028: 9005:zero-dimensional 8998: 8996: 8995: 8990: 8984: 8954: 8952: 8951: 8946: 8944: 8940: 8935: 8930: 8874: 8872: 8871: 8866: 8845: 8843: 8842: 8837: 8832: 8831: 8813: 8812: 8800: 8789: 8788: 8783: 8764: 8762: 8761: 8756: 8754: 8753: 8748: 8715: 8713: 8712: 8707: 8705: 8704: 8699: 8678: 8676: 8675: 8670: 8665: 8664: 8643: 8637: 8608: 8606: 8605: 8600: 8598: 8586: 8584: 8583: 8578: 8564: 8563: 8558: 8520:rational numbers 8513: 8511: 8510: 8505: 8502: 8497: 8496: 8490: 8477: 8463: 8461: 8460: 8455: 8441: 8433: 8432: 8414: 8413: 8377: 8375: 8374: 8369: 8366: 8361: 8356: 8343: 8336: 8320: 8318: 8317: 8312: 8310: 8309: 8304: 8291: 8289: 8288: 8283: 8281: 8280: 8275: 8269: 8246: 8244: 8243: 8238: 8235: 8230: 8225: 8200: 8198: 8197: 8192: 8189: 8184: 8179: 8166:projective space 8146: 8144: 8143: 8138: 8120: 8118: 8117: 8112: 8110: 8109: 8087: 8085: 8084: 8079: 8077: 8075: 8065: 8064: 8052: 8051: 8038: 8022: 8016: 7995: 7993: 7992: 7987: 7975: 7973: 7972: 7967: 7957: 7956: 7953: 7949: 7942: 7941: 7926: 7925: 7895: 7894: 7885: 7884: 7869: 7868: 7850: 7849: 7829: 7827: 7826: 7821: 7804: 7803: 7788: 7787: 7775: 7774: 7737: 7735: 7734: 7729: 7727: 7726: 7721: 7708: 7706: 7705: 7700: 7695: 7694: 7689: 7674: 7673: 7669: 7644: 7643: 7623: 7621: 7620: 7615: 7613: 7595: 7593: 7592: 7587: 7573: 7553: 7526: 7524: 7523: 7518: 7501: 7451: 7449: 7448: 7443: 7428: 7426: 7425: 7420: 7418: 7417: 7412: 7407: 7402: 7392: 7390: 7389: 7384: 7363: 7361: 7360: 7355: 7343: 7341: 7340: 7335: 7305: 7303: 7302: 7297: 7270: 7268: 7267: 7262: 7241: 7239: 7238: 7233: 7228: 7227: 7208: 7206: 7205: 7200: 7189: 7162: 7160: 7159: 7154: 7143: 7142: 7137: 7110: 7109: 7090: 7088: 7087: 7082: 7080: 7079: 7071: 7070: 7057: 7047: 7046: 7027: 7025: 7024: 7019: 7007: 7005: 7004: 6999: 6988: 6961: 6959: 6958: 6953: 6923: 6921: 6920: 6915: 6913: 6912: 6896: 6894: 6893: 6888: 6867: 6865: 6864: 6859: 6841: 6839: 6838: 6833: 6831: 6830: 6825: 6812: 6810: 6809: 6804: 6793: 6792: 6787: 6760: 6746: 6745: 6740: 6731: 6730: 6724: 6710: 6699: 6698: 6679: 6677: 6676: 6671: 6642: 6641: 6625: 6623: 6622: 6617: 6606: 6605: 6583: 6581: 6580: 6575: 6564: 6563: 6531: 6529: 6528: 6523: 6521: 6520: 6515: 6502: 6500: 6499: 6494: 6492: 6484: 6466: 6464: 6463: 6458: 6447: 6446: 6425: 6424: 6411: 6409: 6408: 6403: 6385: 6383: 6382: 6377: 6372: 6371: 6329: 6328: 6303: 6301: 6300: 6295: 6288: 6287: 6284: 6280: 6259: 6257: 6256: 6251: 6233: 6231: 6230: 6225: 6166: 6165: 6140: 6138: 6137: 6132: 6125: 6124: 6121: 6117: 6097: 6095: 6094: 6089: 6071: 6069: 6068: 6063: 6051: 6049: 6048: 6043: 6041: 6033: 6015: 6013: 6012: 6007: 5999: 5998: 5982: 5980: 5979: 5974: 5962: 5960: 5959: 5954: 5943: 5942: 5917: 5915: 5914: 5909: 5897: 5895: 5894: 5889: 5877: 5875: 5874: 5869: 5848: 5846: 5845: 5840: 5835: 5814: 5812: 5811: 5806: 5776: 5774: 5773: 5768: 5748: 5747: 5734: 5732: 5731: 5726: 5700:, the subscheme 5699: 5697: 5696: 5691: 5673: 5671: 5670: 5665: 5653: 5651: 5650: 5645: 5633: 5631: 5630: 5625: 5604: 5602: 5601: 5596: 5567: 5566: 5554:: this contains 5553: 5551: 5550: 5545: 5531: 5530: 5517: 5515: 5514: 5509: 5488: 5486: 5485: 5480: 5458: 5456: 5455: 5450: 5438: 5436: 5435: 5430: 5418: 5416: 5415: 5410: 5398: 5396: 5395: 5390: 5378: 5376: 5375: 5370: 5349: 5347: 5346: 5341: 5329: 5327: 5326: 5321: 5292: 5291: 5278: 5276: 5275: 5270: 5259: 5251: 5250: 5237: 5235: 5234: 5229: 5215: 5188: 5186: 5185: 5180: 5169: 5157: 5155: 5154: 5149: 5144: 5131: 5130: 5127: 5123: 5112: 5107: 5106: 5100: 5079: 5077: 5076: 5071: 5066: 5065: 5041: 5040: 5024: 5022: 5021: 5016: 5000: 4998: 4997: 4992: 4990: 4989: 4980: 4979: 4967: 4966: 4950: 4948: 4947: 4942: 4940: 4928: 4926: 4925: 4920: 4903: 4902: 4884: 4883: 4864: 4862: 4861: 4856: 4844: 4842: 4841: 4836: 4834: 4833: 4828: 4827: 4813: 4811: 4810: 4805: 4803: 4802: 4784: 4783: 4767: 4765: 4764: 4759: 4743: 4741: 4740: 4735: 4727: 4726: 4717: 4716: 4698: 4697: 4688: 4687: 4671: 4669: 4668: 4663: 4661: 4660: 4642: 4641: 4625: 4623: 4622: 4617: 4615: 4614: 4596: 4595: 4572: 4570: 4569: 4564: 4562: 4561: 4556: 4555: 4541: 4539: 4538: 4533: 4528: 4513: 4511: 4510: 4505: 4503: 4492: 4472: 4471: 4466: 4465: 4445: 4443: 4442: 4437: 4425: 4423: 4422: 4417: 4405: 4403: 4402: 4397: 4379: 4377: 4376: 4371: 4369: 4368: 4363: 4362: 4345: 4343: 4342: 4337: 4335: 4334: 4329: 4317: 4316: 4311: 4310: 4290: 4288: 4287: 4282: 4270: 4268: 4267: 4262: 4250: 4248: 4247: 4242: 4240: 4239: 4234: 4233: 4219: 4217: 4216: 4211: 4199: 4197: 4196: 4191: 4189: 4172: 4167: 4155: 4153: 4152: 4147: 4136: 4135: 4130: 4129: 4109: 4107: 4106: 4101: 4094: 4093: 4090: 4086: 4076: 4075: 4070: 4069: 4046: 4044: 4043: 4038: 4022: 4020: 4019: 4014: 4012: 4011: 4006: 3988: 3983: 3972: 3971: 3966: 3965: 3945: 3943: 3942: 3937: 3935: 3934: 3929: 3928: 3914: 3912: 3911: 3906: 3894: 3892: 3891: 3886: 3884: 3863: 3861: 3860: 3855: 3849: 3841: 3822: 3814: 3802: 3785: 3784: 3779: 3778: 3764: 3762: 3761: 3756: 3751: 3750: 3749: 3748: 3738: 3737: 3721: 3720: 3719: 3718: 3708: 3707: 3678: 3676: 3675: 3670: 3654: 3650: 3637: 3636: 3633: 3629: 3628: 3625: 3624: 3612: 3600: 3599: 3584: 3573: 3572: 3560: 3559: 3554: 3553: 3539: 3537: 3536: 3531: 3526: 3525: 3520: 3519: 3500: 3499: 3483: 3481: 3480: 3475: 3473: 3441: 3439: 3438: 3433: 3419: 3418: 3413: 3412: 3398: 3396: 3395: 3390: 3388: 3370: 3368: 3367: 3362: 3348: 3347: 3342: 3341: 3327: 3325: 3324: 3319: 3314: 3287: 3285: 3284: 3279: 3277: 3257: 3255: 3254: 3249: 3229: 3228: 3216: 3215: 3203: 3161: 3159: 3158: 3153: 3150: 3145: 3140: 3123: 3121: 3120: 3115: 3098: 3097: 3085: 3084: 3068: 3066: 3065: 3060: 3048: 3046: 3045: 3040: 3026: 2987: 2985: 2984: 2979: 2952: 2950: 2949: 2944: 2941: 2936: 2931: 2913: 2912: 2904: 2890: 2888: 2887: 2882: 2877: 2876: 2858: 2857: 2826: 2824: 2823: 2818: 2797: 2795: 2794: 2789: 2784: 2783: 2778: 2777: 2757: 2755: 2754: 2749: 2747: 2746: 2734: 2733: 2717: 2715: 2714: 2709: 2701: 2700: 2695: 2694: 2687: 2673: 2672: 2667: 2666: 2643: 2641: 2640: 2635: 2633: 2632: 2627: 2626: 2612: 2610: 2609: 2604: 2602: 2601: 2595: 2574: 2572: 2571: 2566: 2555:as the image of 2554: 2552: 2551: 2546: 2541: 2540: 2517: 2515: 2514: 2509: 2507: 2506: 2500: 2485: 2483: 2482: 2477: 2475: 2474: 2461: 2459: 2458: 2453: 2441: 2439: 2438: 2433: 2431: 2430: 2422: 2412: 2410: 2409: 2404: 2393: 2392: 2374: 2373: 2342: 2340: 2339: 2334: 2322: 2320: 2319: 2314: 2312: 2311: 2306: 2305: 2287: 2285: 2284: 2279: 2274: 2273: 2265: 2251: 2236: 2233: 2232: 2229: 2225: 2222: 2221: 2218: 2217: 2205: 2193: 2192: 2168: 2167: 2155: 2154: 2149: 2148: 2131: 2129: 2128: 2123: 2102: 2100: 2099: 2094: 2089: 2088: 2074: 2071: 2070: 2067: 2063: 2060: 2053: 2052: 2019: 2018: 1999: 1997: 1996: 1991: 1976: 1974: 1973: 1968: 1966: 1965: 1960: 1959: 1949: 1948: 1935: 1933: 1932: 1927: 1925: 1924: 1916: 1900: 1898: 1897: 1892: 1890: 1889: 1884: 1883: 1869: 1867: 1866: 1861: 1856: 1855: 1846: 1845: 1837: 1834: 1833: 1830: 1826: 1823: 1816: 1815: 1800: 1799: 1780: 1778: 1777: 1772: 1770: 1769: 1756: 1754: 1753: 1748: 1746: 1745: 1737: 1728: 1727: 1718: 1717: 1709: 1703: 1702: 1694: 1684: 1682: 1681: 1676: 1668: 1667: 1654: 1652: 1651: 1646: 1634: 1632: 1631: 1626: 1621: 1620: 1608: 1607: 1589: 1588: 1576: 1575: 1560: 1559: 1554: 1553: 1539: 1537: 1536: 1531: 1520: 1493: 1491: 1490: 1485: 1480: 1479: 1461: 1460: 1432: 1430: 1429: 1424: 1412: 1410: 1409: 1404: 1399: 1398: 1380: 1379: 1354: 1352: 1351: 1346: 1343: 1338: 1333: 1324: 1323: 1315: 1305: 1303: 1302: 1297: 1254: 1252: 1251: 1246: 1244: 1243: 1232: 1220:is affine space 1215: 1213: 1212: 1207: 1205: 1204: 1199: 1186: 1184: 1183: 1178: 1176: 1175: 1170: 1126: 1124: 1123: 1118: 1113: 1112: 1032:.) For a scheme 895:of the morphism 710:.) For a scheme 677: 676: 476:as the space of 471:commutative ring 432:Weil conjectures 424:Masayoshi Nagata 420:Claude Chevalley 413:universal domain 386:Jacobian variety 378:projective space 374:abstract variety 363:Zariski topology 359:quasi-projective 270:complex analysis 246:Bernhard Riemann 159:Noetherian rings 96:Weil conjectures 64:commutative ring 21: 11388: 11387: 11383: 11382: 11381: 11379: 11378: 11377: 11363: 11362: 11336:David Mumford, 11333: 11328: 11276: 11238: 11207: 11180: 11126:Dieudonné, Jean 11106: 11096:Springer-Verlag 11082:Eisenbud, David 11067: 11049:Dieudonné, Jean 11014:Cartier, Pierre 10966: 10961: 10960: 10952: 10948: 10937: 10936: 10932: 10926:Hartshorne 1997 10924: 10920: 10912: 10908: 10900: 10896: 10888: 10884: 10878:Hartshorne 1997 10876: 10872: 10866:Hartshorne 1997 10864: 10860: 10852: 10848: 10847: 10843: 10835: 10831: 10825:Hartshorne 1997 10823: 10819: 10808: 10807: 10803: 10795: 10791: 10787:, section II.2. 10785:Hartshorne 1997 10783: 10779: 10771: 10767: 10759: 10755: 10742: 10738: 10730: 10723: 10715: 10711: 10703: 10699: 10690: 10686: 10681: 10663:Reductive group 10655:Abelian variety 10619:Finite morphism 10615:Proper morphism 10611:Smooth morphism 10603: 10575:homotopy theory 10519:algebraic group 10496:algebraic space 10482: 10480:Generalizations 10416: 10395: 10362: 10359: 10358: 10357: 10355: 10335: 10315: 10297:. For a scheme 10287: 10281: 10270: 10211: 10208: 10207: 10176: 10173: 10172: 10138: 10134: 10130: 10116: 10114: 10092: 10088: 10084: 10064: 10062: 10060: 10057: 10056: 10003: 10000: 9999: 9953: 9950: 9949: 9918: 9914: 9893: 9889: 9872: 9869: 9868: 9842: 9838: 9830: 9827: 9826: 9809: 9805: 9797: 9794: 9793: 9768: 9765: 9764: 9759:, consider the 9729: 9726: 9725: 9709: 9706: 9705: 9688: 9683: 9678: 9675: 9672: 9671: 9603: 9598: 9597: 9596: 9569:covering spaces 9561:function fields 9505: 9501: 9487: 9470: 9468: 9465: 9464: 9432: 9382: 9378: 9364: 9356: 9353: 9352: 9336: 9331: 9330: 9329: 9321: 9316: 9315: 9314: 9275: 9270: 9269: 9268: 9256: 9251: 9250: 9249: 9231: 9226: 9225: 9224: 9099:. If the field 9070: 9057: 9051: 9048: 9041:needs expansion 9026: 8974: 8968: 8965: 8964: 8931: 8920: 8915: 8911: 8903: 8900: 8899: 8851: 8848: 8847: 8827: 8823: 8808: 8804: 8796: 8784: 8779: 8778: 8770: 8767: 8766: 8749: 8744: 8743: 8729: 8726: 8725: 8722:Hartogs's lemma 8700: 8695: 8694: 8692: 8689: 8688: 8657: 8653: 8639: 8624: 8622: 8619: 8618: 8594: 8592: 8589: 8588: 8559: 8554: 8553: 8545: 8542: 8541: 8498: 8492: 8491: 8486: 8483: 8480: 8479: 8465: 8437: 8428: 8424: 8409: 8405: 8391: 8388: 8387: 8362: 8357: 8352: 8349: 8346: 8345: 8338: 8332: 8305: 8300: 8299: 8297: 8294: 8293: 8276: 8271: 8270: 8265: 8263: 8260: 8259: 8231: 8226: 8221: 8218: 8215: 8214: 8185: 8180: 8175: 8172: 8169: 8168: 8153: 8126: 8123: 8122: 8105: 8101: 8093: 8090: 8089: 8060: 8056: 8047: 8043: 8039: 8018: 8017: 8015: 8001: 7998: 7997: 7981: 7978: 7977: 7952: 7937: 7933: 7921: 7917: 7890: 7886: 7880: 7876: 7864: 7860: 7845: 7841: 7839: 7836: 7835: 7799: 7795: 7783: 7779: 7770: 7766: 7743: 7740: 7739: 7722: 7717: 7716: 7714: 7711: 7710: 7690: 7685: 7684: 7665: 7655: 7651: 7639: 7635: 7633: 7630: 7629: 7609: 7601: 7598: 7597: 7569: 7549: 7532: 7529: 7528: 7497: 7489: 7486: 7485: 7482: 7470:Arakelov theory 7466:geometric tools 7437: 7434: 7433: 7413: 7403: 7401: 7400: 7398: 7395: 7394: 7369: 7366: 7365: 7349: 7346: 7345: 7311: 7308: 7307: 7276: 7273: 7272: 7247: 7244: 7243: 7223: 7222: 7214: 7211: 7210: 7185: 7168: 7165: 7164: 7138: 7133: 7132: 7105: 7104: 7096: 7093: 7092: 7075: 7074: 7060: 7042: 7041: 7033: 7030: 7029: 7013: 7010: 7009: 6984: 6967: 6964: 6963: 6962:. A polynomial 6929: 6926: 6925: 6908: 6904: 6902: 6899: 6898: 6873: 6870: 6869: 6847: 6844: 6843: 6826: 6821: 6820: 6818: 6815: 6814: 6788: 6783: 6782: 6756: 6741: 6736: 6735: 6726: 6725: 6720: 6706: 6694: 6693: 6685: 6682: 6681: 6637: 6636: 6634: 6631: 6630: 6601: 6597: 6589: 6586: 6585: 6559: 6555: 6541: 6538: 6537: 6516: 6511: 6510: 6508: 6505: 6504: 6483: 6472: 6469: 6468: 6442: 6438: 6420: 6419: 6417: 6414: 6413: 6391: 6388: 6387: 6367: 6363: 6324: 6320: 6309: 6306: 6305: 6283: 6269: 6266: 6265: 6239: 6236: 6235: 6161: 6157: 6146: 6143: 6142: 6120: 6103: 6100: 6099: 6077: 6074: 6073: 6057: 6054: 6053: 6032: 6021: 6018: 6017: 5994: 5990: 5988: 5985: 5984: 5968: 5965: 5964: 5963:corresponds to 5938: 5934: 5926: 5923: 5922: 5903: 5900: 5899: 5883: 5880: 5879: 5854: 5851: 5850: 5831: 5820: 5817: 5816: 5782: 5779: 5778: 5743: 5742: 5740: 5737: 5736: 5705: 5702: 5701: 5679: 5676: 5675: 5659: 5656: 5655: 5639: 5636: 5635: 5610: 5607: 5606: 5562: 5561: 5559: 5556: 5555: 5526: 5525: 5523: 5520: 5519: 5494: 5491: 5490: 5474: 5471: 5470: 5444: 5441: 5440: 5424: 5421: 5420: 5404: 5401: 5400: 5384: 5381: 5380: 5355: 5352: 5351: 5335: 5332: 5331: 5287: 5286: 5284: 5281: 5280: 5255: 5246: 5245: 5243: 5240: 5239: 5211: 5194: 5191: 5190: 5165: 5163: 5160: 5159: 5140: 5126: 5108: 5102: 5101: 5096: 5093: 5090: 5089: 5086: 5061: 5057: 5036: 5032: 5030: 5027: 5026: 5010: 5007: 5006: 4985: 4981: 4975: 4971: 4962: 4958: 4956: 4953: 4952: 4936: 4934: 4931: 4930: 4898: 4894: 4879: 4875: 4870: 4867: 4866: 4850: 4847: 4846: 4829: 4823: 4822: 4821: 4819: 4816: 4815: 4798: 4794: 4779: 4775: 4773: 4770: 4769: 4753: 4750: 4749: 4748:for the scheme 4722: 4718: 4712: 4708: 4693: 4689: 4683: 4679: 4677: 4674: 4673: 4656: 4652: 4637: 4633: 4631: 4628: 4627: 4610: 4606: 4591: 4587: 4585: 4582: 4581: 4557: 4551: 4550: 4549: 4547: 4544: 4543: 4524: 4519: 4516: 4515: 4499: 4488: 4467: 4461: 4460: 4459: 4451: 4448: 4447: 4431: 4428: 4427: 4411: 4408: 4407: 4385: 4382: 4381: 4364: 4358: 4357: 4356: 4354: 4351: 4350: 4330: 4325: 4324: 4312: 4306: 4305: 4304: 4296: 4293: 4292: 4276: 4273: 4272: 4256: 4253: 4252: 4235: 4229: 4228: 4227: 4225: 4222: 4221: 4205: 4202: 4201: 4200:. The function 4185: 4168: 4163: 4161: 4158: 4157: 4131: 4125: 4124: 4123: 4115: 4112: 4111: 4089: 4071: 4065: 4064: 4063: 4055: 4052: 4051: 4032: 4029: 4028: 4007: 4002: 4001: 3984: 3979: 3967: 3961: 3960: 3959: 3951: 3948: 3947: 3930: 3924: 3923: 3922: 3920: 3917: 3916: 3900: 3897: 3896: 3880: 3872: 3869: 3868: 3842: 3837: 3815: 3810: 3798: 3780: 3774: 3773: 3772: 3770: 3767: 3766: 3765:, this induces 3744: 3740: 3739: 3733: 3732: 3731: 3714: 3710: 3709: 3703: 3702: 3701: 3684: 3681: 3680: 3646: 3632: 3620: 3616: 3610: 3592: 3588: 3580: 3568: 3564: 3555: 3549: 3548: 3547: 3545: 3542: 3541: 3521: 3515: 3514: 3513: 3495: 3491: 3489: 3486: 3485: 3469: 3461: 3458: 3457: 3414: 3408: 3407: 3406: 3404: 3401: 3400: 3384: 3376: 3373: 3372: 3343: 3337: 3336: 3335: 3333: 3330: 3329: 3310: 3293: 3290: 3289: 3273: 3271: 3268: 3267: 3264: 3224: 3220: 3211: 3207: 3199: 3167: 3164: 3163: 3146: 3141: 3136: 3133: 3130: 3129: 3093: 3089: 3080: 3076: 3074: 3071: 3070: 3054: 3051: 3050: 3022: 2993: 2990: 2989: 2961: 2958: 2957: 2955:principal ideal 2937: 2932: 2927: 2903: 2902: 2900: 2897: 2896: 2872: 2868: 2853: 2849: 2835: 2832: 2831: 2803: 2800: 2799: 2779: 2773: 2772: 2771: 2763: 2760: 2759: 2742: 2738: 2729: 2725: 2723: 2720: 2719: 2696: 2690: 2689: 2688: 2683: 2668: 2662: 2661: 2660: 2652: 2649: 2648: 2628: 2622: 2621: 2620: 2618: 2615: 2614: 2597: 2596: 2591: 2580: 2577: 2576: 2560: 2557: 2556: 2536: 2535: 2527: 2524: 2523: 2502: 2501: 2496: 2491: 2488: 2487: 2470: 2469: 2467: 2464: 2463: 2462:whose value at 2447: 2444: 2443: 2421: 2420: 2418: 2415: 2414: 2388: 2384: 2369: 2365: 2351: 2348: 2347: 2328: 2325: 2324: 2307: 2301: 2300: 2299: 2297: 2294: 2293: 2266: 2261: 2260: 2228: 2213: 2209: 2203: 2185: 2181: 2163: 2159: 2150: 2144: 2143: 2142: 2140: 2137: 2136: 2111: 2108: 2107: 2084: 2083: 2066: 2048: 2047: 2014: 2010: 2008: 2005: 2004: 1985: 1982: 1981: 1961: 1955: 1954: 1953: 1944: 1943: 1941: 1938: 1937: 1915: 1914: 1906: 1903: 1902: 1885: 1879: 1878: 1877: 1875: 1872: 1871: 1851: 1850: 1841: 1840: 1829: 1811: 1810: 1795: 1794: 1786: 1783: 1782: 1765: 1764: 1762: 1759: 1758: 1736: 1735: 1723: 1722: 1708: 1707: 1693: 1692: 1690: 1687: 1686: 1663: 1662: 1660: 1657: 1656: 1640: 1637: 1636: 1616: 1612: 1603: 1599: 1584: 1580: 1571: 1567: 1555: 1549: 1548: 1547: 1545: 1542: 1541: 1507: 1499: 1496: 1495: 1475: 1471: 1456: 1452: 1438: 1435: 1434: 1418: 1415: 1414: 1394: 1390: 1375: 1371: 1360: 1357: 1356: 1339: 1334: 1329: 1314: 1313: 1311: 1308: 1307: 1291: 1288: 1287: 1284: 1276: 1233: 1228: 1227: 1225: 1222: 1221: 1200: 1195: 1194: 1192: 1189: 1188: 1171: 1166: 1165: 1163: 1160: 1159: 1108: 1104: 1099: 1096: 1095: 1023:field extension 949:rational points 923:with values in 866:terminal object 702:Schemes form a 700: 690:, meaning Spec( 675: 670: 669: 668: 636: 600: 587: 574: 565: 527: 500: 452: 444:André Martineau 367:metric topology 288:polynomial ring 254:complex numbers 230: 127:coordinate ring 54:(the equations 34:, specifically 28: 23: 22: 15: 12: 11: 5: 11386: 11376: 11375: 11361: 11360: 11350: 11340: 11332: 11331:External links 11329: 11327: 11326: 11288: 11274: 11266:10.1007/b62130 11254:Mumford, David 11250: 11236: 11219: 11206:978-3642380099 11205: 11192: 11178: 11160: 11118: 11104: 11078: 11065: 11045: 11026:(4): 389–408, 11010: 10967: 10965: 10962: 10959: 10958: 10946: 10930: 10928:, Chapter III. 10918: 10914:Dieudonné 1985 10906: 10894: 10882: 10870: 10858: 10841: 10829: 10817: 10801: 10789: 10777: 10773:Dieudonné 1985 10765: 10753: 10736: 10732:Dieudonné 1985 10721: 10717:Dieudonné 1985 10709: 10705:Dieudonné 1985 10697: 10683: 10682: 10680: 10677: 10676: 10675: 10673:Gluing schemes 10670: 10665: 10648: 10635: 10630: 10625: 10623:Étale morphism 10602: 10599: 10591:tensor product 10536:quotient stack 10487:étale topology 10481: 10478: 10438:tangent bundle 10430:vector bundles 10412: 10402:coherent sheaf 10391: 10351: 10344:determines an 10331: 10311: 10295:vector bundles 10285:Coherent sheaf 10283:Main article: 10280: 10277: 10276: 10275: 10266: 10227: 10226:-vector space. 10215: 10195: 10192: 10189: 10186: 10183: 10180: 10152: 10146: 10141: 10137: 10133: 10128: 10125: 10122: 10119: 10113: 10107: 10104: 10100: 10095: 10091: 10087: 10082: 10079: 10076: 10073: 10070: 10067: 10040: 10037: 10034: 10031: 10028: 10025: 10022: 10019: 10016: 10013: 10010: 10007: 9987: 9984: 9981: 9978: 9975: 9972: 9969: 9966: 9963: 9960: 9957: 9933: 9930: 9926: 9921: 9917: 9913: 9910: 9907: 9904: 9901: 9896: 9892: 9888: 9885: 9882: 9879: 9876: 9856: 9853: 9850: 9845: 9841: 9837: 9834: 9812: 9808: 9804: 9801: 9781: 9778: 9775: 9772: 9748: 9745: 9742: 9739: 9736: 9733: 9713: 9691: 9686: 9681: 9664: 9661:infinitesimals 9599: 9585: 9584: 9548: 9544: 9539: 9536: 9533: 9530: 9527: 9524: 9521: 9518: 9515: 9512: 9509: 9504: 9500: 9497: 9494: 9490: 9486: 9483: 9480: 9477: 9473: 9448: 9445: 9442: 9439: 9435: 9431: 9428: 9425: 9421: 9416: 9413: 9410: 9407: 9404: 9401: 9398: 9395: 9392: 9389: 9386: 9381: 9377: 9374: 9371: 9367: 9363: 9360: 9332: 9317: 9291: 9271: 9252: 9246:Generic point. 9243: 9227: 9069: 9066: 9059: 9058: 9038: 9036: 9025: 9022: 9021: 9020: 8988: 8983: 8980: 8977: 8973: 8943: 8939: 8934: 8929: 8926: 8923: 8919: 8914: 8910: 8907: 8892: 8891:is not affine. 8864: 8861: 8858: 8855: 8835: 8830: 8826: 8822: 8819: 8816: 8811: 8807: 8803: 8799: 8795: 8792: 8787: 8782: 8777: 8774: 8752: 8747: 8742: 8739: 8736: 8733: 8703: 8698: 8668: 8663: 8660: 8656: 8652: 8649: 8646: 8642: 8636: 8633: 8630: 8627: 8597: 8576: 8573: 8570: 8567: 8562: 8557: 8552: 8549: 8538: 8529:(over a field 8523: 8516:elliptic curve 8501: 8495: 8489: 8453: 8450: 8447: 8444: 8440: 8436: 8431: 8427: 8423: 8420: 8417: 8412: 8408: 8404: 8401: 8398: 8395: 8365: 8360: 8355: 8322: 8308: 8303: 8279: 8274: 8268: 8234: 8229: 8224: 8188: 8183: 8178: 8152: 8149: 8136: 8133: 8130: 8108: 8104: 8100: 8097: 8074: 8071: 8068: 8063: 8059: 8055: 8050: 8046: 8042: 8037: 8034: 8031: 8028: 8025: 8021: 8014: 8011: 8008: 8005: 7985: 7965: 7962: 7948: 7945: 7940: 7936: 7932: 7929: 7924: 7920: 7916: 7913: 7910: 7907: 7904: 7901: 7898: 7893: 7889: 7883: 7879: 7875: 7872: 7867: 7863: 7859: 7856: 7853: 7848: 7844: 7832:elliptic curve 7819: 7816: 7813: 7810: 7807: 7802: 7798: 7794: 7791: 7786: 7782: 7778: 7773: 7769: 7765: 7762: 7759: 7756: 7753: 7750: 7747: 7725: 7720: 7698: 7693: 7688: 7683: 7680: 7677: 7672: 7668: 7664: 7661: 7658: 7654: 7650: 7647: 7642: 7638: 7612: 7608: 7605: 7585: 7582: 7579: 7576: 7572: 7568: 7565: 7562: 7559: 7556: 7552: 7548: 7545: 7542: 7539: 7536: 7516: 7513: 7510: 7507: 7504: 7500: 7496: 7493: 7481: 7478: 7441: 7416: 7410: 7406: 7382: 7379: 7376: 7373: 7353: 7333: 7330: 7327: 7324: 7321: 7318: 7315: 7295: 7292: 7289: 7286: 7283: 7280: 7260: 7257: 7254: 7251: 7231: 7226: 7221: 7218: 7198: 7195: 7192: 7188: 7184: 7181: 7178: 7175: 7172: 7152: 7149: 7146: 7141: 7136: 7131: 7128: 7125: 7122: 7119: 7116: 7113: 7108: 7103: 7100: 7078: 7069: 7066: 7063: 7056: 7053: 7050: 7045: 7040: 7037: 7017: 6997: 6994: 6991: 6987: 6983: 6980: 6977: 6974: 6971: 6951: 6948: 6945: 6942: 6939: 6936: 6933: 6911: 6907: 6886: 6883: 6880: 6877: 6857: 6854: 6851: 6829: 6824: 6802: 6799: 6796: 6791: 6786: 6781: 6778: 6775: 6772: 6769: 6766: 6763: 6759: 6755: 6752: 6749: 6744: 6739: 6734: 6729: 6723: 6719: 6716: 6713: 6709: 6705: 6702: 6697: 6692: 6689: 6669: 6666: 6663: 6660: 6657: 6654: 6651: 6648: 6645: 6640: 6615: 6612: 6609: 6604: 6600: 6596: 6593: 6573: 6570: 6567: 6562: 6558: 6554: 6551: 6548: 6545: 6519: 6514: 6490: 6487: 6482: 6479: 6476: 6456: 6453: 6450: 6445: 6441: 6437: 6434: 6431: 6428: 6423: 6412:, we get that 6401: 6398: 6395: 6375: 6370: 6366: 6362: 6359: 6356: 6353: 6350: 6347: 6344: 6341: 6338: 6335: 6332: 6327: 6323: 6319: 6316: 6313: 6293: 6279: 6276: 6273: 6249: 6246: 6243: 6223: 6220: 6217: 6214: 6211: 6208: 6205: 6202: 6199: 6196: 6193: 6190: 6187: 6184: 6181: 6178: 6175: 6172: 6169: 6164: 6160: 6156: 6153: 6150: 6130: 6116: 6113: 6110: 6107: 6087: 6084: 6081: 6061: 6039: 6036: 6031: 6028: 6025: 6005: 6002: 5997: 5993: 5972: 5952: 5949: 5946: 5941: 5937: 5933: 5930: 5907: 5887: 5867: 5864: 5861: 5858: 5838: 5834: 5830: 5827: 5824: 5804: 5801: 5798: 5795: 5792: 5789: 5786: 5766: 5763: 5760: 5757: 5754: 5751: 5746: 5724: 5721: 5718: 5715: 5712: 5709: 5689: 5686: 5683: 5663: 5643: 5623: 5620: 5617: 5614: 5594: 5591: 5588: 5585: 5582: 5579: 5576: 5573: 5570: 5565: 5543: 5540: 5537: 5534: 5529: 5507: 5504: 5501: 5498: 5478: 5448: 5428: 5408: 5388: 5368: 5365: 5362: 5359: 5339: 5319: 5316: 5313: 5310: 5307: 5304: 5301: 5298: 5295: 5290: 5268: 5265: 5262: 5258: 5254: 5249: 5227: 5224: 5221: 5218: 5214: 5210: 5207: 5204: 5201: 5198: 5178: 5175: 5172: 5168: 5147: 5143: 5139: 5136: 5122: 5119: 5116: 5111: 5105: 5099: 5085: 5082: 5069: 5064: 5060: 5056: 5053: 5050: 5047: 5044: 5039: 5035: 5014: 4988: 4984: 4978: 4974: 4970: 4965: 4961: 4939: 4918: 4915: 4912: 4909: 4906: 4901: 4897: 4893: 4890: 4887: 4882: 4878: 4874: 4854: 4832: 4826: 4801: 4797: 4793: 4790: 4787: 4782: 4778: 4757: 4733: 4730: 4725: 4721: 4715: 4711: 4707: 4704: 4701: 4696: 4692: 4686: 4682: 4659: 4655: 4651: 4648: 4645: 4640: 4636: 4613: 4609: 4605: 4602: 4599: 4594: 4590: 4578:Bezout's lemma 4560: 4554: 4531: 4527: 4523: 4502: 4498: 4495: 4491: 4487: 4484: 4481: 4478: 4475: 4470: 4464: 4458: 4455: 4435: 4415: 4395: 4392: 4389: 4367: 4361: 4333: 4328: 4323: 4320: 4315: 4309: 4303: 4300: 4280: 4260: 4238: 4232: 4209: 4188: 4184: 4181: 4178: 4175: 4171: 4166: 4145: 4142: 4139: 4134: 4128: 4122: 4119: 4099: 4085: 4082: 4079: 4074: 4068: 4062: 4059: 4036: 4010: 4005: 4000: 3997: 3994: 3991: 3987: 3982: 3978: 3975: 3970: 3964: 3958: 3955: 3933: 3927: 3904: 3883: 3879: 3876: 3853: 3848: 3845: 3840: 3836: 3832: 3829: 3826: 3821: 3818: 3813: 3809: 3805: 3801: 3797: 3794: 3791: 3788: 3783: 3777: 3754: 3747: 3743: 3736: 3730: 3727: 3724: 3717: 3713: 3706: 3700: 3697: 3694: 3691: 3688: 3668: 3665: 3662: 3659: 3653: 3649: 3645: 3642: 3623: 3619: 3615: 3609: 3606: 3603: 3598: 3595: 3591: 3587: 3583: 3579: 3576: 3571: 3567: 3563: 3558: 3552: 3529: 3524: 3518: 3512: 3509: 3506: 3503: 3498: 3494: 3472: 3468: 3465: 3431: 3428: 3425: 3422: 3417: 3411: 3387: 3383: 3380: 3360: 3357: 3354: 3351: 3346: 3340: 3317: 3313: 3309: 3306: 3303: 3300: 3297: 3276: 3263: 3260: 3247: 3244: 3241: 3238: 3235: 3232: 3227: 3223: 3219: 3214: 3210: 3206: 3202: 3198: 3195: 3192: 3189: 3186: 3183: 3180: 3177: 3174: 3171: 3149: 3144: 3139: 3113: 3110: 3107: 3104: 3101: 3096: 3092: 3088: 3083: 3079: 3058: 3038: 3035: 3032: 3029: 3025: 3021: 3018: 3015: 3012: 3009: 3006: 3003: 3000: 2997: 2977: 2974: 2971: 2968: 2965: 2940: 2935: 2930: 2925: 2922: 2919: 2916: 2910: 2907: 2880: 2875: 2871: 2867: 2864: 2861: 2856: 2852: 2848: 2845: 2842: 2839: 2816: 2813: 2810: 2807: 2787: 2782: 2776: 2770: 2767: 2745: 2741: 2737: 2732: 2728: 2707: 2704: 2699: 2693: 2686: 2682: 2679: 2676: 2671: 2665: 2659: 2656: 2631: 2625: 2600: 2594: 2590: 2587: 2584: 2564: 2544: 2539: 2534: 2531: 2505: 2499: 2495: 2473: 2451: 2428: 2425: 2402: 2399: 2396: 2391: 2387: 2383: 2380: 2377: 2372: 2368: 2364: 2361: 2358: 2355: 2332: 2310: 2304: 2277: 2272: 2269: 2264: 2259: 2256: 2250: 2247: 2244: 2241: 2216: 2212: 2208: 2202: 2199: 2196: 2191: 2188: 2184: 2180: 2177: 2174: 2171: 2166: 2162: 2158: 2153: 2147: 2121: 2118: 2115: 2092: 2087: 2082: 2079: 2059: 2056: 2051: 2046: 2043: 2040: 2037: 2034: 2031: 2028: 2025: 2022: 2017: 2013: 1989: 1964: 1958: 1952: 1947: 1922: 1919: 1913: 1910: 1888: 1882: 1859: 1854: 1849: 1844: 1822: 1819: 1814: 1809: 1806: 1803: 1798: 1793: 1790: 1768: 1743: 1740: 1734: 1731: 1726: 1721: 1715: 1712: 1706: 1700: 1697: 1674: 1671: 1666: 1644: 1624: 1619: 1615: 1611: 1606: 1602: 1598: 1595: 1592: 1587: 1583: 1579: 1574: 1570: 1566: 1563: 1558: 1552: 1529: 1526: 1523: 1519: 1516: 1513: 1510: 1506: 1503: 1483: 1478: 1474: 1470: 1467: 1464: 1459: 1455: 1451: 1448: 1445: 1442: 1422: 1402: 1397: 1393: 1389: 1386: 1383: 1378: 1374: 1370: 1367: 1364: 1342: 1337: 1332: 1327: 1321: 1318: 1295: 1283: 1280: 1275: 1272: 1242: 1239: 1236: 1231: 1203: 1198: 1174: 1169: 1116: 1111: 1107: 1103: 903:). One writes 854:initial object 699: 696: 671: 662:natural number 632: 596: 583: 570: 561: 526: 523: 496: 451: 448: 440:Pierre Cartier 418:In the 1950s, 401:Italian school 319:Wolfgang Krull 284:maximal ideals 262:characteristic 229: 226: 174:maximal ideals 139:generic points 100:Pierre Deligne 94:, such as the 66:(for example, 52:multiplicities 26: 9: 6: 4: 3: 2: 11385: 11374: 11373:Scheme theory 11371: 11370: 11368: 11358: 11354: 11351: 11348: 11347: 11341: 11339: 11335: 11334: 11324: 11320: 11316: 11312: 11307: 11302: 11298: 11294: 11289: 11285: 11281: 11277: 11271: 11267: 11263: 11259: 11255: 11251: 11247: 11243: 11239: 11233: 11229: 11225: 11220: 11216: 11212: 11208: 11202: 11198: 11193: 11189: 11185: 11181: 11175: 11171: 11170: 11165: 11161: 11157: 11153: 11149: 11145: 11141: 11137: 11136: 11131: 11127: 11123: 11119: 11115: 11111: 11107: 11101: 11097: 11093: 11092: 11087: 11083: 11079: 11076: 11072: 11068: 11062: 11059:, Wadsworth, 11057: 11056: 11050: 11046: 11043: 11039: 11034: 11029: 11025: 11021: 11020: 11015: 11011: 11008: 11004: 10999: 10994: 10989: 10984: 10980: 10976: 10975: 10969: 10968: 10955: 10950: 10942: 10941: 10934: 10927: 10922: 10915: 10910: 10903: 10898: 10891: 10886: 10879: 10874: 10867: 10862: 10855:. p. 20. 10851: 10845: 10838: 10833: 10826: 10821: 10813: 10812: 10805: 10799:, Chapter II. 10798: 10793: 10786: 10781: 10774: 10769: 10762: 10757: 10749: 10748: 10740: 10733: 10728: 10726: 10718: 10713: 10706: 10701: 10694: 10688: 10684: 10674: 10671: 10669: 10666: 10664: 10660: 10656: 10652: 10649: 10647: 10643: 10639: 10636: 10634: 10631: 10629: 10626: 10624: 10620: 10616: 10612: 10608: 10607:Flat morphism 10605: 10604: 10598: 10596: 10592: 10588: 10584: 10580: 10576: 10571: 10569: 10565: 10561: 10557: 10553: 10548: 10546: 10542: 10538: 10537: 10533:determines a 10532: 10528: 10524: 10520: 10516: 10515: 10510: 10505: 10503: 10498: 10497: 10492: 10491:Michael Artin 10488: 10477: 10475: 10471: 10467: 10463: 10459: 10455: 10451: 10447: 10443: 10439: 10435: 10431: 10426: 10424: 10420: 10415: 10411: 10408:, say) is an 10407: 10403: 10400:. Finally, a 10399: 10394: 10390: 10386: 10382: 10381: 10376: 10372: 10365: 10354: 10350: 10347: 10343: 10339: 10334: 10330: 10326: 10322: 10318: 10317: 10314: 10310: 10304: 10300: 10296: 10292: 10286: 10273: 10269: 10264: 10263:tangent space 10260: 10256: 10252: 10248: 10244: 10240: 10236: 10232: 10228: 10213: 10190: 10187: 10184: 10178: 10170: 10166: 10150: 10139: 10135: 10123: 10117: 10111: 10102: 10098: 10093: 10089: 10077: 10074: 10071: 10065: 10054: 10035: 10032: 10029: 10023: 10020: 10014: 10011: 10008: 9982: 9979: 9976: 9970: 9964: 9961: 9958: 9947: 9928: 9924: 9919: 9915: 9908: 9902: 9899: 9894: 9890: 9883: 9877: 9851: 9848: 9843: 9839: 9832: 9810: 9806: 9802: 9799: 9776: 9770: 9762: 9743: 9740: 9737: 9731: 9711: 9704:over a field 9689: 9684: 9669: 9665: 9662: 9658: 9654: 9653: 9648: 9647: 9641: 9637: 9633: 9629: 9625: 9621: 9617: 9613: 9609: 9602: 9594: 9590: 9587: 9586: 9582: 9578: 9574: 9570: 9566: 9562: 9546: 9542: 9534: 9531: 9528: 9519: 9516: 9513: 9507: 9502: 9495: 9484: 9478: 9462: 9446: 9440: 9429: 9426: 9419: 9411: 9408: 9405: 9396: 9393: 9390: 9384: 9379: 9372: 9361: 9358: 9350: 9346: 9342: 9335: 9327: 9320: 9312: 9308: 9304: 9300: 9296: 9292: 9289: 9285: 9281: 9274: 9266: 9262: 9255: 9247: 9244: 9241: 9237: 9230: 9222: 9218: 9214: 9210: 9206: 9202: 9199:over a field 9198: 9194: 9190: 9186: 9182: 9178: 9175:) empty, but 9174: 9170: 9166: 9162: 9158: 9154: 9150: 9146: 9142: 9138: 9134: 9130: 9126: 9122: 9118: 9114: 9110: 9106: 9102: 9098: 9094: 9090: 9086: 9082: 9078: 9075: 9074: 9073: 9065: 9055: 9046: 9042: 9039:This section 9037: 9034: 9030: 9029: 9018: 9014: 9013:quasi-compact 9010: 9006: 9002: 8986: 8981: 8978: 8975: 8971: 8962: 8958: 8941: 8937: 8927: 8924: 8921: 8917: 8912: 8908: 8905: 8897: 8893: 8890: 8886: 8882: 8878: 8859: 8853: 8828: 8824: 8820: 8817: 8814: 8809: 8805: 8793: 8785: 8772: 8750: 8737: 8734: 8731: 8723: 8719: 8701: 8686: 8682: 8661: 8658: 8654: 8650: 8647: 8616: 8612: 8571: 8565: 8560: 8550: 8547: 8539: 8536: 8532: 8528: 8524: 8521: 8517: 8499: 8476: 8472: 8468: 8451: 8445: 8438: 8429: 8425: 8421: 8418: 8415: 8410: 8406: 8399: 8396: 8393: 8385: 8381: 8363: 8358: 8341: 8335: 8330: 8327: 8323: 8306: 8277: 8258: 8254: 8250: 8232: 8227: 8212: 8208: 8204: 8186: 8181: 8167: 8163: 8159: 8155: 8154: 8148: 8134: 8131: 8128: 8106: 8102: 8098: 8095: 8069: 8066: 8061: 8057: 8053: 8048: 8044: 8032: 8029: 8026: 8012: 8009: 8006: 8003: 7983: 7963: 7960: 7946: 7943: 7938: 7934: 7930: 7927: 7922: 7918: 7914: 7911: 7908: 7905: 7902: 7899: 7896: 7891: 7887: 7881: 7877: 7873: 7870: 7865: 7861: 7857: 7854: 7851: 7846: 7833: 7817: 7814: 7811: 7808: 7805: 7800: 7796: 7792: 7789: 7784: 7780: 7776: 7771: 7767: 7763: 7757: 7754: 7751: 7745: 7723: 7691: 7678: 7675: 7659: 7656: 7652: 7648: 7645: 7640: 7636: 7628:. The fibers 7627: 7606: 7603: 7577: 7570: 7563: 7560: 7557: 7543: 7540: 7537: 7534: 7511: 7508: 7505: 7494: 7491: 7477: 7475: 7471: 7467: 7463: 7459: 7455: 7439: 7430: 7414: 7377: 7371: 7351: 7325: 7319: 7313: 7293: 7290: 7284: 7278: 7255: 7249: 7216: 7193: 7182: 7176: 7170: 7163:. Again each 7147: 7139: 7129: 7123: 7117: 7114: 7098: 7054: 7051: 7035: 7015: 6992: 6981: 6975: 6969: 6946: 6940: 6937: 6934: 6931: 6909: 6905: 6881: 6875: 6855: 6852: 6849: 6827: 6797: 6789: 6779: 6770: 6764: 6757: 6750: 6742: 6732: 6721: 6714: 6703: 6687: 6661: 6655: 6652: 6649: 6643: 6627: 6610: 6607: 6602: 6598: 6591: 6568: 6565: 6560: 6556: 6552: 6549: 6543: 6535: 6517: 6488: 6485: 6480: 6477: 6474: 6451: 6448: 6443: 6439: 6435: 6432: 6426: 6399: 6396: 6393: 6368: 6360: 6357: 6354: 6348: 6345: 6339: 6333: 6330: 6325: 6321: 6317: 6314: 6291: 6277: 6274: 6271: 6264:double-point 6263: 6260:, we get one 6247: 6244: 6241: 6218: 6215: 6212: 6209: 6206: 6200: 6194: 6191: 6188: 6185: 6182: 6176: 6170: 6167: 6162: 6158: 6154: 6151: 6128: 6114: 6111: 6108: 6105: 6085: 6082: 6079: 6059: 6037: 6034: 6029: 6026: 6023: 6003: 6000: 5995: 5991: 5970: 5947: 5944: 5939: 5935: 5928: 5919: 5905: 5898:which divide 5885: 5862: 5856: 5836: 5832: 5828: 5825: 5822: 5799: 5796: 5793: 5790: 5784: 5761: 5758: 5755: 5749: 5719: 5716: 5713: 5707: 5687: 5684: 5681: 5661: 5641: 5618: 5612: 5586: 5580: 5577: 5574: 5568: 5538: 5532: 5502: 5496: 5476: 5464: 5460: 5446: 5426: 5406: 5386: 5363: 5357: 5337: 5311: 5305: 5302: 5299: 5293: 5263: 5252: 5219: 5205: 5202: 5199: 5196: 5173: 5137: 5134: 5120: 5114: 5109: 5081: 5062: 5058: 5051: 5048: 5045: 5042: 5037: 5033: 5012: 5004: 4986: 4982: 4976: 4972: 4968: 4963: 4959: 4913: 4907: 4899: 4895: 4891: 4888: 4885: 4880: 4876: 4852: 4830: 4799: 4795: 4791: 4788: 4785: 4780: 4776: 4755: 4747: 4731: 4728: 4723: 4719: 4713: 4709: 4705: 4702: 4699: 4694: 4690: 4684: 4680: 4657: 4653: 4649: 4646: 4643: 4638: 4634: 4611: 4607: 4603: 4600: 4597: 4592: 4588: 4579: 4574: 4558: 4529: 4525: 4521: 4514:. A fraction 4496: 4482: 4479: 4476: 4468: 4453: 4433: 4413: 4393: 4390: 4387: 4365: 4347: 4331: 4321: 4313: 4298: 4278: 4258: 4236: 4207: 4182: 4176: 4169: 4143: 4140: 4132: 4117: 4097: 4083: 4080: 4072: 4057: 4049: 4034: 4026: 4008: 3998: 3992: 3985: 3976: 3968: 3953: 3931: 3902: 3877: 3874: 3865: 3846: 3843: 3838: 3834: 3830: 3827: 3824: 3819: 3816: 3811: 3807: 3795: 3789: 3781: 3745: 3741: 3728: 3725: 3722: 3715: 3711: 3695: 3692: 3689: 3686: 3663: 3660: 3657: 3651: 3643: 3640: 3621: 3617: 3613: 3604: 3596: 3593: 3589: 3577: 3569: 3565: 3556: 3522: 3507: 3504: 3501: 3496: 3492: 3466: 3463: 3451: 3447: 3445: 3426: 3420: 3415: 3381: 3378: 3355: 3349: 3344: 3304: 3301: 3298: 3295: 3259: 3239: 3236: 3233: 3225: 3221: 3217: 3212: 3208: 3200: 3193: 3190: 3187: 3181: 3178: 3175: 3172: 3169: 3147: 3142: 3127: 3108: 3105: 3102: 3094: 3090: 3086: 3081: 3077: 3056: 3030: 3023: 3019: 3013: 3010: 3007: 3001: 2995: 2975: 2972: 2966: 2956: 2938: 2933: 2923: 2917: 2905: 2894: 2873: 2869: 2865: 2862: 2859: 2854: 2850: 2843: 2840: 2837: 2828: 2811: 2805: 2780: 2765: 2743: 2739: 2730: 2726: 2705: 2702: 2697: 2684: 2680: 2677: 2669: 2654: 2647: 2646:residue field 2629: 2592: 2588: 2582: 2562: 2529: 2521: 2497: 2493: 2449: 2423: 2400: 2397: 2389: 2385: 2381: 2378: 2375: 2370: 2366: 2359: 2356: 2353: 2344: 2330: 2308: 2289: 2270: 2267: 2257: 2254: 2248: 2245: 2242: 2239: 2214: 2210: 2206: 2197: 2189: 2186: 2182: 2175: 2172: 2164: 2160: 2151: 2133: 2119: 2116: 2113: 2103: 2080: 2077: 2057: 2054: 2041: 2035: 2029: 2026: 2023: 2020: 2015: 2011: 2001: 1987: 1978: 1962: 1950: 1917: 1911: 1908: 1886: 1847: 1820: 1817: 1804: 1788: 1738: 1732: 1710: 1704: 1695: 1672: 1669: 1642: 1617: 1613: 1609: 1604: 1600: 1596: 1593: 1590: 1585: 1581: 1577: 1572: 1568: 1561: 1556: 1524: 1504: 1501: 1476: 1472: 1468: 1465: 1462: 1457: 1453: 1446: 1443: 1440: 1420: 1395: 1391: 1387: 1384: 1381: 1376: 1372: 1365: 1362: 1340: 1335: 1325: 1316: 1293: 1279: 1271: 1269: 1265: 1260: 1258: 1240: 1237: 1234: 1219: 1201: 1172: 1157: 1153: 1149: 1146: 1142: 1138: 1134: 1130: 1114: 1109: 1105: 1101: 1094: 1090: 1086: 1082: 1078: 1073: 1071: 1067: 1063: 1059: 1055: 1051: 1047: 1043: 1039: 1035: 1031: 1027: 1024: 1020: 1016: 1012: 1008: 1004: 1001:. One writes 1000: 996: 992: 988: 984: 980: 976: 973: 969: 965: 961: 956: 954: 950: 946: 942: 938: 934: 930: 926: 922: 918: 914: 910: 906: 902: 898: 894: 890: 886: 882: 878: 874: 871:For a scheme 869: 867: 863: 859: 855: 851: 846: 844: 840: 836: 832: 828: 824: 820: 816: 812: 808: 804: 800: 796: 791: 789: 785: 781: 777: 773: 769: 765: 760: 758: 754: 750: 746: 743: 739: 735: 731: 727: 723: 720: 717: 713: 709: 705: 695: 693: 689: 685: 681: 674: 666: 663: 659: 656:over a field 655: 653: 646: 644: 640: 635: 631: 627: 623: 619: 614: 612: 608: 605:) called the 604: 599: 595: 591: 586: 582: 578: 573: 569: 564: 560: 556: 552: 548: 544: 540: 536: 532: 531:affine scheme 522: 519: 514: 512: 508: 504: 499: 495: 491: 487: 483: 479: 475: 472: 468: 465: 461: 457: 447: 445: 441: 437: 433: 429: 425: 421: 416: 414: 410: 406: 405:generic point 402: 397: 395: 391: 387: 383: 379: 375: 370: 368: 364: 360: 356: 355:Oscar Zariski 352: 348: 344: 340: 336: 331: 329: 325: 320: 316: 312: 308: 304: 300: 296: 292: 289: 285: 281: 277: 273: 271: 267: 263: 259: 255: 251: 247: 243: 239: 235: 225: 223: 218: 216: 212: 208: 204: 201: 200:over the base 198: 194: 190: 186: 181: 179: 175: 171: 167: 162: 160: 156: 152: 148: 144: 140: 136: 132: 128: 123: 121: 117: 116:number theory 113: 109: 105: 101: 97: 93: 89: 88: 83: 79: 78:Scheme theory 75: 73: 69: 68:Fermat curves 65: 61: 57: 53: 49: 45: 41: 37: 33: 19: 11345: 11306:math/0412512 11292: 11257: 11223: 11196: 11168: 11139: 11133: 11090: 11054: 11023: 11017: 10978: 10972: 10954:Vistoli 2005 10949: 10939: 10933: 10921: 10909: 10897: 10892:, section 1. 10890:Arapura 2011 10885: 10873: 10861: 10844: 10832: 10820: 10810: 10804: 10797:Mumford 1999 10792: 10780: 10768: 10761:Cartier 2001 10756: 10746: 10739: 10712: 10700: 10687: 10651:Group scheme 10646:Hodge theory 10628:Stable curve 10597:on modules. 10572: 10558:(similar to 10549: 10544: 10534: 10530: 10526: 10512: 10506: 10494: 10483: 10468:. Moreover, 10465: 10461: 10458:direct image 10453: 10449: 10445: 10441: 10434:free modules 10429: 10427: 10422: 10413: 10409: 10405: 10401: 10397: 10392: 10388: 10384: 10383:on a scheme 10378: 10374: 10370: 10363: 10352: 10348: 10341: 10337: 10332: 10328: 10323:that form a 10320: 10312: 10308: 10306: 10298: 10288: 10271: 10267: 10258: 10254: 10250: 10246: 10242: 10238: 10234: 10052: 9760: 9650: 9643: 9639: 9631: 9627: 9623: 9619: 9615: 9611: 9607: 9600: 9592: 9588: 9573:Galois group 9348: 9344: 9340: 9333: 9318: 9310: 9306: 9302: 9298: 9294: 9283: 9279: 9272: 9264: 9260: 9253: 9245: 9239: 9235: 9228: 9220: 9216: 9212: 9208: 9204: 9200: 9196: 9192: 9188: 9184: 9180: 9176: 9172: 9168: 9164: 9160: 9156: 9152: 9148: 9144: 9140: 9136: 9132: 9128: 9124: 9120: 9116: 9112: 9108: 9104: 9100: 9096: 9092: 9088: 9084: 9080: 9076: 9071: 9062: 9049: 9045:adding to it 9040: 9000: 8961:ultrafilters 8895: 8888: 8884: 8880: 8876: 8717: 8684: 8680: 8614: 8610: 8534: 8530: 8526: 8474: 8470: 8466: 8339: 8333: 8328: 8252: 8210: 8209:-space over 8206: 8202: 8165: 8161: 8157: 7483: 7431: 7028:with values 6628: 6534:Galois group 5920: 5468: 5087: 4575: 4348: 4047: 4025:finite field 3866: 3455: 3265: 2893:hypersurface 2829: 2645: 2522:. We define 2520:residue ring 2519: 2345: 2291: 2135: 2105: 2003: 1979: 1285: 1282:Affine space 1277: 1263: 1261: 1256: 1217: 1155: 1151: 1147: 1144: 1140: 1136: 1132: 1128: 1088: 1084: 1080: 1074: 1065: 1061: 1057: 1049: 1045: 1041: 1037: 1033: 1029: 1025: 1018: 1014: 1010: 1006: 1002: 998: 994: 990: 986: 982: 978: 974: 967: 963: 959: 957: 952: 944: 940: 936: 932: 928: 924: 920: 916: 912: 908: 904: 900: 896: 888: 884: 880: 876: 872: 870: 861: 849: 847: 842: 838: 834: 830: 826: 822: 818: 814: 810: 806: 802: 798: 794: 792: 787: 775: 771: 767: 763: 761: 756: 752: 748: 744: 741: 737: 733: 729: 725: 721: 718: 715: 711: 701: 691: 687: 683: 679: 672: 664: 657: 651: 649: 647: 642: 638: 633: 629: 617: 615: 610: 606: 602: 597: 593: 589: 584: 580: 576: 571: 567: 562: 558: 554: 550: 546: 542: 530: 528: 517: 515: 510: 506: 502: 497: 493: 489: 481: 478:prime ideals 473: 466: 459: 455: 453: 435: 417: 412: 408: 398: 373: 371: 334: 332: 315:Emmy Noether 310: 307:prime ideals 302: 298: 294: 290: 279: 274: 266:number rings 238:real numbers 231: 219: 215:moduli space 210: 202: 199: 196: 192: 188: 182: 170:prime ideals 163: 147:ringed space 124: 85: 77: 76: 59: 55: 39: 29: 11357:Terence Tao 11086:Harris, Joe 10747:Les schémas 10595:Hom functor 10493:defined an 9825:, which is 9606:defined by 9234:defined by 8378:, called a 7432:The scheme 4110:, and also 2895:subvariety 1980:The scheme 1013:-points of 931:is a field 915:-points of 793:A morphism 784:finite type 714:, a scheme 228:Development 32:mathematics 10964:References 10763:, note 29. 10642:Chow group 10346:associated 9946:transverse 9646:derivative 9644:and first 9052:March 2024 8679:. To show 7474:valuations 7091:, that is 6924:elements, 5878:for those 3124:defines a 2758:, so that 2644:gives the 782:scheme of 525:Definition 351:André Weil 328:Noetherian 305:, and the 234:polynomial 11166:(1997) . 10988:0806.1033 10679:Citations 10560:orbifolds 10387:means an 10112:≅ 10021:⊂ 9900:− 9849:− 9636:nilpotent 9612:fat point 9532:− 9517:− 9485:⊂ 9430:⁡ 9424:→ 9409:− 9394:− 9362:⁡ 9167:= −1 has 8979:≠ 8972:∏ 8933:∞ 8918:∏ 8909:⁡ 8818:… 8741:→ 8659:− 8566:∖ 8518:over the 8419:… 8397:⁡ 8096:− 8067:− 8054:− 8013:⁡ 7928:− 7912:− 7855:− 7843:Δ 7777:− 7679:⁡ 7660:⁡ 7653:× 7607:⁡ 7544:⁡ 7495:∈ 7409:¯ 7183:∈ 7148:α 7130:∈ 7124:α 6982:∈ 6941:⁡ 6856:α 6798:α 6780:≅ 6486:− 6481:± 6386:. And at 6358:− 6201:∩ 6192:− 6112:± 6035:− 6030:± 6016:, namely 5797:− 5759:− 5717:− 5253:⊂ 5206:⁡ 5138:∈ 5049:∖ 4960:ρ 4889:… 4789:… 4703:⋯ 4647:… 4601:… 4483:⁡ 4322:∈ 3878:∈ 3867:A number 3844:− 3839:ℓ 3828:… 3817:− 3746:ℓ 3726:… 3696:∖ 3661:≥ 3644:∈ 3594:− 3508:∖ 3467:∈ 3382:∈ 3305:⁡ 3218:− 3179:⁡ 3014:⁡ 2973:⊂ 2924:⊂ 2909:¯ 2863:… 2736:↦ 2703:≅ 2586:→ 2427:¯ 2398:∈ 2379:… 2268:≥ 2258:∈ 2243:∈ 2187:− 2117:∈ 2081:∉ 2055:∈ 2027:∖ 1951:⊂ 1921:¯ 1912:∈ 1848:⊂ 1818:∈ 1742:¯ 1733:⊂ 1714:¯ 1699:¯ 1670:⊂ 1610:− 1594:… 1578:− 1466:… 1385:… 1320:¯ 1106:× 833:) → Spec( 778:means an 622:separated 618:prescheme 442:, it was 394:Matsusaka 382:manifolds 324:dimension 44:structure 11367:Category 11256:(1999). 11128:(1960). 11088:(1998). 11051:(1985), 10601:See also 10593:and the 10456:(by the 10356:-module 10316:-modules 10171:of this 9657:calculus 9326:ramified 9278:, where 6304:, since 6262:ramified 6141:, since 5605:for all 5330:, where 1274:Examples 891:means a 704:category 660:, for a 539:spectrum 464:spectrum 166:spectrum 108:topology 72:integers 58:= 0 and 11323:2223406 11311:Bibcode 11284:1748380 11246:1917232 11215:0456457 11188:0463157 11156:0217083 11114:1730819 11075:0780183 11042:1848254 11007:3082873 10552:descent 10373:= Spec( 10245:= Spec 9652:reduced 8609:; then 8321:is not. 7452:is not 1145:product 1054:functor 1052:) is a 972:algebra 927:. When 899:→ Spec( 893:section 864:) as a 856:in the 772:variety 755:→ Spec( 650:affine 626:Mumford 343:compact 286:in the 11321:  11282:  11272:  11244:  11234:  11213:  11203:  11186:  11176:  11154:  11112:  11102:  11073:  11063:  11040:  11005:  10523:action 10325:module 10231:smooth 10169:length 9591:. Let 9461:degree 9267:)) → A 8514:is an 8249:proper 7958:  7950:  7830:is an 7454:proper 7306:; and 7072:  7058:  6289:  6281:  6126:  6118:  5132:  5124:  4095:  4087:  4023:, the 3655:  3638:  3630:  2518:, the 2252:  2237:  2234:  2226:  2223:  2075:  2072:  2064:  2061:  1838:  1835:  1827:  1824:  1268:limits 1091:, the 852:is an 848:Since 730:scheme 724:(or a 654:-space 551:scheme 436:scheme 335:affine 282:: the 40:scheme 11301:arXiv 10983:arXiv 10853:(PDF) 10509:stack 10377:). A 9211:) of 8875:. If 8716:when 8251:over 7738:. If 7464:with 6234:. At 4672:with 4291:with 2891:is a 1901:with 1255:over 1216:over 1064:over 1036:over 997:over 983:point 977:, an 885:point 879:, an 786:over 774:over 541:Spec( 533:is a 486:sheaf 469:of a 250:field 151:sheaf 149:or a 143:atlas 131:ideal 42:is a 11270:ISBN 11232:ISBN 11201:ISBN 11174:ISBN 11100:ISBN 11061:ISBN 10163:The 9659:and 9427:Spec 9359:Spec 9309:−1)( 9293:Let 8906:Spec 8894:Let 8525:The 8394:Proj 8010:Spec 7676:Spec 7657:Spec 7604:Spec 7541:Spec 7476:. 5203:Spec 4480:Frac 4346:. 3302:Spec 3176:Spec 3011:Spec 2068:with 1831:with 1286:Let 1187:and 1131:and 1083:and 1075:The 993:) → 821:) → 745:over 719:over 549:. A 426:and 392:and 390:Chow 353:and 317:and 244:and 183:The 110:and 74:). 38:, a 11262:doi 11144:doi 11028:doi 10993:doi 10444:of 10369:on 10305:of 10257:of 9634:is 9630:on 9618:is 9219:of 9143:of 9047:. 8846:to 8478:of 8342:= 0 8247:is 7954:mod 6938:deg 6868:of 6680:is 6285:mod 6122:mod 5918:. 5128:for 5080:. 4845:in 4091:mod 3634:for 3484:is 2827:. 2343:. 2230:for 1977:. 1028:of 985:of 951:of 887:of 813:*: 759:). 694:). 609:on 529:An 480:of 396:.) 297:of 252:of 122:. 30:In 11369:: 11359:). 11319:MR 11317:, 11309:, 11280:MR 11278:. 11268:. 11242:MR 11240:. 11230:. 11226:. 11211:MR 11209:. 11184:MR 11182:. 11152:MR 11150:. 11142:. 11138:. 11132:. 11124:; 11110:MR 11108:. 11098:. 11094:. 11084:; 11071:MR 11069:, 11038:MR 11036:, 11024:38 11022:, 11003:MR 11001:, 10991:, 10979:55 10977:, 10724:^ 10695:". 10661:, 10657:, 10653:, 10644:, 10640:, 10621:, 10617:, 10613:, 10609:, 10489:. 10425:. 10249:/( 10053:x- 9761:x- 9622:/( 9301:= 9238:+ 9163:+ 8473:= 8469:+ 8324:A 8164:, 8147:. 8099:27 7931:27 7900:18 7468:. 7429:. 5459:. 3864:. 3258:. 2288:. 1270:. 1259:. 1150:× 1072:. 1044:↦ 955:. 935:, 868:. 841:→ 801:→ 797:: 790:. 736:→ 518:k, 422:, 349:, 224:. 217:. 191:→ 180:. 161:. 11313:: 11303:: 11286:. 11264:: 11248:. 11217:. 11190:. 11158:. 11146:: 11140:4 11116:. 11030:: 10995:: 10985:: 10944:. 10815:. 10545:G 10531:X 10527:G 10466:X 10462:X 10454:Y 10450:X 10446:X 10442:Y 10423:X 10414:X 10410:O 10406:X 10398:X 10393:X 10389:O 10385:X 10375:R 10371:X 10364:M 10360:~ 10353:X 10349:O 10342:R 10338:M 10333:X 10329:O 10321:X 10313:X 10309:O 10299:X 10272:Y 10268:y 10265:T 10259:Y 10255:y 10251:x 10247:C 10243:X 10239:Y 10235:Y 10214:k 10194:] 10191:y 10188:, 10185:x 10182:[ 10179:k 10151:. 10145:) 10140:2 10136:x 10132:( 10127:] 10124:x 10121:[ 10118:k 10106:) 10103:y 10099:, 10094:2 10090:x 10086:( 10081:] 10078:y 10075:, 10072:x 10069:[ 10066:k 10039:] 10036:y 10033:, 10030:x 10027:[ 10024:k 10018:) 10015:y 10012:, 10009:x 10006:( 9986:) 9983:0 9980:, 9977:0 9974:( 9971:= 9968:) 9965:y 9962:, 9959:x 9956:( 9932:) 9929:y 9925:, 9920:2 9916:x 9912:( 9909:= 9906:) 9903:y 9895:2 9891:x 9887:( 9884:+ 9881:) 9878:y 9875:( 9855:) 9852:y 9844:2 9840:x 9836:( 9833:V 9811:2 9807:x 9803:= 9800:y 9780:) 9777:y 9774:( 9771:V 9747:] 9744:y 9741:, 9738:x 9735:[ 9732:k 9712:k 9690:2 9685:k 9680:A 9640:X 9632:X 9628:x 9624:x 9620:C 9616:X 9608:x 9601:C 9593:X 9547:. 9543:) 9538:) 9535:5 9529:x 9526:( 9523:) 9520:1 9514:x 9511:( 9508:x 9503:( 9499:) 9496:x 9493:( 9489:C 9482:) 9479:x 9476:( 9472:C 9447:. 9444:) 9441:x 9438:( 9434:C 9420:) 9415:) 9412:5 9406:x 9403:( 9400:) 9397:1 9391:x 9388:( 9385:x 9380:( 9376:) 9373:x 9370:( 9366:C 9349:X 9345:X 9341:x 9334:C 9319:C 9311:x 9307:x 9305:( 9303:x 9299:y 9295:X 9284:x 9282:( 9280:C 9273:C 9265:x 9263:( 9261:C 9254:C 9240:y 9236:x 9229:R 9221:k 9217:E 9213:E 9209:E 9207:( 9205:X 9201:k 9197:X 9193:C 9189:C 9187:( 9185:X 9181:C 9179:( 9177:X 9173:R 9171:( 9169:X 9165:y 9161:x 9157:X 9153:k 9151:( 9149:X 9145:k 9141:E 9137:E 9135:( 9133:X 9129:k 9127:( 9125:X 9121:k 9117:k 9115:( 9113:X 9109:k 9107:( 9105:X 9101:k 9097:k 9093:k 9091:( 9089:X 9085:k 9081:n 9054:) 9050:( 9001:n 8987:k 8982:n 8976:m 8942:) 8938:k 8928:1 8925:= 8922:n 8913:( 8896:k 8889:X 8885:f 8881:f 8877:X 8863:) 8860:X 8857:( 8854:O 8834:] 8829:n 8825:x 8821:, 8815:, 8810:1 8806:x 8802:[ 8798:C 8794:= 8791:) 8786:n 8781:A 8776:( 8773:O 8751:n 8746:A 8738:X 8735:: 8732:f 8718:n 8702:n 8697:A 8685:X 8681:X 8667:] 8662:1 8655:x 8651:, 8648:x 8645:[ 8641:C 8635:c 8632:e 8629:p 8626:S 8615:n 8611:X 8596:C 8575:} 8572:0 8569:{ 8561:n 8556:A 8551:= 8548:X 8535:k 8531:k 8522:. 8500:2 8494:Q 8488:P 8475:z 8471:y 8467:x 8452:. 8449:) 8446:f 8443:( 8439:/ 8435:] 8430:n 8426:x 8422:, 8416:, 8411:0 8407:x 8403:[ 8400:R 8364:n 8359:R 8354:P 8340:f 8334:R 8329:f 8307:n 8302:C 8278:n 8273:P 8267:C 8253:R 8233:n 8228:R 8223:P 8211:R 8207:n 8203:n 8187:n 8182:R 8177:P 8162:n 8158:R 8135:p 8132:, 8129:3 8107:2 8103:p 8073:) 8070:p 8062:3 8058:x 8049:2 8045:y 8041:( 8036:] 8033:y 8030:, 8027:x 8024:[ 8020:Z 8007:= 8004:X 7984:p 7964:, 7961:p 7947:0 7944:= 7939:2 7935:c 7923:3 7919:b 7915:4 7909:c 7906:b 7903:a 7897:+ 7892:2 7888:b 7882:2 7878:a 7874:+ 7871:c 7866:3 7862:a 7858:4 7852:= 7847:f 7818:c 7815:+ 7812:x 7809:b 7806:+ 7801:2 7797:x 7793:a 7790:+ 7785:3 7781:x 7772:2 7768:y 7764:= 7761:) 7758:y 7755:, 7752:x 7749:( 7746:f 7724:p 7719:F 7697:) 7692:p 7687:F 7682:( 7671:) 7667:Z 7663:( 7649:X 7646:= 7641:p 7637:X 7611:Z 7584:) 7581:) 7578:f 7575:( 7571:/ 7567:] 7564:y 7561:, 7558:x 7555:[ 7551:Z 7547:( 7538:= 7535:X 7515:] 7512:y 7509:, 7506:x 7503:[ 7499:Z 7492:f 7440:Y 7415:p 7405:F 7381:) 7378:x 7375:( 7372:f 7352:p 7332:) 7329:) 7326:x 7323:( 7320:f 7317:( 7314:V 7294:p 7291:= 7288:) 7285:x 7282:( 7279:r 7259:) 7256:p 7253:( 7250:V 7230:) 7225:m 7220:( 7217:r 7197:] 7194:x 7191:[ 7187:Z 7180:) 7177:x 7174:( 7171:r 7151:) 7145:( 7140:p 7135:F 7127:) 7121:( 7118:r 7115:= 7112:) 7107:m 7102:( 7099:r 7077:m 7068:d 7065:o 7062:m 7055:r 7052:= 7049:) 7044:m 7039:( 7036:r 7016:Y 6996:] 6993:x 6990:[ 6986:Z 6979:) 6976:x 6973:( 6970:r 6950:) 6947:f 6944:( 6935:= 6932:d 6910:d 6906:p 6885:) 6882:x 6879:( 6876:f 6853:= 6850:x 6828:p 6823:F 6801:) 6795:( 6790:p 6785:F 6777:) 6774:) 6771:x 6768:( 6765:f 6762:( 6758:/ 6754:] 6751:x 6748:[ 6743:p 6738:F 6733:= 6728:m 6722:/ 6718:] 6715:x 6712:[ 6708:Z 6704:= 6701:) 6696:m 6691:( 6688:k 6668:) 6665:) 6662:x 6659:( 6656:f 6653:, 6650:p 6647:( 6644:= 6639:m 6614:) 6611:1 6608:+ 6603:2 6599:x 6595:( 6592:V 6572:) 6569:1 6566:+ 6561:2 6557:x 6553:, 6550:3 6547:( 6544:V 6518:3 6513:F 6489:1 6478:= 6475:x 6455:) 6452:1 6449:+ 6444:2 6440:x 6436:, 6433:3 6430:( 6427:= 6422:m 6400:3 6397:= 6394:p 6374:) 6369:2 6365:) 6361:1 6355:x 6352:( 6349:, 6346:2 6343:( 6340:= 6337:) 6334:1 6331:+ 6326:2 6322:x 6318:, 6315:2 6312:( 6292:2 6278:1 6275:= 6272:x 6248:2 6245:= 6242:p 6222:) 6219:2 6216:+ 6213:x 6210:, 6207:5 6204:( 6198:) 6195:2 6189:x 6186:, 6183:5 6180:( 6177:= 6174:) 6171:1 6168:+ 6163:2 6159:x 6155:, 6152:5 6149:( 6129:5 6115:2 6109:= 6106:x 6086:5 6083:= 6080:p 6060:p 6038:1 6027:= 6024:x 6004:1 6001:+ 5996:2 5992:x 5971:x 5951:) 5948:1 5945:+ 5940:2 5936:x 5932:( 5929:V 5906:b 5886:p 5866:) 5863:p 5860:( 5857:V 5837:b 5833:/ 5829:a 5826:= 5823:x 5803:) 5800:a 5794:x 5791:b 5788:( 5785:V 5765:) 5762:a 5756:x 5753:( 5750:= 5745:p 5723:) 5720:a 5714:x 5711:( 5708:V 5688:a 5685:= 5682:x 5662:x 5642:p 5622:) 5619:x 5616:( 5613:f 5593:) 5590:) 5587:x 5584:( 5581:f 5578:, 5575:p 5572:( 5569:= 5564:m 5542:) 5539:p 5536:( 5533:= 5528:p 5506:) 5503:p 5500:( 5497:V 5477:p 5447:x 5427:p 5407:Y 5387:p 5367:) 5364:x 5361:( 5358:f 5338:p 5318:) 5315:) 5312:x 5309:( 5306:f 5303:, 5300:p 5297:( 5294:= 5289:m 5267:] 5264:x 5261:[ 5257:Z 5248:p 5226:) 5223:] 5220:x 5217:[ 5213:Z 5209:( 5200:= 5197:Y 5177:] 5174:x 5171:[ 5167:Z 5146:} 5142:Z 5135:a 5121:a 5118:{ 5115:= 5110:1 5104:Z 5098:A 5068:) 5063:i 5059:n 5055:( 5052:V 5046:Z 5043:= 5038:i 5034:U 5013:Z 4987:i 4983:n 4977:i 4973:a 4969:= 4964:i 4938:Z 4917:) 4914:1 4911:( 4908:= 4905:) 4900:r 4896:n 4892:, 4886:, 4881:1 4877:n 4873:( 4853:Z 4831:p 4825:m 4800:r 4796:n 4792:, 4786:, 4781:1 4777:n 4756:Z 4732:1 4729:= 4724:r 4720:n 4714:r 4710:a 4706:+ 4700:+ 4695:1 4691:n 4685:1 4681:a 4658:r 4654:a 4650:, 4644:, 4639:1 4635:a 4612:r 4608:n 4604:, 4598:, 4593:1 4589:n 4559:p 4553:m 4530:b 4526:/ 4522:a 4501:Q 4497:= 4494:) 4490:Z 4486:( 4477:= 4474:) 4469:0 4463:p 4457:( 4454:k 4434:Z 4414:p 4394:p 4391:= 4388:n 4366:p 4360:m 4332:p 4327:F 4319:) 4314:p 4308:m 4302:( 4299:f 4279:f 4259:n 4237:p 4231:m 4208:n 4187:Z 4183:= 4180:) 4177:0 4174:( 4170:/ 4165:Z 4144:n 4141:= 4138:) 4133:0 4127:p 4121:( 4118:n 4098:p 4084:n 4081:= 4078:) 4073:p 4067:m 4061:( 4058:n 4048:: 4035:p 4009:p 4004:F 3999:= 3996:) 3993:p 3990:( 3986:/ 3981:Z 3977:= 3974:) 3969:p 3963:m 3957:( 3954:k 3932:p 3926:m 3903:Z 3882:Z 3875:n 3852:] 3847:1 3835:p 3831:, 3825:, 3820:1 3812:1 3808:p 3804:[ 3800:Z 3796:= 3793:) 3790:U 3787:( 3782:Z 3776:O 3753:} 3742:p 3735:m 3729:, 3723:, 3716:1 3712:p 3705:m 3699:{ 3693:Z 3690:= 3687:U 3667:} 3664:0 3658:m 3652:, 3648:Z 3641:n 3622:m 3618:p 3614:n 3608:{ 3605:= 3602:] 3597:1 3590:p 3586:[ 3582:Z 3578:= 3575:) 3570:p 3566:U 3562:( 3557:Z 3551:O 3528:} 3523:p 3517:m 3511:{ 3505:Z 3502:= 3497:p 3493:U 3471:Z 3464:p 3430:) 3427:0 3424:( 3421:= 3416:0 3410:p 3386:Z 3379:p 3359:) 3356:p 3353:( 3350:= 3345:p 3339:m 3316:) 3312:Z 3308:( 3299:= 3296:Z 3275:Z 3246:) 3243:) 3240:1 3237:+ 3234:y 3231:( 3226:2 3222:y 3213:2 3209:x 3205:( 3201:/ 3197:] 3194:y 3191:, 3188:x 3185:[ 3182:k 3173:= 3170:V 3148:2 3143:k 3138:A 3112:) 3109:1 3106:+ 3103:y 3100:( 3095:2 3091:y 3087:= 3082:2 3078:x 3057:k 3037:) 3034:) 3031:f 3028:( 3024:/ 3020:R 3017:( 3008:= 3005:) 3002:f 2999:( 2996:V 2976:R 2970:) 2967:f 2964:( 2939:n 2934:k 2929:A 2921:) 2918:f 2915:( 2906:V 2879:) 2874:n 2870:x 2866:, 2860:, 2855:1 2851:x 2847:( 2844:f 2841:= 2838:f 2815:) 2812:a 2809:( 2806:r 2786:) 2781:a 2775:m 2769:( 2766:r 2744:i 2740:a 2731:i 2727:x 2706:k 2698:a 2692:m 2685:/ 2681:R 2678:= 2675:) 2670:a 2664:m 2658:( 2655:k 2630:a 2624:m 2599:p 2593:/ 2589:R 2583:R 2563:r 2543:) 2538:p 2533:( 2530:r 2504:p 2498:/ 2494:R 2472:p 2450:X 2424:X 2401:R 2395:) 2390:n 2386:x 2382:, 2376:, 2371:1 2367:x 2363:( 2360:r 2357:= 2354:r 2331:U 2309:X 2303:O 2276:} 2271:0 2263:Z 2255:m 2249:, 2246:R 2240:r 2215:m 2211:f 2207:r 2201:{ 2198:= 2195:] 2190:1 2183:f 2179:[ 2176:R 2173:= 2170:) 2165:f 2161:U 2157:( 2152:X 2146:O 2120:R 2114:f 2091:} 2086:p 2078:f 2058:X 2050:p 2045:{ 2042:= 2039:) 2036:f 2033:( 2030:V 2024:X 2021:= 2016:f 2012:U 1988:X 1963:a 1957:m 1946:p 1918:V 1909:a 1887:a 1881:m 1858:} 1853:q 1843:p 1821:X 1813:q 1808:{ 1805:= 1802:) 1797:p 1792:( 1789:V 1767:p 1739:X 1730:) 1725:p 1720:( 1711:V 1705:= 1696:V 1673:R 1665:p 1643:a 1623:) 1618:n 1614:a 1605:n 1601:x 1597:, 1591:, 1586:1 1582:a 1573:1 1569:x 1565:( 1562:= 1557:a 1551:m 1528:) 1525:R 1522:( 1518:c 1515:e 1512:p 1509:S 1505:= 1502:X 1482:] 1477:n 1473:x 1469:, 1463:, 1458:1 1454:x 1450:[ 1447:k 1444:= 1441:R 1421:k 1401:) 1396:n 1392:a 1388:, 1382:, 1377:1 1373:a 1369:( 1366:= 1363:a 1341:n 1336:k 1331:A 1326:= 1317:X 1294:k 1264:Z 1257:k 1241:n 1238:+ 1235:m 1230:A 1218:k 1202:n 1197:A 1173:m 1168:A 1156:k 1152:Z 1148:X 1141:k 1137:k 1133:Z 1129:X 1115:Z 1110:Y 1102:X 1089:Y 1085:Z 1081:X 1066:R 1062:X 1058:R 1050:S 1048:( 1046:X 1042:S 1038:R 1034:X 1030:k 1026:E 1019:k 1015:X 1011:S 1007:S 1005:( 1003:X 999:R 995:X 991:S 987:X 981:- 979:S 975:S 970:- 968:R 964:R 960:X 953:X 947:- 945:k 941:k 939:( 937:X 933:k 929:R 925:R 921:X 917:X 913:R 909:R 907:( 905:X 901:R 897:X 889:X 883:- 881:R 877:R 873:X 862:Z 850:Z 843:A 839:B 835:B 831:A 827:X 825:( 823:O 819:Y 817:( 815:O 811:f 803:Y 799:X 795:f 788:k 776:k 768:k 764:k 757:R 753:X 749:R 742:X 738:Y 734:X 728:- 726:Y 722:Y 716:X 712:Y 692:R 688:R 684:n 680:k 673:k 665:n 658:k 652:n 643:, 639:U 637:( 634:X 630:O 611:U 603:U 601:( 598:X 594:O 590:U 585:X 581:O 577:X 572:i 568:U 563:i 559:U 555:X 547:R 543:R 511:R 507:U 503:U 501:( 498:X 494:O 490:U 482:R 474:R 467:X 311:k 303:k 299:n 295:k 291:k 280:k 211:Y 203:Y 197:X 193:Y 189:X 60:x 56:x 20:)

Index

Scheme (algebraic geometry)
mathematics
algebraic geometry
structure
algebraic variety
multiplicities
commutative ring
Fermat curves
integers
Alexander Grothendieck
Éléments de géométrie algébrique
algebraic geometry
Weil conjectures
Pierre Deligne
commutative algebra
topology
homological algebra
number theory
Wiles's proof of Fermat's Last Theorem
coordinate ring
ideal
topological space
generic points
atlas
ringed space
sheaf
Noetherian schemes
Noetherian rings
spectrum
prime ideals

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.