Knowledge

Regenerative fuel cell

Source 📝

138:
strontium copper ferrite and lanthanum strontium cobalt ferrite. Studies show that Ni/YSZ electrode was less active in reverse fuel cell operation than in fuel cell operation, and this can be attributed to a diffusion-limited process in the electrolysis direction, or its susceptibility to aging in a high-steam environment, primarily due to coarsening of nickel particles. Therefore, alternative materials such as the titanate/ceria composite (La0.35Sr0.65TiO3–Ce0.5La0.5O2−δ) or (La0.75Sr0.25)0.95Mn0.5Cr0.5O3 (LSCM) have been proposed electrolysis cathodes. Both LSF and LSM/YSZ are reported as good anode candidates for electrolysis mode. Furthermore, higher operation temperature and higher absolute humidity ratio can result in lower area specific resistance.
133:) curves and impedance spectra are investigated and recorded. Impedance spectra are realized applying an ac current of 1–2A RMS (root-mean-square) in the frequency range from 30 kHz to 10 Hz. Impedance spectra shows that the resistance is high at low frequencies (<10 kHz) and near zero at high frequencies (>10 kHz). Since high frequency corresponds to electrolyte activities, while low frequencies corresponds to electrodes process, it can be deduced that only a small fraction of the overall resistance is from the electrolyte and most resistance comes from anode and cathode. Hence, developing high performance electrodes are essential for high efficiency SORFC. Area specific resistance can be obtained from the slope of 122:
operation of YSZ electrolyte cells with current densities of 0.3 A cm and 100% Faraday efficiency at only 1.07 V. The recent study by researchers from Sweden shows that ceria-based composite electrolytes, where both proton and oxide ion conductions exist, produce high current output for fuel cell operation and high hydrogen output for electrolysis operation. Zirconia doped with scandia and ceria (10Sc1CeSZ) is also investigated as potential electrolyte in SORFC for
73:
form oxygen and protons; protons will be transported through the solid electrolyte to the cathode where they can be reduced to form hydrogen. In this reverse mode, the polarity of the cell is opposite to that for the fuel cell mode. The following reactions describe the chemical process in the hydrogen generation mode:
72:
When the fuel cell is operated in regenerative mode, the anode for the electricity production mode (fuel cell mode) becomes the cathode in the hydrogen generation mode (reverse fuel cell mode), and vice versa. When an external voltage is applied, water at the anode side will undergo electrolysis to
28:
run in reverse mode, which consumes electricity and chemical B to produce chemical A. By definition, the process of any fuel cell could be reversed. However, a given device is usually optimized for operating in one mode and may not be built in such a way that it can be operated backwards. Standard
137:
curve. Commonly used/tested electrodes materials are nickel/zirconia cermet (Ni/YSZ) and lanthanum-substituted strontium titanate/ceria composite for SORFC cathode, and lanthanum strontium manganite (LSM) for SORFC anode. Other anode materials can be lanthanum strontium ferrite (LSF), lanthanum
121:
The electrolyte can be O conducting and/or proton (H) conducting. The state of the art for O conducting yttria stabilized zirconia (YSZ) based SORFC using Ni–YSZ as the hydrogen electrode and LSM (or LSM–YSZ) as the oxygen electrode has been actively studied. Dönitz and Erdle reported on the
117:
operates at high temperatures with high fuel-to-electricity conversion ratios and it is a good candidate for high temperature electrolysis. Less electricity is required for electrolysis process in solid oxide regenerative fuel cells (SORFC) due to high temperature.
643: 562:
Laguna-Bercero, M.A.; J.A. Kilner; S.J. Skinner (2011). "Development of oxygen electrodes for reversible solid oxide fuel cells with scandia stabilized zirconia electrolytes".
414:
zhu, Bin; Ingvar Albinsson; Camilla Andersson; Karin Borsand; Monika Nilsson; Bengt-Erik Mellander (20 February 2006). "Electrolysis studies based on ceria-based composites".
255: 126:
at intermediate temperatures (500-750 °C). It is reported that 10Sc1CeSZ shows good behavior and produces high current densities, with suitable electrodes.
201: 990: 638: 442: 301: 224: 387:
Dönitz, W.; Erdle, E. (1985). "High-temperature electrolysis of water vapor—status of development and perspectives for application".
336: 1150: 520:
Marina, O. A.; Pederson, L. R.; Williams, M. C.; Coffey, G. W.; Meinhardt, K. D.; Nguyen, C. D.; Thomsen, E. C. (22 March 2007).
259: 176: 937: 493:
Brisse, Annabelle; Josef Schefold; Mohsine Zahida (October 2008). "High temperature water electrolysis in solid oxide cells".
675: 29:
fuel cells operated backwards generally do not make very efficient systems unless they are purpose-built to do so as with
713: 50: 915: 856: 38: 811: 851: 34: 1040: 951: 734: 1094: 975: 904: 821: 764: 147: 1061: 1005: 965: 930: 841: 703: 30: 1079: 831: 749: 708: 521: 836: 744: 668: 1033: 826: 759: 739: 69:
O); a regenerative hydrogen fuel cell uses electricity and water to produce hydrogen and oxygen.
785: 1028: 995: 923: 754: 718: 152: 114: 335:
Laguna-Bercero, M. A.; Campana, R.; Larrea, A.; Kilner, J. A.; Orera, V. M. (30 July 2010).
308: 231: 769: 602: 536: 457: 8: 1176: 980: 790: 661: 123: 606: 540: 461: 1084: 1015: 1010: 698: 618: 590: 369: 400: 622: 443:"Performance of solid oxide electrolysis cells based on scandia stabilised zirconia" 373: 337:"Performance and Aging ofMicrotubular YSZ-based Solid Oxide Regenerative Fuel Cells" 1140: 1119: 1045: 945: 891: 886: 881: 876: 610: 571: 544: 506: 502: 473: 469: 465: 423: 396: 359: 351: 648: 970: 427: 413: 180: 1020: 1000: 575: 1170: 1064: 806: 280: 947: 816: 478: 355: 157: 54: 1155: 1145: 202:"2001-High pressure electrolysis – The key technology for efficient H.2" 985: 588: 364: 614: 548: 440: 1109: 1104: 684: 561: 25: 281:"Proton Exchange Membrane- based Electrochemical Hygrogen Generator" 1089: 1074: 868: 589:
Hauch, A.; S. H. Jensen; S. Ramousse; M. Mogensen (18 July 2006).
492: 1099: 1069: 334: 1114: 441:
Laguna-Bercero, M.A; S.J. Skinnera; J.A. Kilner (1 July 2009).
591:"Performance and Durability of Solid Oxide Electrolysis Cells" 653: 522:"Electrode Performance in Reversible Solid Oxide Fuel Cells" 519: 1124: 113:
One example of RFC is solid oxide regenerative fuel cell.
649:
Compact Fuel Cell with Interleaved Electrolysis Layers
639:
2005– PEM regenerative fuel cell energy storage system
644:
Data sheet Model Car with a reversible fuel cell(PDF)
108: 330: 328: 325: 1168: 931: 669: 302:"Hydrogen-oxygen PEM regenerative fuel cell" 386: 938: 924: 676: 662: 477: 363: 1151:Standard electrode potential (data page) 495:International Journal of Hydrogen Energy 389:International Journal of Hydrogen Energy 256:"Electrolyzer and Reversible Fuel Cell" 1169: 595:Journal of the Electrochemical Society 529:Journal of the Electrochemical Society 44: 919: 657: 225:"Microsoft Word - E-14264 Layout.doc" 65:) to produce electricity and water (H 177:"Reversible fuel cell learning kit" 13: 1055:Materials produced by electrolysis 714:Proton-exchange membrane fuel cell 109:Solid oxide regenerative fuel cell 51:proton-exchange membrane fuel cell 14: 1188: 632: 283:. European Commission. 2005-10-01 39:unitized regenerative fuel cells 857:Unitized regenerative fuel cell 582: 555: 513: 486: 434: 416:Electrochemistry Communications 258:. Nfcrc.uci.edu. Archived from 991:Electrolysis of carbon dioxide 683: 507:10.1016/j.ijhydene.2008.07.120 470:10.1016/j.jpowsour.2008.12.139 407: 380: 294: 273: 248: 217: 194: 169: 35:solid-oxide electrolyser cells 1: 852:Solid oxide electrolyzer cell 179:. Ecosoul.org. Archived from 163: 1041:Electrochemical fluorination 952:Standard electrode potential 735:Direct borohydride fuel cell 428:10.1016/j.elecom.2006.01.011 401:10.1016/0360-3199(85)90181-8 7: 1095:Hydrogen evolution reaction 822:Membrane electrode assembly 765:Reformed methanol fuel cell 148:Glossary of fuel cell terms 141: 33:, regenerative fuel cells, 31:high-pressure electrolysers 10: 1193: 966:Betts electrolytic process 842:Protonic ceramic fuel cell 812:Electro-galvanic fuel cell 704:Molten carbonate fuel cell 1133: 1054: 958: 900: 867: 832:Photoelectrochemical cell 799: 778: 750:Direct methanol fuel cell 727: 709:Phosphoric acid fuel cell 691: 576:10.1016/j.ssi.2010.01.003 129:Current density–voltage ( 837:Proton-exchange membrane 745:Direct-ethanol fuel cell 450:Journal of Power Sources 976:Castner–Kellner process 827:Membraneless Fuel Cells 760:Metal hydride fuel cell 740:Direct carbon fuel cell 959:Electrolytic processes 847:Regenerative fuel cell 786:Enzymatic biofuel cell 356:10.1002/fuce.201000069 18:regenerative fuel cell 996:Electrolysis of water 755:Formic acid fuel cell 719:Solid oxide fuel cell 153:Hydrogen technologies 115:Solid oxide fuel cell 1006:Hall–Héroult process 946:Articles related to 53:, for example, uses 981:Chloralkali process 791:Microbial fuel cell 607:2006JElS..153A1741H 541:2007JElS..154B.452M 462:2009JPS...192..126L 124:hydrogen production 45:Process description 1085:Electrolysed water 1016:Kolbe electrolysis 1011:Hofmann voltameter 699:Alkaline fuel cell 564:Solid State Ionics 87:At anode: O → 1/2O 49:A hydrogen fueled 1164: 1163: 913: 912: 615:10.1149/1.2216562 549:10.1149/1.2710209 501:(20): 5375–5382. 22:reverse fuel cell 1184: 1141:Electrochemistry 1120:Sodium hydroxide 1046:Wohlwill process 940: 933: 926: 917: 916: 770:Zinc–air battery 678: 671: 664: 655: 654: 627: 626: 586: 580: 579: 559: 553: 552: 526: 517: 511: 510: 490: 484: 483: 481: 447: 438: 432: 431: 411: 405: 404: 384: 378: 377: 367: 341: 332: 323: 322: 320: 319: 313: 307:. Archived from 306: 298: 292: 291: 289: 288: 277: 271: 270: 268: 267: 252: 246: 245: 243: 242: 236: 230:. Archived from 229: 221: 215: 214: 212: 211: 206: 198: 192: 191: 189: 188: 173: 136: 132: 1192: 1191: 1187: 1186: 1185: 1183: 1182: 1181: 1167: 1166: 1165: 1160: 1129: 1110:Potassium metal 1105:Magnesium metal 1050: 971:Castner process 954: 944: 914: 909: 896: 863: 795: 774: 723: 687: 682: 635: 630: 587: 583: 560: 556: 524: 518: 514: 491: 487: 445: 439: 435: 412: 408: 385: 381: 339: 333: 326: 317: 315: 311: 304: 300: 299: 295: 286: 284: 279: 278: 274: 265: 263: 254: 253: 249: 240: 238: 234: 227: 223: 222: 218: 209: 207: 204: 200: 199: 195: 186: 184: 183:on May 11, 2008 175: 174: 170: 166: 144: 134: 130: 111: 105: 101: 97: 90: 83: 79: 68: 64: 61:) and oxygen (O 60: 47: 12: 11: 5: 1190: 1180: 1179: 1162: 1161: 1159: 1158: 1153: 1148: 1143: 1137: 1135: 1131: 1130: 1128: 1127: 1122: 1117: 1112: 1107: 1102: 1097: 1092: 1087: 1082: 1077: 1072: 1067: 1058: 1056: 1052: 1051: 1049: 1048: 1043: 1038: 1037: 1036: 1031: 1023: 1021:Hoopes process 1018: 1013: 1008: 1003: 1001:Electrowinning 998: 993: 988: 983: 978: 973: 968: 962: 960: 956: 955: 943: 942: 935: 928: 920: 911: 910: 908: 907: 901: 898: 897: 895: 894: 889: 884: 879: 873: 871: 865: 864: 862: 861: 860: 859: 854: 844: 839: 834: 829: 824: 819: 814: 809: 803: 801: 797: 796: 794: 793: 788: 782: 780: 776: 775: 773: 772: 767: 762: 757: 752: 747: 742: 737: 731: 729: 725: 724: 722: 721: 716: 711: 706: 701: 695: 693: 692:By electrolyte 689: 688: 681: 680: 673: 666: 658: 652: 651: 646: 641: 634: 633:External links 631: 629: 628: 581: 554: 512: 485: 456:(1): 126–131. 433: 422:(3): 495–498. 406: 395:(5): 291–295. 379: 324: 293: 272: 247: 216: 193: 167: 165: 162: 161: 160: 155: 150: 143: 140: 110: 107: 103: 99: 95: 88: 81: 77: 66: 62: 58: 46: 43: 9: 6: 4: 3: 2: 1189: 1178: 1175: 1174: 1172: 1157: 1154: 1152: 1149: 1147: 1144: 1142: 1139: 1138: 1136: 1132: 1126: 1123: 1121: 1118: 1116: 1113: 1111: 1108: 1106: 1103: 1101: 1100:Lithium metal 1098: 1096: 1093: 1091: 1088: 1086: 1083: 1081: 1078: 1076: 1073: 1071: 1070:Calcium metal 1068: 1066: 1063: 1060: 1059: 1057: 1053: 1047: 1044: 1042: 1039: 1035: 1032: 1030: 1027: 1026: 1024: 1022: 1019: 1017: 1014: 1012: 1009: 1007: 1004: 1002: 999: 997: 994: 992: 989: 987: 984: 982: 979: 977: 974: 972: 969: 967: 964: 963: 961: 957: 953: 949: 941: 936: 934: 929: 927: 922: 921: 918: 906: 903: 902: 899: 893: 890: 888: 885: 883: 880: 878: 875: 874: 872: 870: 866: 858: 855: 853: 850: 849: 848: 845: 843: 840: 838: 835: 833: 830: 828: 825: 823: 820: 818: 815: 813: 810: 808: 805: 804: 802: 798: 792: 789: 787: 784: 783: 781: 779:Biofuel cells 777: 771: 768: 766: 763: 761: 758: 756: 753: 751: 748: 746: 743: 741: 738: 736: 733: 732: 730: 726: 720: 717: 715: 712: 710: 707: 705: 702: 700: 697: 696: 694: 690: 686: 679: 674: 672: 667: 665: 660: 659: 656: 650: 647: 645: 642: 640: 637: 636: 624: 620: 616: 612: 608: 604: 600: 596: 592: 585: 577: 573: 569: 565: 558: 550: 546: 542: 538: 534: 530: 523: 516: 508: 504: 500: 496: 489: 480: 479:10044/1/13889 475: 471: 467: 463: 459: 455: 451: 444: 437: 429: 425: 421: 417: 410: 402: 398: 394: 390: 383: 375: 371: 366: 361: 357: 353: 349: 345: 338: 331: 329: 314:on 2011-03-03 310: 303: 297: 282: 276: 262:on 2009-06-18 261: 257: 251: 237:on 2009-06-29 233: 226: 220: 203: 197: 182: 178: 172: 168: 159: 156: 154: 151: 149: 146: 145: 139: 127: 125: 119: 116: 106: 92: 85: 76:At cathode: H 74: 70: 56: 52: 42: 40: 36: 32: 27: 23: 19: 1115:Sodium metal 1065:(extraction) 1025:Dow process 948:electrolysis 846: 817:Flow battery 601:(9): A1741. 598: 594: 584: 567: 563: 557: 532: 528: 515: 498: 494: 488: 453: 449: 436: 419: 415: 409: 392: 388: 382: 347: 343: 316:. Retrieved 309:the original 296: 285:. Retrieved 275: 264:. Retrieved 260:the original 250: 239:. Retrieved 232:the original 219: 208:. Retrieved 196: 185:. Retrieved 181:the original 171: 158:Flow Battery 128: 120: 112: 93: 86: 75: 71: 55:hydrogen gas 48: 21: 17: 15: 1156:Electrology 1146:Gas cracker 807:Blue energy 570:: 501–504. 535:(5): B452. 365:10261/53668 350:: 116–123. 24:(RFC) is a 1177:Fuel cells 986:Downs cell 685:Fuel cells 344:Fuel Cells 318:2009-09-24 287:2021-10-18 266:2009-09-24 241:2009-09-24 210:2009-09-24 187:2009-09-24 164:References 94:Overall: H 80:O + 2e → H 1062:Aluminium 1034:Magnesium 26:fuel cell 1171:Category 1134:See also 1090:Fluorine 1075:Chlorine 905:Glossary 869:Hydrogen 623:98331744 374:33333495 142:See also 98:O → 1/2O 1029:Bromine 892:Vehicle 887:Storage 882:Station 877:Economy 728:By fuel 603:Bibcode 537:Bibcode 458:Bibcode 1080:Copper 800:Others 621:  372:  619:S2CID 525:(PDF) 446:(PDF) 370:S2CID 340:(PDF) 312:(PDF) 305:(PDF) 235:(PDF) 228:(PDF) 205:(PDF) 91:+ 2e 1125:Zinc 84:+ O 37:and 611:doi 599:153 572:doi 568:192 545:doi 533:154 503:doi 474:hdl 466:doi 454:192 424:doi 397:doi 360:hdl 352:doi 135:j-V 131:j-V 102:+ H 20:or 1173:: 950:/ 617:. 609:. 597:. 593:. 566:. 543:. 531:. 527:. 499:33 497:. 472:. 464:. 452:. 448:. 418:. 393:10 391:. 368:. 358:. 348:11 346:. 342:. 327:^ 57:(H 41:. 16:A 939:e 932:t 925:v 677:e 670:t 663:v 625:. 613:: 605:: 578:. 574:: 551:. 547:: 539:: 509:. 505:: 482:. 476:: 468:: 460:: 430:. 426:: 420:8 403:. 399:: 376:. 362:: 354:: 321:. 290:. 269:. 244:. 213:. 190:. 104:2 100:2 96:2 89:2 82:2 78:2 67:2 63:2 59:2

Index

fuel cell
high-pressure electrolysers
solid-oxide electrolyser cells
unitized regenerative fuel cells
proton-exchange membrane fuel cell
hydrogen gas
Solid oxide fuel cell
hydrogen production
Glossary of fuel cell terms
Hydrogen technologies
Flow Battery
"Reversible fuel cell learning kit"
the original
"2001-High pressure electrolysis – The key technology for efficient H.2"
"Microsoft Word - E-14264 Layout.doc"
the original
"Electrolyzer and Reversible Fuel Cell"
the original
"Proton Exchange Membrane- based Electrochemical Hygrogen Generator"
"Hydrogen-oxygen PEM regenerative fuel cell"
the original


"Performance and Aging ofMicrotubular YSZ-based Solid Oxide Regenerative Fuel Cells"
doi
10.1002/fuce.201000069
hdl
10261/53668
S2CID
33333495

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.