Knowledge

Ring lemma

Source 📝

17: 315: 375:. Each successive circle after these first two is tangent to the central unit circle and to the two most recently added circles; see the illustration for the first six circles (including the two halfplanes) constructed in this way. The first 366:
circles with infinite radius, and includes additional tangencies between the circles beyond those required in the statement of the lemma. It begins by sandwiching the unit circle between two parallel halfplanes; in
227: 140: 88:
interior-disjoint circles, all tangent to it, with consecutive circles in the ring tangent to each other. Then the minimum radius of any circle in the ring is at least the
167: 459:
Beyond its original application to conformal mapping, the circle packing theorem and the ring lemma play key roles in a proof by Keszegh, Pach, and Pálvölgyi that
220: 417: 393: 356: 187: 86: 66: 324: 733: 760: 498: 94: 734:
Graph Drawing: 18th International Symposium, GD 2010, Konstanz, Germany, September 21-24, 2010, Revised Selected Papers
310:{\textstyle \displaystyle 1,{\frac {1}{4}},{\frac {1}{12}},{\frac {1}{33}},{\frac {1}{88}},{\frac {1}{232}},\dots } 804: 488: 399:
to be the same as the radius specified in the ring lemma. This construction can be perturbed to a ring of
419:
finite circles, without additional tangencies, whose minimum radius is arbitrarily close to this bound.
799: 68:
be any integer greater than or equal to three. Suppose that the unit circle is surrounded by a ring of
363: 789: 358:
that exactly meet the bound of the ring lemma, showing that it is tight. The construction allows
448: 25: 517: 737:, Lecture Notes in Computer Science, vol. 6502, Heidelberg: Springer, pp. 293–304, 513: 396: 359: 770: 727:; Pálvölgyi, Dömötör (2011), "Drawing planar graphs of bounded degree with few slopes", in 710: 676: 626: 588: 554: 508: 145: 8: 444: 199: 738: 592: 402: 378: 368: 341: 172: 71: 51: 756: 596: 494: 372: 395:
circles of this construction form a ring, whose minimum radius can be calculated by
748: 698: 662: 576: 542: 436: 190: 650: 794: 766: 752: 706: 672: 646: 622: 584: 550: 504: 432: 29: 702: 580: 546: 338:
An infinite sequence of circles can be constructed, containing rings for each
783: 728: 667: 440: 89: 724: 642: 464: 460: 428: 490:
Introduction to Circle Packing: The Theory of Discrete Analytic Functions
37: 427:
A version of the ring lemma with a weaker bound was first proven by
743: 689:
Hansen, Lowell J. (1988), "On the Rodin and Sullivan ring lemma",
447:
for the tightest possible lower bound, and Dov Aharonov found a
567:
Vasilis, Jonatan (2011), "The ring lemma in three dimensions",
610: 533:
Aharonov, Dov (1997), "The sharp constant in the ring lemma",
439:'s conjecture that circle packings can be used to approximate 16: 651:"The convergence of circle packings to the Riemann mapping" 330:
Generalizations to three-dimensional space are also known.
319: 371:, these are considered to be tangent to each other at the 611:"Geometric sequences of discs in the Apollonian packing" 20:
Construction showing the tight bound for the ring lemma
230: 40:
on the sizes of adjacent circles in a circle packing.
405: 381: 344: 231: 202: 175: 148: 97: 74: 54: 722: 608: 411: 387: 350: 309: 214: 181: 161: 134: 80: 60: 781: 641: 463:of bounded degree can be drawn with bounded 486: 742: 666: 512:; see especially Lemma 8.2 (Ring Lemma), 532: 15: 566: 135:{\displaystyle {\frac {1}{F_{2n-3}-1}}} 782: 688: 609:Aharonov, D.; Stephenson, K. (1997), 637: 635: 196:The sequence of minimum radii, from 528: 526: 482: 480: 13: 716: 516:, and Appendix B, The Ring Lemma, 14: 816: 632: 602: 682: 655:Journal of Differential Geometry 560: 523: 477: 454: 333: 493:, Cambridge University Press, 1: 470: 753:10.1007/978-3-642-18469-7_27 731:; Cornelsen, Sabine (eds.), 487:Stephenson, Kenneth (2005), 43: 7: 10: 821: 435:as part of their proof of 422: 703:10.1080/17476938808814284 581:10.1007/s10711-010-9545-0 547:10.1080/17476939708815009 443:. Lowell Hansen gave a 369:the geometry of circles 805:Geometric inequalities 668:10.4310/jdg/1214441375 449:closed-form expression 413: 389: 352: 311: 216: 183: 163: 136: 82: 62: 48:The lemma states: Let 21: 414: 390: 353: 312: 217: 184: 164: 162:{\displaystyle F_{i}} 137: 83: 63: 19: 451:for the same bound. 403: 379: 362:to be considered as 342: 228: 200: 173: 146: 95: 72: 52: 569:Geometriae Dedicata 445:recurrence relation 215:{\displaystyle n=3} 24:In the geometry of 409: 397:Descartes' theorem 385: 348: 307: 306: 212: 179: 159: 132: 78: 58: 22: 800:Fibonacci numbers 762:978-3-642-18468-0 723:Keszegh, Balázs; 691:Complex Variables 535:Complex Variables 500:978-0-521-82356-2 412:{\displaystyle n} 388:{\displaystyle n} 373:point at infinity 351:{\displaystyle n} 298: 285: 272: 259: 246: 182:{\displaystyle i} 130: 81:{\displaystyle n} 61:{\displaystyle n} 812: 774: 773: 746: 720: 714: 713: 686: 680: 679: 670: 647:Sullivan, Dennis 639: 630: 629: 615:Algebra i Analiz 606: 600: 599: 564: 558: 557: 530: 521: 511: 484: 437:William Thurston 418: 416: 415: 410: 394: 392: 391: 386: 357: 355: 354: 349: 322: 316: 314: 313: 308: 299: 291: 286: 278: 273: 265: 260: 252: 247: 239: 221: 219: 218: 213: 191:Fibonacci number 188: 186: 185: 180: 168: 166: 165: 160: 158: 157: 141: 139: 138: 133: 131: 129: 122: 121: 99: 87: 85: 84: 79: 67: 65: 64: 59: 820: 819: 815: 814: 813: 811: 810: 809: 780: 779: 778: 777: 763: 721: 717: 687: 683: 640: 633: 607: 603: 565: 561: 531: 524: 501: 485: 478: 473: 457: 433:Dennis Sullivan 425: 404: 401: 400: 380: 377: 376: 343: 340: 339: 336: 328: 318: 290: 277: 264: 251: 238: 229: 226: 225: 201: 198: 197: 174: 171: 170: 153: 149: 147: 144: 143: 108: 104: 103: 98: 96: 93: 92: 73: 70: 69: 53: 50: 49: 46: 30:Euclidean plane 26:circle packings 12: 11: 5: 818: 808: 807: 802: 797: 792: 790:Circle packing 776: 775: 761: 729:Brandes, Ulrik 715: 681: 661:(2): 349–360, 631: 621:(3): 104–140, 601: 559: 541:(1–4): 27–31, 522: 499: 475: 474: 472: 469: 456: 453: 441:conformal maps 424: 421: 408: 384: 347: 335: 332: 305: 302: 297: 294: 289: 284: 281: 276: 271: 268: 263: 258: 255: 250: 245: 242: 237: 234: 224: 211: 208: 205: 178: 156: 152: 128: 125: 120: 117: 114: 111: 107: 102: 77: 57: 45: 42: 9: 6: 4: 3: 2: 817: 806: 803: 801: 798: 796: 793: 791: 788: 787: 785: 772: 768: 764: 758: 754: 750: 745: 740: 736: 735: 730: 726: 719: 712: 708: 704: 700: 696: 692: 685: 678: 674: 669: 664: 660: 656: 652: 648: 644: 638: 636: 628: 624: 620: 616: 612: 605: 598: 594: 590: 586: 582: 578: 574: 570: 563: 556: 552: 548: 544: 540: 536: 529: 527: 519: 515: 510: 506: 502: 496: 492: 491: 483: 481: 476: 468: 466: 462: 461:planar graphs 452: 450: 446: 442: 438: 434: 430: 420: 406: 398: 382: 374: 370: 365: 361: 345: 331: 326: 321: 303: 300: 295: 292: 287: 282: 279: 274: 269: 266: 261: 256: 253: 248: 243: 240: 235: 232: 223: 209: 206: 203: 194: 192: 176: 154: 150: 126: 123: 118: 115: 112: 109: 105: 100: 91: 90:unit fraction 75: 55: 41: 39: 35: 31: 27: 18: 732: 718: 697:(1): 23–30, 694: 690: 684: 658: 654: 618: 614: 604: 572: 568: 562: 538: 534: 489: 465:slope number 458: 455:Applications 429:Burton Rodin 426: 337: 334:Construction 329: 195: 47: 33: 23: 725:Pach, János 643:Rodin, Burt 518:pp. 318–321 38:lower bound 784:Categories 471:References 364:degenerate 360:halfplanes 317:(sequence 34:ring lemma 744:1009.1315 597:120113578 575:: 51–62, 514:pp. 73–74 304:… 222:, begins 124:− 116:− 44:Statement 649:(1987), 36:gives a 771:2781274 711:0946096 677:0906396 627:1466797 589:2795235 555:1624890 509:2131318 423:History 323:in the 320:A027941 169:is the 28:in the 795:Lemmas 769:  759:  709:  675:  625:  595:  587:  553:  507:  497:  142:where 32:, the 739:arXiv 593:S2CID 757:ISBN 495:ISBN 431:and 325:OEIS 749:doi 699:doi 663:doi 577:doi 573:152 543:doi 296:232 189:th 786:: 767:MR 765:, 755:, 747:, 707:MR 705:, 695:10 693:, 673:MR 671:, 659:26 657:, 653:, 645:; 634:^ 623:MR 617:, 613:, 591:, 585:MR 583:, 571:, 551:MR 549:, 539:33 537:, 525:^ 505:MR 503:, 479:^ 467:. 283:88 270:33 257:12 193:. 751:: 741:: 701:: 665:: 619:9 579:: 545:: 520:. 407:n 383:n 346:n 327:) 301:, 293:1 288:, 280:1 275:, 267:1 262:, 254:1 249:, 244:4 241:1 236:, 233:1 210:3 207:= 204:n 177:i 155:i 151:F 127:1 119:3 113:n 110:2 106:F 101:1 76:n 56:n

Index


circle packings
Euclidean plane
lower bound
unit fraction
Fibonacci number
A027941
OEIS
halfplanes
degenerate
the geometry of circles
point at infinity
Descartes' theorem
Burton Rodin
Dennis Sullivan
William Thurston
conformal maps
recurrence relation
closed-form expression
planar graphs
slope number


Introduction to Circle Packing: The Theory of Discrete Analytic Functions
ISBN
978-0-521-82356-2
MR
2131318
pp. 73–74
pp. 318–321

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.