Knowledge

Quasi-polynomial time

Source đź“ť

377:, several equivalent problems of converting logical formulas between conjunctive and disjunctive normal form, listing all minimal hitting sets of a family of sets, or listing all minimal set covers of a family of sets, with time complexity measured in the combined input and output size. 311: 170: 212: 1127: 98: 72: 715: 383:, involving token-passing along the edges of a colored directed graph. The paper giving a quasi-polynomial algorithm for these games won the 2021 322: 813:
Calude, Cristian S.; Jain, Sanjay; Khoussainov, Bakhadyr; Li, Wei; Stephan, Frank (2022), "Deciding parity games in quasi-polynomial time",
676: 109: 421:, determining whether two graphs can be made equal to each other by relabeling their vertices, announced in 2015 and updated in 2017 by 1178: 1173: 1051: 890: 935: 626:
Proceedings of the 31st Annual ACM–SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5–8, 2020
652: 462: 17: 1136:
Proceedings of the 26th Annual ACM–SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4–6, 2015
1059: 775:
Eiter, Thomas; Makino, Kazuhisa; Gottlob, Georg (2008), "Computational aspects of monotone dualization: a brief survey",
1054:; Rzazewski, Pawel; Sikora, Florian (2018), "QPTAS and subexponential algorithm for maximum clique on disk graphs", in 391: 341: 1134: 624: 1163: 35: 1084: 671: 777: 466: 1168: 413:
Problems for which a quasi-polynomial time algorithm has been announced but not fully published include:
337: 306:{\displaystyle {\mathsf {QP}}=\bigcup _{c\in \mathbb {N} }{\mathsf {DTIME}}\left(2^{(\log n)^{c}}\right)} 973: 409:, a subset of the vertices of the tournament that has at least one directed edge to all other vertices. 1061:
34th International Symposium on Computational Geometry, SoCG 2018, June 11–14, 2018, Budapest, Hungary
815: 731: 729:
Hazan, Elad; Krauthgamer, Robert (2011), "How hard is it to approximate the best Nash equilibrium?",
577: 418: 406: 745: 202:
consists of all problems that have quasi-polynomial time algorithms. It can be defined in terms of
454: 51: 1064:, LIPIcs, vol. 99, Schloss Dagstuhl – Leibniz-Zentrum fĂĽr Informatik, pp. 12:1–12:15, 1090: 881: 740: 619:
Kisfaludi-Bak, Sándor (2020), "Hyperbolic intersection graphs and (quasi)-polynomial time", in
39: 28: 994:
Marc Lackenby announces a new unknot recognition algorithm that runs in quasi-polynomial time
585: 531: 465:
whose running time is quasi-polynomial rather than polynomial. Problems with a QPTAS include
998: 956: 913: 846: 800: 762: 374: 8: 1022:(2009), "A quasi-polynomial time approximation scheme for minimum weight triangulation", 75: 344:. For instance, this is true for finding the largest disjoint subset of a collection of 1024: 885: 685: 630: 602: 548: 474: 429: 359:
Other problems for which the best known algorithm takes quasi-polynomial time include:
330: 83: 57: 1087:; Kun-Ko, Young; Weinstein, Omri (2015), "Approximating the best Nash equilibrium in 1055: 948: 709: 648: 422: 1140: 1065: 1033: 944: 899: 832: 824: 786: 750: 695: 640: 594: 565: 540: 481: 353: 349: 175: 336:
In some cases, quasi-polynomial time bounds can be proven to be optimal under the
1019: 978: 969: 952: 909: 842: 796: 758: 518: 179: 47: 1070: 644: 598: 506: 371:
has been modified by adding edges between all pairs of a subset of its vertices.
1144: 926: 667: 522: 501: 470: 402: 395: 364: 183: 791: 352:, and for finding a graph with the fewest vertices that does not appear as an 1157: 888:(1996), "On limited nondeterminism and the complexity of the V-C dimension", 620: 526: 441: 1037: 904: 859: 573: 569: 484:
has a QPTAS, but cannot have a PTAS under the exponential time hypothesis.
433: 384: 368: 326: 1130: 930: 380: 103: 992: 828: 700: 674:(2023), "Quasipolynomiality of the smallest missing induced subgraph", 606: 552: 178:
with quasi-polynomial time algorithms are natural candidates for being
837: 754: 345: 329:
has subsequently been shown to have a polynomial time algorithm, the
544: 690: 635: 529:(1983), "On distinguishing prime numbers from composite numbers", 187: 933:(1988), "On finding a minimum dominating set in a tournament", 437: 1049: 321:
An early example of a quasi-polynomial time algorithm was the
203: 1083: 325:; however, the problem of testing whether a number is a 880: 812: 666: 1093: 517: 480:
More strongly, the problem of finding an approximate
215: 112: 86: 60: 165:{\displaystyle 2^{O{\bigl (}(\log n)^{c}{\bigr )}}.} 1129:-time breaks the Exponential Time Hypothesis", in 1121: 774: 564: 453:Quasi-polynomial time has also been used to study 305: 164: 92: 66: 1155: 728: 925: 448: 618: 152: 123: 714:: CS1 maint: DOI inactive as of July 2024 ( 677:Journal of Graph Algorithms and Applications 1043: 1017: 459:quasi-polynomial-time approximation scheme 1069: 968: 903: 836: 790: 744: 699: 689: 634: 241: 54:. That is, there should exist a constant 962: 919: 891:Journal of Computer and System Sciences 612: 323:Adleman–Pomerance–Rumely primality test 14: 1156: 1050:Bonnet, Édouard; Giannopoulos, Panos; 985: 974:"Graph isomorphism vanquished — again" 768: 722: 660: 261: 258: 255: 252: 249: 221: 218: 874: 852: 806: 1077: 463:polynomial-time approximation scheme 1011: 193: 24: 558: 511: 494: 367:problem, of determining whether a 25: 1190: 342:computational hardness assumption 1179:Quasi-polynomial time algorithms 1174:Computational complexity theory 78:of the algorithm, on inputs of 42:, an algorithm is said to take 36:computational complexity theory 1114: 1102: 672:Williams, Virginia Vassilevska 507:Class QP: Quasipolynomial-Time 288: 275: 141: 128: 13: 1: 487: 392:Vapnik–Chervonenkis dimension 949:10.1016/0304-3975(88)90131-4 936:Theoretical Computer Science 823:(2): STOC17-152–STOC17-188, 778:Discrete Applied Mathematics 467:minimum-weight triangulation 7: 1071:10.4230/LIPICS.SOCG.2018.12 645:10.1137/1.9781611975994.100 599:10.4007/annals.2004.160.781 449:In approximation algorithms 338:exponential time hypothesis 316: 10: 1195: 1145:10.1137/1.9781611973730.66 1122:{\textstyle n^{o(\log n)}} 997:, Mathematical Institute, 882:Papadimitriou, Christos H. 461:(QPTAS) is a variant of a 52:quasi-polynomially bounded 26: 1058:; TĂłth, Csaba D. (eds.), 816:SIAM Journal on Computing 792:10.1016/j.dam.2007.04.017 732:SIAM Journal on Computing 419:graph isomorphism problem 455:approximation algorithms 432:, recognizing whether a 27:Not to be confused with 1038:10.1145/1516512.1516517 76:worst-case running time 1164:Analysis of algorithms 1123: 905:10.1006/jcss.1996.0058 629:, pp. 1621–1638, 307: 166: 94: 68: 40:analysis of algorithms 29:Pseudo-polynomial time 1124: 704:(inactive 2024-07-29) 586:Annals of Mathematics 532:Annals of Mathematics 401:Finding the smallest 308: 198:The complexity class 167: 95: 69: 44:quasi-polynomial time 1139:, pp. 970–982, 1091: 999:University of Oxford 972:(January 14, 2017), 375:Monotone dualization 213: 110: 84: 58: 18:Quasipolynomial time 886:Yannakakis, Mihalis 670:; Lincoln, Andrea; 519:Adleman, Leonard M. 457:. In particular, a 1169:Complexity classes 1119: 1056:Speckmann, Bettina 1032:(3), Article A15, 1025:Journal of the ACM 829:10.1137/17M1145288 701:10.7155/jgaa.00625 475:intersection graph 469:, and finding the 430:unknotting problem 356:of a given graph. 331:AKS primality test 303: 246: 162: 90: 64: 861:IPEC Nerode Prize 785:(11): 2035–2049, 755:10.1137/090766991 654:978-1-61197-599-4 566:Agrawal, Manindra 527:Rumely, Robert S. 229: 186:nor likely to be 182:, neither having 176:decision problems 93:{\displaystyle n} 67:{\displaystyle c} 16:(Redirected from 1186: 1148: 1147: 1128: 1126: 1125: 1120: 1118: 1117: 1081: 1075: 1074: 1073: 1047: 1041: 1040: 1020:Steger, Angelika 1015: 1009: 1008: 1007: 1006: 989: 983: 982: 970:Klarreich, Erica 966: 960: 959: 943:(2–3): 307–316, 923: 917: 916: 907: 878: 872: 871: 870: 869: 856: 850: 849: 840: 810: 804: 803: 794: 772: 766: 765: 748: 726: 720: 719: 713: 705: 703: 693: 664: 658: 657: 638: 616: 610: 609: 582: 578:"PRIMES is in P" 562: 556: 555: 515: 509: 498: 482:Nash equilibrium 354:induced subgraph 350:hyperbolic plane 312: 310: 309: 304: 302: 298: 297: 296: 295: 265: 264: 245: 244: 225: 224: 194:Complexity class 171: 169: 168: 163: 158: 157: 156: 155: 149: 148: 127: 126: 101: 99: 97: 96: 91: 73: 71: 70: 65: 21: 1194: 1193: 1189: 1188: 1187: 1185: 1184: 1183: 1154: 1153: 1152: 1151: 1098: 1094: 1092: 1089: 1088: 1085:Braverman, Mark 1082: 1078: 1048: 1044: 1016: 1012: 1004: 1002: 991: 990: 986: 979:Quanta Magazine 967: 963: 927:Megiddo, Nimrod 924: 920: 879: 875: 867: 865: 858: 857: 853: 811: 807: 773: 769: 746:10.1.1.511.4422 727: 723: 707: 706: 668:Eppstein, David 665: 661: 655: 617: 613: 580: 563: 559: 545:10.2307/2006975 523:Pomerance, Carl 516: 512: 499: 495: 490: 451: 440:, announced by 319: 291: 287: 274: 270: 266: 248: 247: 240: 233: 217: 216: 214: 211: 210: 196: 184:polynomial time 180:NP-intermediate 151: 150: 144: 140: 122: 121: 117: 113: 111: 108: 107: 85: 82: 81: 79: 59: 56: 55: 48:time complexity 32: 23: 22: 15: 12: 11: 5: 1192: 1182: 1181: 1176: 1171: 1166: 1150: 1149: 1116: 1113: 1110: 1107: 1104: 1101: 1097: 1076: 1042: 1010: 984: 961: 918: 898:(2): 161–170, 873: 851: 805: 767: 721: 684:(5): 329–339, 659: 653: 621:Chawla, Shuchi 611: 593:(2): 781–793, 557: 539:(1): 173–206, 510: 502:Complexity Zoo 492: 491: 489: 486: 471:maximum clique 450: 447: 446: 445: 436:describes the 426: 411: 410: 403:dominating set 399: 396:family of sets 390:Computing the 388: 378: 372: 365:planted clique 318: 315: 314: 313: 301: 294: 290: 286: 283: 280: 277: 273: 269: 263: 260: 257: 254: 251: 243: 239: 236: 232: 228: 223: 220: 195: 192: 161: 154: 147: 143: 139: 136: 133: 130: 125: 120: 116: 89: 74:such that the 63: 9: 6: 4: 3: 2: 1191: 1180: 1177: 1175: 1172: 1170: 1167: 1165: 1162: 1161: 1159: 1146: 1142: 1138: 1137: 1132: 1111: 1108: 1105: 1099: 1095: 1086: 1080: 1072: 1067: 1063: 1062: 1057: 1053: 1052:Kim, Eun Jung 1046: 1039: 1035: 1031: 1027: 1026: 1021: 1014: 1000: 996: 995: 988: 981: 980: 975: 971: 965: 958: 954: 950: 946: 942: 938: 937: 932: 928: 922: 915: 911: 906: 901: 897: 893: 892: 887: 883: 877: 863: 862: 855: 848: 844: 839: 834: 830: 826: 822: 818: 817: 809: 802: 798: 793: 788: 784: 780: 779: 771: 764: 760: 756: 752: 747: 742: 738: 734: 733: 725: 717: 711: 702: 697: 692: 687: 683: 679: 678: 673: 669: 663: 656: 650: 646: 642: 637: 632: 628: 627: 622: 615: 608: 604: 600: 596: 592: 588: 587: 579: 575: 574:Saxena, Nitin 571: 570:Kayal, Neeraj 567: 561: 554: 550: 546: 542: 538: 534: 533: 528: 524: 520: 514: 508: 504: 503: 497: 493: 485: 483: 478: 476: 472: 468: 464: 460: 456: 443: 442:Marc Lackenby 439: 435: 431: 427: 424: 420: 416: 415: 414: 408: 404: 400: 397: 393: 389: 386: 382: 379: 376: 373: 370: 366: 362: 361: 360: 357: 355: 351: 347: 343: 340:or a related 339: 334: 332: 328: 324: 299: 292: 284: 281: 278: 271: 267: 237: 234: 230: 226: 209: 208: 207: 205: 201: 191: 189: 185: 181: 177: 172: 159: 145: 137: 134: 131: 118: 114: 105: 87: 77: 61: 53: 49: 45: 41: 37: 30: 19: 1135: 1131:Indyk, Piotr 1079: 1060: 1045: 1029: 1023: 1013: 1003:, retrieved 1001:, 2021-02-03 993: 987: 977: 964: 940: 934: 931:Vishkin, Uzi 921: 895: 889: 876: 866:, retrieved 860: 854: 820: 814: 808: 782: 776: 770: 739:(1): 79–91, 736: 730: 724: 681: 675: 662: 625: 614: 590: 584: 560: 536: 530: 513: 500: 496: 479: 458: 452: 434:knot diagram 423:LászlĂł Babai 412: 385:Nerode Prize 381:Parity games 369:random graph 358: 335: 327:prime number 320: 206:as follows. 199: 197: 173: 106:of the form 43: 33: 1018:Remy, Jan; 104:upper bound 1158:Categories 1005:2021-02-03 868:2023-12-03 838:2292/31757 691:2306.11185 636:1812.03960 488:References 477:of disks. 407:tournament 346:unit disks 1109:⁡ 741:CiteSeerX 282:⁡ 238:∈ 231:⋃ 135:⁡ 710:citation 576:(2004), 444:in 2021. 317:Examples 38:and the 1133:(ed.), 957:0980249 914:1418886 864:, EATCS 847:4413072 801:2437000 763:2765712 623:(ed.), 607:3597229 553:2006975 473:on the 348:in the 188:NP-hard 102:has an 46:if its 955:  912:  845:  799:  761:  743:  651:  605:  551:  438:unknot 686:arXiv 631:arXiv 603:JSTOR 581:(PDF) 549:JSTOR 405:in a 394:of a 204:DTIME 80:size 716:link 649:ISBN 428:The 417:The 363:The 174:The 1141:doi 1106:log 1066:doi 1034:doi 945:doi 900:doi 833:hdl 825:doi 787:doi 783:156 751:doi 696:doi 641:doi 595:doi 591:160 541:doi 537:117 279:log 132:log 50:is 34:In 1160:: 1030:56 1028:, 976:, 953:MR 951:, 941:61 939:, 929:; 910:MR 908:, 896:53 894:, 884:; 843:MR 841:, 831:, 821:51 819:, 797:MR 795:, 781:, 759:MR 757:, 749:, 737:40 735:, 712:}} 708:{{ 694:, 682:27 680:, 647:, 639:, 601:, 589:, 583:, 572:; 568:; 547:, 535:, 525:; 521:; 505:: 333:. 200:QP 190:. 1143:: 1115:) 1112:n 1103:( 1100:o 1096:n 1068:: 1036:: 947:: 902:: 835:: 827:: 789:: 753:: 718:) 698:: 688:: 643:: 633:: 597:: 543:: 425:. 398:. 387:. 300:) 293:c 289:) 285:n 276:( 272:2 268:( 262:E 259:M 256:I 253:T 250:D 242:N 235:c 227:= 222:P 219:Q 160:. 153:) 146:c 142:) 138:n 129:( 124:( 119:O 115:2 100:, 88:n 62:c 31:. 20:)

Index

Quasipolynomial time
Pseudo-polynomial time
computational complexity theory
analysis of algorithms
time complexity
quasi-polynomially bounded
worst-case running time
upper bound
decision problems
NP-intermediate
polynomial time
NP-hard
DTIME
Adleman–Pomerance–Rumely primality test
prime number
AKS primality test
exponential time hypothesis
computational hardness assumption
unit disks
hyperbolic plane
induced subgraph
planted clique
random graph
Monotone dualization
Parity games
Nerode Prize
Vapnik–Chervonenkis dimension
family of sets
dominating set
tournament

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑