Knowledge

RE (complexity)

Source 📝

44:
in a finite amount of time. Informally, it means that if the answer to a problem instance is 'yes', then there is some procedure that takes finite time to determine this, and this procedure never falsely reports 'yes' when the true answer is 'no'. However, when the true answer is 'no', the procedure
493:: Given a list of pairs of strings, determine if there is a selection from these pairs (allowing repeats) such that the concatenation of the first items (of the pairs) is equal to the concatenation of the second items. 342: 210:. In fact, it is the intersection of those two classes, because we can decide any problem for which there exists a recogniser and also a co-recogniser by simply interleaving them until one obtains a result. Therefore: 183:
on every input and outputting strings that are accepted (there is an order of execution that will eventually get to every execution step because there are countably many ordered pairs of inputs and steps).
255: 273:. These are the set of languages for which neither membership nor non-membership can be proven in a finite amount of time, and contain all other languages that are not in either 181: 161: 141: 121: 88:
is the class of decision problems for which a Turing machine can list all the 'yes' instances, one by one (this is what 'enumerable' means). Each member of
392:. In a sense, these are the "hardest" recursively enumerable problems. Generally, no constraint is placed on the reductions used except that they must be 287: 644:
if, in addition, whenever the problem has no solution the method enables the device to determine this after a finite number of steps and halts.
790: 163:
accepts when an input is in a language, another machine can enumerate all strings in the language by interleaving simulations of
216: 76:
contains languages of which membership can be disproved in a finite amount of time, but proving membership might take forever.
552: 1152: 783: 21: 1192: 572: 557: 348:
Not only are these problems undecidable, but neither they nor their complement are recursively enumerable.
1187: 776: 638:(if one exists) appears after the performance of finitely many steps. A semi-algorithm will be called an 490: 1168: 975: 443: 93: 29: 365: 359:(the class where a classical verifier interacts with multiple all-powerful quantum provers who share 1157: 370: 455: 65: 1111: 617: 374: 673:
Ji, Zhengfeng; Natarajan, Anand; Vidick, Thomas; Wright, John; Yuen, Henry (2020). "MIP*=RE".
1106: 1101: 562: 694:
Ji, Zhengfeng; Natarajan, Anand; Vidick, Thomas; Wright, John; Yuen, Henry (November 2021).
1096: 759: 497: 466: 360: 17: 8: 447: 414: 516:. In a sense, these are the complements of the hardest recursively enumerable problems. 717: 674: 610: 393: 193: 166: 146: 126: 106: 1116: 721: 539: 484: 410: 123:
that enumerates all accepted inputs, another machine that takes in a string can run
1080: 970: 902: 892: 799: 747: 707: 480: 37: 33: 661: 1065: 1022: 1012: 1005: 995: 985: 943: 938: 933: 917: 897: 875: 870: 865: 853: 848: 843: 838: 755: 567: 403: 97: 612:
Logic and Algorithms, With Applications to the Computer and Information Sciences
596: 1070: 958: 880: 833: 656: 591: 535: 524: 469: 198: 41: 406:: Whether a program given a finite input finishes running or will run forever. 1181: 751: 46: 432: 337:{\displaystyle {\mbox{NRNC}}={\mbox{ALL}}-({\mbox{RE}}\cup {\mbox{co-RE}})} 948: 858: 735: 424: 1060: 885: 421:-hard. It will be complete whenever the set is recursively enumerable. 1055: 768: 640: 528: 451: 54: 712: 695: 1050: 1045: 990: 813: 679: 1040: 740:
Zeitschrift für Mathematische Logik und Grundlagen der Mathematik
363:); a revised, but not yet fully reviewed, proof was published in 143:
and accept if the string is enumerated. Conversely, if a machine
1147: 1142: 1017: 1000: 49:" for some 'no' cases. Such a procedure is sometimes called a 1137: 1132: 953: 413:, deciding membership in any nontrivial subset of the set of 103:
To show this is equivalent, note that if there is a machine
965: 823: 980: 912: 907: 828: 818: 250:{\displaystyle {\mbox{R}}={\mbox{RE}}\cap {\mbox{co-RE}}} 57:, defined as a complete solution to a decision problem. 693: 672: 512:
is the set of decision problems that are complete for
388:
is the set of decision problems that are complete for
351:
In January of 2020, a preprint announced a proof that
325: 315: 302: 292: 241: 231: 221: 290: 219: 169: 149: 129: 109: 609: 336: 261:Conversely, the set of languages that are neither 249: 175: 155: 135: 115: 1179: 40:for which a 'yes' answer can be verified by a 784: 369:in November 2021. The proof implies that the 187: 45:is not required to halt; it may go into an " 472:. (Again, certain individual grammars have 791: 777: 711: 678: 607: 79: 456:word problem for some individual groups 1180: 798: 734: 622:A method of solution will be called a 519:Examples of co-RE-complete problems: 428: 772: 64:is the set of all languages that are 13: 399:Examples of RE-complete problems: 14: 1204: 1153:Probabilistically checkable proof 553:Knuth–Bendix completion algorithm 504: 465:Deciding membership in a general 476:-complete membership problems.) 22:computational complexity theory 728: 687: 666: 649: 601: 584: 380: 331: 311: 1: 578: 608:Korfhage, Robert R. (1966). 558:List of undecidable problems 355:was equivalent to the class 53:, to distinguish it from an 7: 546: 491:Post correspondence problem 10: 1209: 1169:List of complexity classes 500:has any integer solutions. 188:Relations to other classes 94:recursively enumerable set 1166: 1125: 1089: 1033: 926: 806: 738:(1955), "Creative sets", 700:Communications of the ACM 366:Communications of the ACM 1158:Interactive proof system 752:10.1002/malq.19550010205 371:Connes embedding problem 1112:Arithmetical hierarchy 338: 251: 202:) is a subset of both 177: 157: 137: 117: 30:recursively enumerable 1107:Grzegorczyk hierarchy 1102:Exponential hierarchy 1034:Considered infeasible 563:Polymorphic recursion 339: 252: 178: 158: 138: 118: 80:Equivalent definition 1193:Undecidable problems 1097:Polynomial hierarchy 927:Suspected infeasible 498:Diophantine equation 288: 217: 167: 147: 127: 107: 18:computability theory 1126:Families of classes 807:Considered feasible 634:if the solution to 415:recursive functions 394:many-one reductions 375:Tsirelson's problem 194:recursive languages 1188:Complexity classes 800:Complexity classes 431:) proved that all 334: 329: 319: 306: 296: 247: 245: 235: 225: 173: 153: 133: 113: 1175: 1174: 1117:Boolean hierarchy 1090:Class hierarchies 616:. Wiley. p.  540:first-order logic 496:Determining if a 485:first-order logic 328: 318: 305: 295: 244: 234: 224: 176:{\displaystyle M} 156:{\displaystyle M} 136:{\displaystyle E} 116:{\displaystyle E} 68:of a language in 38:decision problems 1200: 793: 786: 779: 770: 769: 764: 762: 732: 726: 725: 715: 691: 685: 684: 682: 670: 664: 653: 647: 646: 615: 605: 599: 588: 573:Semidecidability 343: 341: 340: 335: 330: 326: 320: 316: 307: 303: 297: 293: 256: 254: 253: 248: 246: 242: 236: 232: 226: 222: 182: 180: 179: 174: 162: 160: 159: 154: 142: 140: 139: 134: 122: 120: 119: 114: 96:and therefore a 1208: 1207: 1203: 1202: 1201: 1199: 1198: 1197: 1178: 1177: 1176: 1171: 1162: 1121: 1085: 1029: 1023:PSPACE-complete 922: 802: 797: 767: 733: 729: 713:10.1145/3485628 706:(11): 131–138. 692: 688: 671: 667: 654: 650: 606: 602: 589: 585: 581: 568:Risch algorithm 549: 507: 454:. (Indeed, the 425:John Myhill 404:Halting problem 383: 324: 314: 301: 291: 289: 286: 285: 240: 230: 220: 218: 215: 214: 190: 168: 165: 164: 148: 145: 144: 128: 125: 124: 108: 105: 104: 98:Diophantine set 82: 72:. In a sense, 12: 11: 5: 1206: 1196: 1195: 1190: 1173: 1172: 1167: 1164: 1163: 1161: 1160: 1155: 1150: 1145: 1140: 1135: 1129: 1127: 1123: 1122: 1120: 1119: 1114: 1109: 1104: 1099: 1093: 1091: 1087: 1086: 1084: 1083: 1078: 1073: 1068: 1063: 1058: 1053: 1048: 1043: 1037: 1035: 1031: 1030: 1028: 1027: 1026: 1025: 1015: 1010: 1009: 1008: 998: 993: 988: 983: 978: 973: 968: 963: 962: 961: 959:co-NP-complete 956: 951: 946: 936: 930: 928: 924: 923: 921: 920: 915: 910: 905: 900: 895: 890: 889: 888: 878: 873: 868: 863: 862: 861: 851: 846: 841: 836: 831: 826: 821: 816: 810: 808: 804: 803: 796: 795: 788: 781: 773: 766: 765: 727: 686: 665: 657:Complexity Zoo 648: 624:semi-algorithm 600: 592:Complexity Zoo 582: 580: 577: 576: 575: 570: 565: 560: 555: 548: 545: 544: 543: 536:satisfiability 532: 525:domino problem 510:co-RE-complete 506: 505:co-RE-complete 503: 502: 501: 494: 488: 477: 470:formal grammar 463: 440: 422: 411:Rice's Theorem 407: 382: 379: 346: 345: 333: 323: 313: 310: 300: 259: 258: 239: 229: 189: 186: 172: 152: 132: 112: 84:Equivalently, 81: 78: 51:semi-algorithm 42:Turing machine 9: 6: 4: 3: 2: 1205: 1194: 1191: 1189: 1186: 1185: 1183: 1170: 1165: 1159: 1156: 1154: 1151: 1149: 1146: 1144: 1141: 1139: 1136: 1134: 1131: 1130: 1128: 1124: 1118: 1115: 1113: 1110: 1108: 1105: 1103: 1100: 1098: 1095: 1094: 1092: 1088: 1082: 1079: 1077: 1074: 1072: 1069: 1067: 1064: 1062: 1059: 1057: 1054: 1052: 1049: 1047: 1044: 1042: 1039: 1038: 1036: 1032: 1024: 1021: 1020: 1019: 1016: 1014: 1011: 1007: 1004: 1003: 1002: 999: 997: 994: 992: 989: 987: 984: 982: 979: 977: 974: 972: 969: 967: 964: 960: 957: 955: 952: 950: 947: 945: 942: 941: 940: 937: 935: 932: 931: 929: 925: 919: 916: 914: 911: 909: 906: 904: 901: 899: 896: 894: 891: 887: 884: 883: 882: 879: 877: 874: 872: 869: 867: 864: 860: 857: 856: 855: 852: 850: 847: 845: 842: 840: 837: 835: 832: 830: 827: 825: 822: 820: 817: 815: 812: 811: 809: 805: 801: 794: 789: 787: 782: 780: 775: 774: 771: 761: 757: 753: 749: 746:(2): 97–108, 745: 741: 737: 731: 723: 719: 714: 709: 705: 701: 697: 690: 681: 676: 669: 663: 659: 658: 652: 645: 643: 642: 637: 633: 629: 625: 619: 614: 613: 604: 598: 594: 593: 587: 583: 574: 571: 569: 566: 564: 561: 559: 556: 554: 551: 550: 541: 537: 533: 530: 526: 522: 521: 520: 517: 515: 511: 499: 495: 492: 489: 486: 482: 478: 475: 471: 468: 464: 461: 457: 453: 449: 445: 441: 438: 434: 433:creative sets 430: 426: 423: 420: 416: 412: 408: 405: 402: 401: 400: 397: 395: 391: 387: 378: 376: 372: 368: 367: 362: 358: 354: 349: 321: 308: 298: 284: 283: 282: 280: 276: 272: 268: 264: 237: 227: 213: 212: 211: 209: 205: 201: 200: 195: 185: 170: 150: 130: 110: 101: 99: 95: 91: 87: 77: 75: 71: 67: 63: 58: 56: 52: 48: 47:infinite loop 43: 39: 35: 31: 27: 23: 19: 1075: 743: 739: 736:Myhill, John 730: 703: 699: 689: 668: 655: 651: 639: 635: 631: 627: 623: 621: 611: 603: 590: 586: 538:problem for 518: 513: 509: 508: 483:problem for 473: 467:unrestricted 459: 444:word problem 442:The uniform 436: 418: 398: 389: 385: 384: 364: 361:entanglement 356: 352: 350: 347: 278: 274: 270: 269:is known as 266: 262: 260: 207: 203: 197: 191: 102: 89: 85: 83: 73: 69: 61: 59: 50: 25: 15: 1006:#P-complete 944:NP-complete 859:NL-complete 696:"MIP* = RE" 662:Class co-RE 462:-complete.) 386:RE-complete 381:RE-complete 377:are false. 281:. That is: 192:The set of 66:complements 60:Similarly, 1182:Categories 1061:ELEMENTARY 886:P-complete 680:2001.04383 579:References 529:Wang tiles 452:semigroups 439:-complete. 1056:2-EXPTIME 722:210165045 641:algorithm 322:∪ 309:− 238:∩ 55:algorithm 32:) is the 1051:EXPSPACE 1046:NEXPTIME 814:DLOGTIME 597:Class RE 547:See also 481:validity 1041:EXPTIME 949:NP-hard 760:0071379 427: ( 1148:NSPACE 1143:DSPACE 1018:PSPACE 758:  720:  448:groups 1138:NTIME 1133:DTIME 954:co-NP 718:S2CID 675:arXiv 626:for 514:co-RE 327:co-RE 279:co-RE 267:co-RE 243:co-RE 208:co-RE 92:is a 74:co-RE 62:co-RE 34:class 966:TFNP 630:on 534:The 527:for 523:The 479:The 446:for 435:are 429:1955 373:and 357:MIP* 294:NRNC 271:NRNC 265:nor 206:and 20:and 1081:ALL 981:QMA 971:FNP 913:APX 908:BQP 903:BPP 893:ZPP 824:ACC 748:doi 708:doi 458:is 450:or 417:is 409:By 353:RE 304:ALL 277:or 36:of 16:In 1184:: 1076:RE 1066:PR 1013:IP 1001:#P 996:PP 991:⊕P 986:PH 976:AM 939:NP 934:UP 918:FP 898:RP 876:CC 871:SC 866:NC 854:NL 849:FL 844:RL 839:SL 829:TC 819:AC 756:MR 754:, 742:, 716:. 704:64 702:. 698:. 660:: 620:. 618:89 595:: 474:RE 460:RE 437:RE 419:RE 396:. 390:RE 317:RE 275:RE 263:RE 233:RE 204:RE 100:. 90:RE 86:RE 70:RE 26:RE 24:, 1071:R 881:P 834:L 792:e 785:t 778:v 763:. 750:: 744:1 724:. 710:: 683:. 677:: 636:P 632:M 628:P 542:. 531:. 487:. 344:. 332:) 312:( 299:= 257:. 228:= 223:R 199:R 196:( 171:M 151:M 131:E 111:E 28:(

Index

computability theory
computational complexity theory
recursively enumerable
class
decision problems
Turing machine
infinite loop
algorithm
complements
recursively enumerable set
Diophantine set
recursive languages
R
entanglement
Communications of the ACM
Connes embedding problem
Tsirelson's problem
many-one reductions
Halting problem
Rice's Theorem
recursive functions
John Myhill
1955
creative sets
word problem
groups
semigroups
word problem for some individual groups
unrestricted
formal grammar

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.