Knowledge

Repdigit

Source đź“ť

399:(i.e. the repeating digit is 1) and have a prime number of digits in its base (except trivial single-digit numbers), since, for example, the repdigit 77777 is divisible by 7, in any base > 7. In particular, as Brazilian repunits do not allow the number of digits to be exactly two, Brazilian primes must have an odd prime number of digits. Having an odd prime number of digits is not enough to guarantee that a repunit is prime; for instance, 21 = 111 3682: 597:
is true, then for every prime number of digits there would exist infinitely many repunit primes with that number of digits (and consequentially infinitely many Brazilian primes). Alternatively, if there are infinitely many decimal repunit primes, or infinitely many Mersenne primes, then there are
283:
are numbers that can be written as a repdigit in some base, not allowing the repdigit 11, and not allowing the single-digit numbers (or all numbers will be Brazilian). For example, 27 is a Brazilian number because 27 is the repdigit 33 in base 8, while 9 is not a Brazilian number because its only
325:), it is considered an auspicious event when the sequentially-assigned ID number of a post is a repdigit, such as 22,222,222, which is one type of "GET" (others including round numbers like 34,000,000, or sequential digits like 12,345,678). 562: 481:). This convergence implies that the Brazilian primes form a vanishingly small fraction of all prime numbers. For instance, among the 3.7×10 prime numbers smaller than 10, only 8.8×10 are Brazilian. 1092: 894:. Hence, there exist numbers that are non-Brazilian and others that are Brazilian; among these last integers, some are once Brazilian, others are twice Brazilian, or three times, or more. A number that is 288:, not allowed in the definition of Brazilian numbers. The representations of the form 11 are considered trivial and are disallowed in the definition of Brazilian numbers, because all natural numbers 471:
is a divergent series, the sum of the reciprocals of the Brazilian prime numbers is a convergent series whose value, called the "Brazilian primes constant", is slightly larger than 0.33 (sequence
909:
are constituted with 1 and 6, together with some primes and some squares of primes. The sequence of the non-Brazilian numbers begins with 1, 2, 3, 4, 5, 6, 9, 11, 17, 19, 23, 25, ... (sequence
274: 160: 670: 192: 598:
infinitely many Brazilian primes. Because a vanishingly small fraction of primes are Brazilian, there are infinitely many non-Brazilian primes, forming the sequence
218: 672:
is prime, it is not Brazilian, but if it is composite, it is Brazilian. Contradicting a previous conjecture, Resta, Marcus, Grantham, and Graves found examples of
107: 468: 1784: 337:
called them "monodigit numbers". The Brazilian numbers were introduced later, in 1994, in the 9th Iberoamerican Mathematical Olympiad that took place in
1231:
if it is a positive integer with more Brazilian representations than any smaller positive integer has. This definition comes from the definition of
854:
Yann Bugeaud and Maurice Mignotte conjecture that only three perfect powers are Brazilian repunits. They are 121, 343, and 400 (sequence
491: 3706: 1259: 1245: 1192: 1005: 990: 973: 916: 886: 861: 609: 570: 478: 460: 310: 1777: 1329: 1401: 2584: 1770: 2579: 223: 2594: 2574: 3287: 2867: 2589: 3373: 1710: 808:, but it is not exceptional with respect to the classification of Brazilian numbers because 20 is not prime. 112: 3039: 2689: 2358: 2151: 3215: 3074: 2905: 2719: 2709: 2363: 2343: 594: 3044: 3164: 2787: 2629: 2544: 2353: 2335: 2229: 2219: 2209: 2045: 622: 3069: 3292: 2837: 2458: 2244: 2239: 2234: 2224: 2201: 1659: 3049: 926:
is composed of other primes, the only square of prime that is Brazilian, 121, and composite numbers
2714: 2624: 2277: 40: 20: 1190:-Brazilian numbers begins with 1, 7, 15, 24, 40, 60, 144, 120, 180, 336, 420, 360, ... and are in 3403: 3368: 3154: 3064: 2938: 2913: 2822: 2812: 2534: 2424: 2406: 2326: 1621: 1254: 1232: 994: 165: 3663: 2933: 2807: 2438: 2214: 1994: 1921: 1547:
Grantham, Jon; Graves, Hester (2019). "Brazilian primes which are also Sophie Germain primes".
1321: 376:
is written with all equal digits. Prove that 1994 is Brazilian and that 1993 is not Brazilian.
1600:
Ljunggren, Wilhelm (1943). "Noen setninger om ubestemte likninger av formen (x-1)/(x-1) = y".
3627: 3267: 2918: 2772: 2699: 1854: 1276:
Some popular media publications have published articles suggesting that repunit numbers have
1165:) = (8191, 90, 2, 3, 13) corresponding to 8191 = 1111111111111 333:
The concept of a repdigit has been studied under that name since at least 1974, and earlier
303:
7, 8, 10, 12, 13, 14, 15, 16, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 32, 33, ... (sequence
197: 3560: 3454: 3418: 3159: 2882: 2862: 2679: 2348: 2136: 1442: 998: 819: 729: 673: 2639: 2108: 8: 3282: 3146: 3141: 3109: 2872: 2847: 2842: 2817: 2747: 2743: 2674: 2564: 2396: 2192: 2161: 1236: 56: 16:
Natural number with a decimal representation made of repeated instances of the same digit
1423: 3685: 3439: 3434: 3348: 3322: 3220: 3199: 2971: 2852: 2802: 2724: 2694: 2634: 2401: 2381: 2312: 2025: 1548: 1495: 1314: 92: 68: 2569: 1684: 341:, Brazil. The first problem in this competition, proposed by Mexico, was as follows: 3681: 3579: 3524: 3378: 3353: 3327: 2782: 2777: 2704: 2684: 2669: 2391: 2373: 2292: 2282: 2267: 2030: 1740: 1325: 823: 578:. It has been conjectured that there are infinitely many decimal repunit primes. The 3104: 3615: 3408: 2994: 2966: 2956: 2948: 2832: 2797: 2792: 2759: 2453: 2416: 2307: 2302: 2297: 2287: 2259: 2146: 2093: 2050: 1989: 1419: 1357: 2098: 3591: 3480: 3413: 3339: 3262: 3236: 3054: 2767: 2559: 2529: 2519: 2514: 2180: 2088: 2035: 1879: 1819: 1438: 1361: 1289: 583: 64: 36: 993:) consists of composites and only two primes: 31 and 8191. Indeed, according to 3596: 3464: 3449: 3313: 3277: 3252: 3128: 3099: 3084: 2961: 2857: 2827: 2554: 2509: 2386: 1984: 1979: 1974: 1946: 1931: 1844: 1829: 1807: 1794: 587: 80: 32: 1743: 1134:) = (31, 5, 2, 3, 5) corresponding to 31 = 11111 3700: 3519: 3503: 3444: 3398: 3094: 3079: 2989: 2272: 2141: 2103: 2060: 1941: 1926: 1916: 1874: 1864: 1839: 1762: 1757: 1277: 811: 765: 693: 617: 579: 386: 76: 1660:"The 333 angel number is very powerful in numerology – here's what it means" 220:
is the number of repetitions. For example, the repdigit 77777 in base 10 is
3555: 3544: 3459: 3297: 3272: 3189: 3089: 3059: 3034: 3018: 2923: 2890: 2613: 2524: 2463: 2040: 1936: 1869: 1849: 1824: 1243:
are 1, 7, 15, 24, 40, 60, 120, 180, 336, 360, 720, ... and are exactly in
689: 392: 3514: 3389: 3194: 2658: 2549: 2504: 2499: 2249: 2156: 2055: 1884: 1859: 1834: 1499: 1316:
Recreations in the Theory of Numbers: The Queen of Mathematics Entertains
788:. Therefore, the only squared prime that is Brazilian is 11 = 121 = 11111 593:
It is unknown whether there are infinitely many Brazilian primes. If the
417:(if it is prime) is a Brazilian prime. The smallest Brazilian primes are 318: 52: 48: 3651: 3632: 2928: 2539: 1346: 60: 1580:
Nagell, Trygve (1921). "Sur l'équation indéterminée (x-1)/(x-1) = y".
1504: 3257: 3184: 3176: 2981: 2895: 2013: 1748: 338: 1375: 696:
of the primes, for every other number is the product of two factors
1553: 688:
The only positive integers that can be non-Brazilian are 1, 6, the
557:{\displaystyle R_{n}={\tfrac {10^{n}-1}{9}}\ {\mbox{with }}n\geq 3} 792:. There is also one more nontrivial repunit square, the solution ( 3363: 3022: 3016: 1253:. From 360 to 321253732800 (maybe more), there are 80 successive 1186:, there exists a smallest term. The sequence with these smallest 1174: 485: 396: 72: 44: 1516: 1087:{\displaystyle p={\frac {x^{m}-1}{x-1}}={\frac {y^{n}-1}{y-1}}} 2078: 1528: 683: 322: 87: 930:
that are the product of only two distinct factors such that
1561: 1263: 1249: 1196: 985: 968: 911: 890: 856: 604: 602:
2, 3, 5, 11, 17, 19, 23, 29, 37, 41, 47, 53, ... (sequence
574: 473: 455: 411:, every repunit prime in that base with the exception of 11 305: 1476: 1464: 864:), the two squares listed above and the cube 343 = 7 = 111 814:
that are repunits with three digits or more in some base
768:
has proved that this equation has only one solution when
1400:
Palau, AdriĂ  Salvador; Roozenbeek, Jon (March 7, 2017).
1402:"How an ancient Egyptian god spurred the rise of Trump" 997:, these two primes are the only known solutions of the 1424:"Infinite sequences of palindromic triangular numbers" 539: 509: 2742: 1008: 676:
that are Brazilian, the first one is 28792661 = 11111
625: 494: 226: 200: 168: 115: 95: 3127: 1320:(2 ed.). New York: Dover Publications. p.  1758:
Problemas IX Olimpíada Iberoamericana de Matemática
1646:Dictionnaire de (presque) tous les nombres entiers 1313: 1280:significance, describing them as "angel numbers". 1225:Dictionnaire de (presque) tous les nombres entiers 1086: 664: 556: 268: 212: 186: 154: 101: 83:(which are repdigits when represented in binary). 2126: 1738: 1711:"Everything You Need to Know About Angel Numbers" 1685:"Everything You Need to Know About Angel Numbers" 1455: 352:is called "Brazilian" if there exists an integer 3698: 1622:"L'Ă©quation de Nagell-Ljunggren (x-1)/(x-1) = y" 269:{\displaystyle 7\times {\frac {10^{5}-1}{10-1}}} 2012: 1619: 1399: 804:) = (20, 7, 4) corresponding to 20 = 400 = 1111 469:the sum of the reciprocals of the prime numbers 1806: 1792: 1546: 1778: 1643: 1257:that are also highly Brazilian numbers, see 3614: 1964: 1227:, Daniel Lignon proposes that an integer is 684:Non-Brazilian composites and repunit powers 292:greater than two have the representation 11 35:composed of repeated instances of the same 2079:Possessing a specific set of other numbers 1902: 1785: 1771: 1460:. Paris: Vuibert. p. 7, exercice a35. 407:= 3 Ă— 37 are not prime. In any given base 3542: 2489: 1620:Bugeaud, Yann; Mignotte, Maurice (2002). 1599: 1552: 299:. The first twenty Brazilian numbers are 75:. Other well-known repdigits include the 1307: 1305: 51:of "repeated" and "digit". Examples are 155:{\displaystyle x{\frac {B^{y}-1}{B-1}}} 3699: 3650: 1579: 1567: 1534: 1522: 1510: 1482: 1470: 1344: 1311: 880:The number of ways such that a number 871: 586:and the binary repunit primes are the 380: 334: 3649: 3613: 3577: 3541: 3501: 3126: 3015: 2741: 2656: 2611: 2488: 2178: 2125: 2077: 2011: 1963: 1901: 1805: 1766: 1739: 1418: 1368: 1338: 1302: 2179: 1393: 86:Repdigits are the representation in 3578: 1582:Norsk Matematisk Forenings Skrifter 1200:. For instance, 40 is the smallest 13: 3502: 720:− 1. If a square of a prime 14: 3718: 1732: 712:− 1, and can be written as 665:{\displaystyle F_{n}=2^{2^{n}}+1} 3707:Base-dependent integer sequences 3680: 3288:Perfect digit-to-digit invariant 2657: 368:for which the representation of 279:A variation of repdigits called 1703: 1677: 1652: 1648:. Paris: Ellipses. p. 420. 1637: 1613: 1593: 1573: 1540: 1488: 1449: 1412: 1345:Schott, Bernard (March 2010). 1: 2127:Expressible via specific sums 1295: 1271: 488:repunit primes have the form 284:repdigit representation is 11 317:On some websites (including 7: 3216:Multiplicative digital root 1626:L'Enseignement MathĂ©matique 1602:Norsk Matematisk Tidsskrift 1496:The Prime Glossary: repunit 1283: 1239:in 1915. The first numbers 187:{\displaystyle 0<x<B} 10: 3723: 2612: 1456:Pierre Bornsztein (2001). 1362:10.1051/quadrature/2010005 1173:, with 11111111111 is the 905:Non-Brazilian numbers or 0 898:times Brazilian is called 772:is prime corresponding to 384: 328: 194:is the repeated digit and 3676: 3659: 3645: 3623: 3609: 3587: 3573: 3551: 3537: 3510: 3497: 3473: 3427: 3387: 3338: 3312: 3293:Perfect digital invariant 3245: 3229: 3208: 3175: 3140: 3136: 3122: 3030: 3011: 2980: 2947: 2904: 2881: 2868:Superior highly composite 2758: 2754: 2737: 2665: 2652: 2620: 2607: 2495: 2484: 2446: 2437: 2415: 2372: 2334: 2325: 2258: 2200: 2191: 2187: 2174: 2132: 2121: 2084: 2073: 2021: 2007: 1970: 1959: 1912: 1897: 1815: 1801: 1356:(in French) (76): 30–38. 724:is Brazilian, then prime 2906:Euler's totient function 2690:Euler–Jacobi pseudoprime 1965:Other polynomial numbers 1347:"Les nombres brĂ©siliens" 1255:highly composite numbers 1233:highly composite numbers 1110: > 2 : 764:Norwegian mathematician 41:positional number system 21:recreational mathematics 2720:Somer–Lucas pseudoprime 2710:Lucas–Carmichael number 2545:Lazy caterer's sequence 1513:, Sections V.1 and V.2. 1431:The Fibonacci Quarterly 1312:Beiler, Albert (1966). 1177:with thirteen digits 1. 995:Goormaghtigh conjecture 595:Bateman–Horn conjecture 2595:Wedderburn–Etherington 1995:Lucky numbers of Euler 1644:Daniel Lignon (2012). 1102: > 1 and 1088: 666: 558: 378: 270: 214: 213:{\displaystyle 1<y} 188: 156: 103: 79:and in particular the 2883:Prime omega functions 2700:Frobenius pseudoprime 2490:Combinatorial numbers 2359:Centered dodecahedral 2152:Primary pseudoperfect 1182:For each sequence of 1089: 818:are described by the 674:Sophie Germain primes 667: 559: 403:= 3 Ă— 7 and 111 = 111 391:For a repdigit to be 343: 271: 215: 189: 157: 104: 71:and are multiples of 3342:-composition related 3142:Arithmetic functions 2744:Arithmetic functions 2680:Elliptic pseudoprime 2364:Centered icosahedral 2344:Centered tetrahedral 1006: 999:Diophantine equation 820:Diophantine equation 730:Diophantine equation 623: 492: 224: 198: 166: 113: 93: 67:. All repdigits are 3268:Kaprekar's constant 2788:Colossally abundant 2675:Catalan pseudoprime 2575:Schröder–Hipparchus 2354:Centered octahedral 2230:Centered heptagonal 2220:Centered pentagonal 2210:Centered triangular 1810:and related numbers 1237:Srinivasa Ramanujan 1184:k-Brazilian numbers 884:is Brazilian is in 381:Primes and repunits 69:palindromic numbers 3686:Mathematics portal 3628:Aronson's sequence 3374:Smarandache–Wellin 3131:-dependent numbers 2838:Primitive abundant 2725:Strong pseudoprime 2715:Perrin pseudoprime 2695:Fermat pseudoprime 2635:Wolstenholme prime 2459:Squared triangular 2245:Centered decagonal 2240:Centered nonagonal 2235:Centered octagonal 2225:Centered hexagonal 1741:Weisstein, Eric W. 1691:. 24 December 2021 1202:4-Brazilian number 1084: 981:-Brazilian numbers 924:-Brazilian numbers 907:-Brazilian numbers 900:k-Brazilian number 875:-Brazilian numbers 662: 564:for the values of 554: 543: 533: 266: 210: 184: 152: 99: 47:). The word is a 43:(often implicitly 3694: 3693: 3672: 3671: 3641: 3640: 3605: 3604: 3569: 3568: 3533: 3532: 3493: 3492: 3489: 3488: 3308: 3307: 3118: 3117: 3007: 3006: 3003: 3002: 2949:Aliquot sequences 2760:Divisor functions 2733: 2732: 2705:Lucas pseudoprime 2685:Euler pseudoprime 2670:Carmichael number 2648: 2647: 2603: 2602: 2480: 2479: 2476: 2475: 2472: 2471: 2433: 2432: 2321: 2320: 2278:Square triangular 2170: 2169: 2117: 2116: 2069: 2068: 2003: 2002: 1955: 1954: 1893: 1892: 1494:Chris Caldwell, " 1420:Trigg, Charles W. 1331:978-0-486-21096-4 1082: 1046: 922:The sequence of 1 728:must satisfy the 582:repunits are the 542: 537: 532: 281:Brazilian numbers 264: 150: 102:{\displaystyle B} 3714: 3684: 3647: 3646: 3616:Natural language 3611: 3610: 3575: 3574: 3543:Generated via a 3539: 3538: 3499: 3498: 3404:Digit-reassembly 3369:Self-descriptive 3173: 3172: 3138: 3137: 3124: 3123: 3075:Lucas–Carmichael 3065:Harmonic divisor 3013: 3012: 2939:Sparsely totient 2914:Highly cototient 2823:Multiply perfect 2813:Highly composite 2756: 2755: 2739: 2738: 2654: 2653: 2609: 2608: 2590:Telephone number 2486: 2485: 2444: 2443: 2425:Square pyramidal 2407:Stella octangula 2332: 2331: 2198: 2197: 2189: 2188: 2181:Figurate numbers 2176: 2175: 2123: 2122: 2075: 2074: 2009: 2008: 1961: 1960: 1899: 1898: 1803: 1802: 1787: 1780: 1773: 1764: 1763: 1754: 1753: 1726: 1725: 1723: 1722: 1707: 1701: 1700: 1698: 1696: 1681: 1675: 1674: 1672: 1671: 1656: 1650: 1649: 1641: 1635: 1633: 1617: 1611: 1609: 1604:(in Norwegian). 1597: 1591: 1589: 1577: 1571: 1565: 1559: 1558: 1556: 1544: 1538: 1532: 1526: 1525:, Proposition 3. 1520: 1514: 1508: 1502: 1492: 1486: 1480: 1474: 1468: 1462: 1461: 1453: 1447: 1446: 1428: 1416: 1410: 1409: 1406:The Conversation 1397: 1391: 1390: 1388: 1386: 1372: 1366: 1365: 1351: 1342: 1336: 1335: 1319: 1309: 1266: 1252: 1241:highly Brazilian 1229:highly Brazilian 1199: 1093: 1091: 1090: 1085: 1083: 1081: 1070: 1063: 1062: 1052: 1047: 1045: 1034: 1027: 1026: 1016: 988: 971: 965: 953: 929: 914: 893: 859: 787: 671: 669: 668: 663: 655: 654: 653: 652: 635: 634: 607: 584:Mersenne numbers 577: 563: 561: 560: 555: 544: 540: 535: 534: 528: 521: 520: 510: 504: 503: 476: 458: 453:, ... (sequence 367: 351: 308: 275: 273: 272: 267: 265: 263: 252: 245: 244: 234: 219: 217: 216: 211: 193: 191: 190: 185: 161: 159: 158: 153: 151: 149: 138: 131: 130: 120: 108: 106: 105: 100: 3722: 3721: 3717: 3716: 3715: 3713: 3712: 3711: 3697: 3696: 3695: 3690: 3668: 3664:Strobogrammatic 3655: 3637: 3619: 3601: 3583: 3565: 3547: 3529: 3506: 3485: 3469: 3428:Divisor-related 3423: 3383: 3334: 3304: 3241: 3225: 3204: 3171: 3144: 3132: 3114: 3026: 3025:related numbers 2999: 2976: 2943: 2934:Perfect totient 2900: 2877: 2808:Highly abundant 2750: 2729: 2661: 2644: 2616: 2599: 2585:Stirling second 2491: 2468: 2429: 2411: 2368: 2317: 2254: 2215:Centered square 2183: 2166: 2128: 2113: 2080: 2065: 2017: 2016:defined numbers 1999: 1966: 1951: 1922:Double Mersenne 1908: 1889: 1811: 1797: 1795:natural numbers 1791: 1735: 1730: 1729: 1720: 1718: 1709: 1708: 1704: 1694: 1692: 1683: 1682: 1678: 1669: 1667: 1658: 1657: 1653: 1642: 1638: 1618: 1614: 1598: 1594: 1578: 1574: 1566: 1562: 1545: 1541: 1537:, Conjecture 1. 1533: 1529: 1521: 1517: 1509: 1505: 1493: 1489: 1481: 1477: 1469: 1465: 1454: 1450: 1426: 1417: 1413: 1398: 1394: 1384: 1382: 1374: 1373: 1369: 1349: 1343: 1339: 1332: 1310: 1303: 1298: 1290:Six nines in pi 1286: 1274: 1258: 1244: 1219: 1215: 1211: 1207: 1204:with 40 = 1111 1191: 1172: 1168: 1141: 1137: 1111: 1071: 1058: 1054: 1053: 1051: 1035: 1022: 1018: 1017: 1015: 1007: 1004: 1003: 984: 967: 955: 952: 931: 927: 910: 885: 877: 867: 855: 852: 807: 791: 773: 762: 757:≥ 3 primes and 686: 679: 648: 644: 643: 639: 630: 626: 624: 621: 620: 603: 588:Mersenne primes 569: 538: 516: 512: 511: 508: 499: 495: 493: 490: 489: 472: 454: 452: 448: 445:, 127 = 1111111 444: 440: 436: 432: 428: 424: 416: 406: 402: 395:, it must be a 389: 383: 357: 346: 331: 304: 298: 287: 253: 240: 236: 235: 233: 225: 222: 221: 199: 196: 195: 167: 164: 163: 139: 126: 122: 121: 119: 114: 111: 110: 94: 91: 90: 81:Mersenne primes 17: 12: 11: 5: 3720: 3710: 3709: 3692: 3691: 3689: 3688: 3677: 3674: 3673: 3670: 3669: 3667: 3666: 3660: 3657: 3656: 3643: 3642: 3639: 3638: 3636: 3635: 3630: 3624: 3621: 3620: 3607: 3606: 3603: 3602: 3600: 3599: 3597:Sorting number 3594: 3592:Pancake number 3588: 3585: 3584: 3571: 3570: 3567: 3566: 3564: 3563: 3558: 3552: 3549: 3548: 3535: 3534: 3531: 3530: 3528: 3527: 3522: 3517: 3511: 3508: 3507: 3504:Binary numbers 3495: 3494: 3491: 3490: 3487: 3486: 3484: 3483: 3477: 3475: 3471: 3470: 3468: 3467: 3462: 3457: 3452: 3447: 3442: 3437: 3431: 3429: 3425: 3424: 3422: 3421: 3416: 3411: 3406: 3401: 3395: 3393: 3385: 3384: 3382: 3381: 3376: 3371: 3366: 3361: 3356: 3351: 3345: 3343: 3336: 3335: 3333: 3332: 3331: 3330: 3319: 3317: 3314:P-adic numbers 3310: 3309: 3306: 3305: 3303: 3302: 3301: 3300: 3290: 3285: 3280: 3275: 3270: 3265: 3260: 3255: 3249: 3247: 3243: 3242: 3240: 3239: 3233: 3231: 3230:Coding-related 3227: 3226: 3224: 3223: 3218: 3212: 3210: 3206: 3205: 3203: 3202: 3197: 3192: 3187: 3181: 3179: 3170: 3169: 3168: 3167: 3165:Multiplicative 3162: 3151: 3149: 3134: 3133: 3129:Numeral system 3120: 3119: 3116: 3115: 3113: 3112: 3107: 3102: 3097: 3092: 3087: 3082: 3077: 3072: 3067: 3062: 3057: 3052: 3047: 3042: 3037: 3031: 3028: 3027: 3009: 3008: 3005: 3004: 3001: 3000: 2998: 2997: 2992: 2986: 2984: 2978: 2977: 2975: 2974: 2969: 2964: 2959: 2953: 2951: 2945: 2944: 2942: 2941: 2936: 2931: 2926: 2921: 2919:Highly totient 2916: 2910: 2908: 2902: 2901: 2899: 2898: 2893: 2887: 2885: 2879: 2878: 2876: 2875: 2870: 2865: 2860: 2855: 2850: 2845: 2840: 2835: 2830: 2825: 2820: 2815: 2810: 2805: 2800: 2795: 2790: 2785: 2780: 2775: 2773:Almost perfect 2770: 2764: 2762: 2752: 2751: 2735: 2734: 2731: 2730: 2728: 2727: 2722: 2717: 2712: 2707: 2702: 2697: 2692: 2687: 2682: 2677: 2672: 2666: 2663: 2662: 2650: 2649: 2646: 2645: 2643: 2642: 2637: 2632: 2627: 2621: 2618: 2617: 2605: 2604: 2601: 2600: 2598: 2597: 2592: 2587: 2582: 2580:Stirling first 2577: 2572: 2567: 2562: 2557: 2552: 2547: 2542: 2537: 2532: 2527: 2522: 2517: 2512: 2507: 2502: 2496: 2493: 2492: 2482: 2481: 2478: 2477: 2474: 2473: 2470: 2469: 2467: 2466: 2461: 2456: 2450: 2448: 2441: 2435: 2434: 2431: 2430: 2428: 2427: 2421: 2419: 2413: 2412: 2410: 2409: 2404: 2399: 2394: 2389: 2384: 2378: 2376: 2370: 2369: 2367: 2366: 2361: 2356: 2351: 2346: 2340: 2338: 2329: 2323: 2322: 2319: 2318: 2316: 2315: 2310: 2305: 2300: 2295: 2290: 2285: 2280: 2275: 2270: 2264: 2262: 2256: 2255: 2253: 2252: 2247: 2242: 2237: 2232: 2227: 2222: 2217: 2212: 2206: 2204: 2195: 2185: 2184: 2172: 2171: 2168: 2167: 2165: 2164: 2159: 2154: 2149: 2144: 2139: 2133: 2130: 2129: 2119: 2118: 2115: 2114: 2112: 2111: 2106: 2101: 2096: 2091: 2085: 2082: 2081: 2071: 2070: 2067: 2066: 2064: 2063: 2058: 2053: 2048: 2043: 2038: 2033: 2028: 2022: 2019: 2018: 2005: 2004: 2001: 2000: 1998: 1997: 1992: 1987: 1982: 1977: 1971: 1968: 1967: 1957: 1956: 1953: 1952: 1950: 1949: 1944: 1939: 1934: 1929: 1924: 1919: 1913: 1910: 1909: 1895: 1894: 1891: 1890: 1888: 1887: 1882: 1877: 1872: 1867: 1862: 1857: 1852: 1847: 1842: 1837: 1832: 1827: 1822: 1816: 1813: 1812: 1799: 1798: 1790: 1789: 1782: 1775: 1767: 1761: 1760: 1755: 1734: 1733:External links 1731: 1728: 1727: 1717:. 21 July 2021 1702: 1676: 1651: 1636: 1612: 1592: 1572: 1560: 1539: 1527: 1515: 1503: 1487: 1475: 1463: 1448: 1411: 1392: 1367: 1337: 1330: 1300: 1299: 1297: 1294: 1293: 1292: 1285: 1282: 1273: 1270: 1269: 1268: 1221: 1217: 1213: 1209: 1205: 1180: 1179: 1178: 1170: 1166: 1143: 1139: 1135: 1080: 1077: 1074: 1069: 1066: 1061: 1057: 1050: 1044: 1041: 1038: 1033: 1030: 1025: 1021: 1014: 1011: 1002: 977: 947: 920: 903: 876: 870: 865: 827: 822:of Nagell and 812:Perfect powers 805: 789: 786:) = (11, 3, 5) 733: 685: 682: 677: 661: 658: 651: 647: 642: 638: 633: 629: 614: 613: 553: 550: 547: 531: 527: 524: 519: 515: 507: 502: 498: 465: 464: 450: 446: 442: 438: 434: 430: 426: 422: 412: 404: 400: 385:Main article: 382: 379: 330: 327: 315: 314: 293: 285: 262: 259: 256: 251: 248: 243: 239: 232: 229: 209: 206: 203: 183: 180: 177: 174: 171: 148: 145: 142: 137: 134: 129: 125: 118: 109:of the number 98: 77:repunit primes 33:natural number 15: 9: 6: 4: 3: 2: 3719: 3708: 3705: 3704: 3702: 3687: 3683: 3679: 3678: 3675: 3665: 3662: 3661: 3658: 3653: 3648: 3644: 3634: 3631: 3629: 3626: 3625: 3622: 3617: 3612: 3608: 3598: 3595: 3593: 3590: 3589: 3586: 3581: 3576: 3572: 3562: 3559: 3557: 3554: 3553: 3550: 3546: 3540: 3536: 3526: 3523: 3521: 3518: 3516: 3513: 3512: 3509: 3505: 3500: 3496: 3482: 3479: 3478: 3476: 3472: 3466: 3463: 3461: 3458: 3456: 3455:Polydivisible 3453: 3451: 3448: 3446: 3443: 3441: 3438: 3436: 3433: 3432: 3430: 3426: 3420: 3417: 3415: 3412: 3410: 3407: 3405: 3402: 3400: 3397: 3396: 3394: 3391: 3386: 3380: 3377: 3375: 3372: 3370: 3367: 3365: 3362: 3360: 3357: 3355: 3352: 3350: 3347: 3346: 3344: 3341: 3337: 3329: 3326: 3325: 3324: 3321: 3320: 3318: 3315: 3311: 3299: 3296: 3295: 3294: 3291: 3289: 3286: 3284: 3281: 3279: 3276: 3274: 3271: 3269: 3266: 3264: 3261: 3259: 3256: 3254: 3251: 3250: 3248: 3244: 3238: 3235: 3234: 3232: 3228: 3222: 3219: 3217: 3214: 3213: 3211: 3209:Digit product 3207: 3201: 3198: 3196: 3193: 3191: 3188: 3186: 3183: 3182: 3180: 3178: 3174: 3166: 3163: 3161: 3158: 3157: 3156: 3153: 3152: 3150: 3148: 3143: 3139: 3135: 3130: 3125: 3121: 3111: 3108: 3106: 3103: 3101: 3098: 3096: 3093: 3091: 3088: 3086: 3083: 3081: 3078: 3076: 3073: 3071: 3068: 3066: 3063: 3061: 3058: 3056: 3053: 3051: 3048: 3046: 3045:ErdĹ‘s–Nicolas 3043: 3041: 3038: 3036: 3033: 3032: 3029: 3024: 3020: 3014: 3010: 2996: 2993: 2991: 2988: 2987: 2985: 2983: 2979: 2973: 2970: 2968: 2965: 2963: 2960: 2958: 2955: 2954: 2952: 2950: 2946: 2940: 2937: 2935: 2932: 2930: 2927: 2925: 2922: 2920: 2917: 2915: 2912: 2911: 2909: 2907: 2903: 2897: 2894: 2892: 2889: 2888: 2886: 2884: 2880: 2874: 2871: 2869: 2866: 2864: 2863:Superabundant 2861: 2859: 2856: 2854: 2851: 2849: 2846: 2844: 2841: 2839: 2836: 2834: 2831: 2829: 2826: 2824: 2821: 2819: 2816: 2814: 2811: 2809: 2806: 2804: 2801: 2799: 2796: 2794: 2791: 2789: 2786: 2784: 2781: 2779: 2776: 2774: 2771: 2769: 2766: 2765: 2763: 2761: 2757: 2753: 2749: 2745: 2740: 2736: 2726: 2723: 2721: 2718: 2716: 2713: 2711: 2708: 2706: 2703: 2701: 2698: 2696: 2693: 2691: 2688: 2686: 2683: 2681: 2678: 2676: 2673: 2671: 2668: 2667: 2664: 2660: 2655: 2651: 2641: 2638: 2636: 2633: 2631: 2628: 2626: 2623: 2622: 2619: 2615: 2610: 2606: 2596: 2593: 2591: 2588: 2586: 2583: 2581: 2578: 2576: 2573: 2571: 2568: 2566: 2563: 2561: 2558: 2556: 2553: 2551: 2548: 2546: 2543: 2541: 2538: 2536: 2533: 2531: 2528: 2526: 2523: 2521: 2518: 2516: 2513: 2511: 2508: 2506: 2503: 2501: 2498: 2497: 2494: 2487: 2483: 2465: 2462: 2460: 2457: 2455: 2452: 2451: 2449: 2445: 2442: 2440: 2439:4-dimensional 2436: 2426: 2423: 2422: 2420: 2418: 2414: 2408: 2405: 2403: 2400: 2398: 2395: 2393: 2390: 2388: 2385: 2383: 2380: 2379: 2377: 2375: 2371: 2365: 2362: 2360: 2357: 2355: 2352: 2350: 2349:Centered cube 2347: 2345: 2342: 2341: 2339: 2337: 2333: 2330: 2328: 2327:3-dimensional 2324: 2314: 2311: 2309: 2306: 2304: 2301: 2299: 2296: 2294: 2291: 2289: 2286: 2284: 2281: 2279: 2276: 2274: 2271: 2269: 2266: 2265: 2263: 2261: 2257: 2251: 2248: 2246: 2243: 2241: 2238: 2236: 2233: 2231: 2228: 2226: 2223: 2221: 2218: 2216: 2213: 2211: 2208: 2207: 2205: 2203: 2199: 2196: 2194: 2193:2-dimensional 2190: 2186: 2182: 2177: 2173: 2163: 2160: 2158: 2155: 2153: 2150: 2148: 2145: 2143: 2140: 2138: 2137:Nonhypotenuse 2135: 2134: 2131: 2124: 2120: 2110: 2107: 2105: 2102: 2100: 2097: 2095: 2092: 2090: 2087: 2086: 2083: 2076: 2072: 2062: 2059: 2057: 2054: 2052: 2049: 2047: 2044: 2042: 2039: 2037: 2034: 2032: 2029: 2027: 2024: 2023: 2020: 2015: 2010: 2006: 1996: 1993: 1991: 1988: 1986: 1983: 1981: 1978: 1976: 1973: 1972: 1969: 1962: 1958: 1948: 1945: 1943: 1940: 1938: 1935: 1933: 1930: 1928: 1925: 1923: 1920: 1918: 1915: 1914: 1911: 1906: 1900: 1896: 1886: 1883: 1881: 1878: 1876: 1875:Perfect power 1873: 1871: 1868: 1866: 1865:Seventh power 1863: 1861: 1858: 1856: 1853: 1851: 1848: 1846: 1843: 1841: 1838: 1836: 1833: 1831: 1828: 1826: 1823: 1821: 1818: 1817: 1814: 1809: 1804: 1800: 1796: 1788: 1783: 1781: 1776: 1774: 1769: 1768: 1765: 1759: 1756: 1751: 1750: 1745: 1742: 1737: 1736: 1716: 1712: 1706: 1690: 1686: 1680: 1665: 1661: 1655: 1647: 1640: 1631: 1627: 1623: 1616: 1607: 1603: 1596: 1587: 1583: 1576: 1569: 1568:Schott (2010) 1564: 1555: 1550: 1543: 1536: 1535:Schott (2010) 1531: 1524: 1523:Schott (2010) 1519: 1512: 1511:Schott (2010) 1507: 1501: 1497: 1491: 1484: 1483:Schott (2010) 1479: 1472: 1471:Schott (2010) 1467: 1459: 1452: 1444: 1440: 1436: 1432: 1425: 1421: 1415: 1407: 1403: 1396: 1381: 1377: 1376:"FAQ on GETs" 1371: 1363: 1359: 1355: 1348: 1341: 1333: 1327: 1323: 1318: 1317: 1308: 1306: 1301: 1291: 1288: 1287: 1281: 1279: 1278:numerological 1265: 1261: 1256: 1251: 1247: 1242: 1238: 1234: 1230: 1226: 1222: 1203: 1198: 1194: 1189: 1185: 1181: 1176: 1164: 1160: 1156: 1152: 1148: 1144: 1133: 1129: 1125: 1121: 1117: 1113: 1112: 1109: 1105: 1101: 1097: 1078: 1075: 1072: 1067: 1064: 1059: 1055: 1048: 1042: 1039: 1036: 1031: 1028: 1023: 1019: 1012: 1009: 1000: 996: 992: 987: 982: 978: 975: 970: 966:. (sequence 963: 959: 950: 946: 942: 938: 934: 925: 921: 918: 913: 908: 904: 901: 897: 892: 888: 883: 879: 878: 874: 869: 863: 858: 850: 846: 842: 838: 834: 830: 826: 825: 821: 817: 813: 809: 803: 799: 795: 785: 781: 777: 771: 767: 766:Trygve Nagell 760: 756: 752: 748: 744: 740: 736: 732: 731: 727: 723: 719: 715: 711: 707: 703: 699: 695: 691: 681: 675: 659: 656: 649: 645: 640: 636: 631: 627: 619: 618:Fermat number 611: 606: 601: 600: 599: 596: 591: 589: 585: 581: 576: 572: 567: 551: 548: 545: 529: 525: 522: 517: 513: 505: 500: 496: 487: 482: 480: 475: 470: 462: 457: 420: 419: 418: 415: 410: 398: 394: 388: 387:Repunit prime 377: 375: 371: 365: 361: 355: 349: 342: 340: 336: 335:Beiler (1966) 326: 324: 320: 312: 307: 302: 301: 300: 296: 291: 282: 277: 260: 257: 254: 249: 246: 241: 237: 230: 227: 207: 204: 201: 181: 178: 175: 172: 169: 146: 143: 140: 135: 132: 127: 123: 116: 96: 89: 84: 82: 78: 74: 70: 66: 62: 58: 54: 50: 46: 42: 38: 34: 30: 27:or sometimes 26: 22: 3419:Transposable 3358: 3283:Narcissistic 3190:Digital root 3110:Super-Poulet 3070:Jordan–PĂłlya 3019:prime factor 2924:Noncototient 2891:Almost prime 2873:Superperfect 2848:Refactorable 2843:Quasiperfect 2818:Hyperperfect 2659:Pseudoprimes 2630:Wall–Sun–Sun 2565:Ordered Bell 2535:Fuss–Catalan 2447:non-centered 2397:Dodecahedral 2374:non-centered 2260:non-centered 2162:Wolstenholme 1907:× 2 ± 1 1904: 1903:Of the form 1870:Eighth power 1850:Fourth power 1747: 1719:. Retrieved 1715:Cosmopolitan 1714: 1705: 1693:. Retrieved 1688: 1679: 1668:. Retrieved 1666:. 2023-06-29 1663: 1654: 1645: 1639: 1629: 1625: 1615: 1605: 1601: 1595: 1585: 1581: 1575: 1570:, Theorem 1. 1563: 1542: 1530: 1518: 1506: 1490: 1485:, Theorem 4. 1478: 1473:, Theorem 2. 1466: 1457: 1451: 1434: 1430: 1414: 1405: 1395: 1383:. Retrieved 1379: 1370: 1353: 1340: 1315: 1275: 1240: 1228: 1224: 1201: 1187: 1183: 1162: 1158: 1154: 1150: 1146: 1131: 1127: 1123: 1119: 1115: 1107: 1103: 1099: 1095: 980: 961: 957: 948: 944: 940: 936: 932: 923: 906: 899: 895: 881: 872: 853: 848: 844: 840: 836: 832: 828: 815: 810: 801: 797: 793: 783: 779: 775: 769: 763: 758: 754: 750: 746: 742: 738: 734: 725: 721: 717: 713: 709: 705: 704:with 1 < 701: 697: 687: 615: 592: 565: 483: 466: 429:, 31 = 11111 413: 408: 390: 373: 369: 363: 359: 353: 347: 344: 332: 316: 294: 289: 280: 278: 85: 28: 24: 18: 3440:Extravagant 3435:Equidigital 3390:permutation 3349:Palindromic 3323:Automorphic 3221:Sum-product 3200:Sum-product 3155:Persistence 3050:ErdĹ‘s–Woods 2972:Untouchable 2853:Semiperfect 2803:Hemiperfect 2464:Tesseractic 2402:Icosahedral 2382:Tetrahedral 2313:Dodecagonal 2014:Recursively 1885:Prime power 1860:Sixth power 1855:Fifth power 1835:Power of 10 1793:Classes of 1588:(1): 17–18. 1500:Prime Pages 1437:: 209–212. 1235:created by 847:> 1 and 449:, 157 = 111 319:imageboards 49:portmanteau 3652:Graphemics 3525:Pernicious 3379:Undulating 3354:Pandigital 3328:Trimorphic 2929:Nontotient 2778:Arithmetic 2392:Octahedral 2293:Heptagonal 2283:Pentagonal 2268:Triangular 2109:SierpiĹ„ski 2031:Jacobsthal 1830:Power of 3 1825:Power of 2 1744:"Repdigit" 1721:2023-08-28 1670:2023-08-28 1664:Glamour UK 1632:: 147–168. 1554:1903.04577 1354:Quadrature 1296:References 1272:Numerology 983:(sequence 692:, and the 568:listed in 541:with  441:, 73 = 111 437:, 43 = 111 425:, 13 = 111 356:such that 3409:Parasitic 3258:Factorion 3185:Digit sum 3177:Digit sum 2995:Fortunate 2982:Primorial 2896:Semiprime 2833:Practical 2798:Descartes 2793:Deficient 2783:Betrothed 2625:Wieferich 2454:Pentatope 2417:pyramidal 2308:Decagonal 2303:Nonagonal 2298:Octagonal 2288:Hexagonal 2147:Practical 2094:Congruent 2026:Fibonacci 1990:Loeschian 1749:MathWorld 1695:28 August 1498:" at The 1458:Hypermath 1385:March 14, 1076:− 1065:− 1040:− 1029:− 824:Ljunggren 549:≥ 523:− 345:A number 339:Fortaleza 297:− 1 258:− 247:− 231:× 144:− 133:− 29:monodigit 3701:Category 3481:Friedman 3414:Primeval 3359:Repdigit 3316:-related 3263:Kaprekar 3237:Meertens 3160:Additive 3147:dynamics 3055:Friendly 2967:Sociable 2957:Amicable 2768:Abundant 2748:dynamics 2570:Schröder 2560:Narayana 2530:Eulerian 2520:Delannoy 2515:Dedekind 2336:centered 2202:centered 2089:Amenable 2046:Narayana 2036:Leonardo 1932:Mersenne 1880:Powerful 1820:Achilles 1608:: 17–20. 1422:(1974). 1284:See also 761:>= 2. 745:+ ... + 716:in base 372:in base 358:1 < 73:repunits 25:repdigit 3654:related 3618:related 3582:related 3580:Sorting 3465:Vampire 3450:Harshad 3392:related 3364:Repunit 3278:Lychrel 3253:Dudeney 3105:Størmer 3100:Sphenic 3085:Regular 3023:divisor 2962:Perfect 2858:Sublime 2828:Perfect 2555:Motzkin 2510:Catalan 2051:Padovan 1985:Leyland 1980:Idoneal 1975:Hilbert 1947:Woodall 1443:0354535 1264:A279930 1262::  1250:A329383 1248::  1223:In the 1197:A284758 1195::  1175:repunit 1161:,  1157:,  1153:,  1149:,  1130:,  1126:,  1122:,  1118:,  989:in the 986:A290015 972:in the 969:A288783 956:1 < 915:in the 912:A220570 891:A220136 889::  860:in the 857:A208242 851:> 2. 845:b, n, t 694:squares 608:in the 605:A220627 575:A004023 573::  486:decimal 477:in the 474:A306759 459:in the 456:A085104 421:7 = 111 397:repunit 329:History 309:in the 306:A125134 45:decimal 3520:Odious 3445:Frugal 3399:Cyclic 3388:Digit- 3095:Smooth 3080:Pronic 3040:Cyclic 3017:Other 2990:Euclid 2640:Wilson 2614:Primes 2273:Square 2142:Polite 2104:Riesel 2099:Knödel 2061:Perrin 1942:Thabit 1927:Fermat 1917:Cullen 1840:Square 1808:Powers 1689:Allure 1441:  1328:  1142:, and, 839:+...+ 831:= 1 + 737:= 1 + 690:primes 580:binary 536:  467:While 350:> 0 162:where 65:999999 63:, and 3561:Prime 3556:Lucky 3545:sieve 3474:Other 3460:Smith 3340:Digit 3298:Happy 3273:Keith 3246:Other 3090:Rough 3060:Giuga 2525:Euler 2387:Cubic 2041:Lucas 1937:Proth 1549:arXiv 1427:(PDF) 1380:4chan 1350:(PDF) 1169:= 111 1138:= 111 1094:with 979:The 2 960:< 954:with 843:with 749:with 708:< 616:If a 433:= 111 393:prime 362:< 323:4chan 321:like 39:in a 37:digit 31:is a 3515:Evil 3195:Self 3145:and 3035:Blum 2746:and 2550:Lobb 2505:Cake 2500:Bell 2250:Star 2157:Ulam 2056:Pell 1845:Cube 1697:2023 1387:2007 1326:ISBN 1260:OEIS 1246:OEIS 1216:= 22 1212:= 44 1208:= 55 1193:OEIS 991:OEIS 974:OEIS 917:OEIS 887:OEIS 862:OEIS 700:and 610:OEIS 571:OEIS 484:The 479:OEIS 461:OEIS 311:OEIS 205:< 179:< 173:< 88:base 61:4444 23:, a 3633:Ban 3021:or 2540:Lah 1358:doi 964:– 1 928:≥ 8 366:– 1 57:666 19:In 3703:: 1746:. 1713:. 1687:. 1662:. 1630:48 1628:. 1624:. 1606:25 1584:. 1439:MR 1435:12 1433:. 1429:. 1404:. 1378:. 1352:. 1324:. 1322:83 1304:^ 1218:19 1171:90 1106:, 1098:, 1001:: 976:). 951:–1 945:aa 943:= 939:Ă— 935:= 919:). 868:. 866:18 835:+ 800:, 796:, 782:, 778:, 753:, 741:+ 714:xx 680:. 678:73 590:. 514:10 451:12 405:10 313:). 276:. 255:10 238:10 59:, 55:, 53:11 1905:a 1786:e 1779:t 1772:v 1752:. 1724:. 1699:. 1673:. 1634:. 1610:. 1590:. 1586:3 1557:. 1551:: 1445:. 1408:. 1389:. 1364:. 1360:: 1334:. 1267:. 1220:. 1214:9 1210:7 1206:3 1188:k 1167:2 1163:n 1159:m 1155:y 1151:x 1147:p 1145:( 1140:5 1136:2 1132:n 1128:m 1124:y 1120:x 1116:p 1114:( 1108:m 1104:n 1100:y 1096:x 1079:1 1073:y 1068:1 1060:n 1056:y 1049:= 1043:1 1037:x 1032:1 1024:m 1020:x 1013:= 1010:p 962:b 958:a 949:b 941:b 937:a 933:n 902:. 896:k 882:n 873:k 849:q 841:b 837:b 833:b 829:n 816:b 806:7 802:q 798:b 794:p 790:3 784:q 780:b 776:p 774:( 770:p 759:b 755:q 751:p 747:b 743:b 739:b 735:p 726:p 722:p 718:y 710:y 706:x 702:y 698:x 660:1 657:+ 650:n 646:2 641:2 637:= 632:n 628:F 612:) 566:n 552:3 546:n 530:9 526:1 518:n 506:= 501:n 497:R 463:) 447:2 443:8 439:6 435:5 431:2 427:3 423:2 414:b 409:b 401:4 374:b 370:n 364:n 360:b 354:b 348:n 295:n 290:n 286:8 261:1 250:1 242:5 228:7 208:y 202:1 182:B 176:x 170:0 147:1 141:B 136:1 128:y 124:B 117:x 97:B

Index

recreational mathematics
natural number
digit
positional number system
decimal
portmanteau
11
666
4444
999999
palindromic numbers
repunits
repunit primes
Mersenne primes
base
A125134
OEIS
imageboards
4chan
Beiler (1966)
Fortaleza
Repunit prime
prime
repunit
A085104
OEIS
the sum of the reciprocals of the prime numbers
A306759
OEIS
decimal

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑