Knowledge

List of quantum key distribution protocols

Source đź“ť

1150: 1140: 35: 169:(1992) is a quantum key distribution method that uses entanglement distillation protocols to prepare and transmit nonorthogonal quantum states with unconditional security, even over lossy and noisy channels, by measuring the state on the Z basis and using local filtering and Z basis measurements to ensure the security of the transmission is determined by the number of errors and the number of filter pairs used. 187:(2002) is a simple and efficient quantum key distribution (QKD) method that does not require a basis selection process like the traditional BB84 protocol, has a simpler receiver configuration with fewer detectors, uses efficient sequential pulses in the time domain for high key creation speed, and is robust against photon-number splitting attacks even with weak coherent light. 151:(1984) is a quantum key distribution scheme that allows two parties to securely communicate a private key for use in one-time pad encryption using the quantum property that information gain is only possible at the expense of disturbing the signal if the two states one is trying to distinguish are not orthogonal and an authenticated public classical channel. 211:(2006) is a method of data encryption that uses random polarization rotations by the two authenticated parties, to continuously encrypt data using single photons and can also be used for exchanging keys, with the possibility of multi-photon quantum cryptography and the ability to address man-in-the-middle attacks through modification. 157:(1991) is a quantum cryptography method that uses entangled pairs of photons to generate keys for secure communication, with the ability to detect any attempts at eavesdropping by an external party through the violation of Bell's Theorem and the preservation of perfect correlation between the measurements of the two parties. 199:(2004) is a quantum key distribution protocol that was developed as a more robust version of BB84, especially against photon-number-splitting attacks, for use with attenuated laser pulses in situations where the information is originated by a Poissonian source producing weak pulses and received by an imperfect detector. 181:(1998) is a method of transmitting secure information using quantum cryptography that is more resistant to noise and easier to detect errors in compared to the BB84 protocol, due to its use of a six-state polarization scheme on three orthogonal bases and its ability to tolerate a noisier channel. 193:(2003) is a method used in practical quantum cryptography systems that uses multiple intensity levels at the transmitter's source and monitors bit error rates to detect and prevent photon number splitting attacks, enabling higher secure transmission rates or longer maximum channel lengths. 217:(2009) allows for increased transmission distances between Alice and Bob by using two mutually unbiased bases and introducing a minimum index transmission error rate and quantum bit error rate, which is particularly effective for higher-dimensional photon states. 205:(2005) allows for secure communication between two parties by transmitting a key using weak coherent pulses of light and has advantages of requiring only a random number generator on the client side and being able to transmit key information at a high rate. 223:
is a technology that enables secure communication between two parties by encoding quantum information in high dimensions, such as optical angular momentum modes, and transmitting it over long distances through multicore fibers or free-space
175:
protocol (1996) uses four nonorthogonal quantum states of a weak optical field to encode a cryptographic key bit without the use of photon polarization or entangled photons.
163:(1992) is a quantum key distribution method that uses polarized entangled photon pairs and decoy states to securely transmit non-orthogonal quantum signals. 99: 71: 78: 339: 230:
aims to increase the practicality of QKD by removing certain idealizations and including features that can increase the key rate of the system.
227: 202: 184: 166: 301: 17: 85: 1031: 932: 67: 248:
Sabani, Maria; Savvas, Ilias; Poulakis, Dimitrios; Makris, Georgios (2022). "Quantum Key Distribution: Basic Protocols and Threats".
208: 494: 819: 132: 45: 267: 1143: 329: 1101: 92: 677: 1153: 1041: 294: 52: 969: 627: 964: 692: 672: 959: 56: 471: 1174: 992: 814: 717: 378: 997: 865: 456: 287: 1021: 777: 637: 411: 366: 310: 893: 765: 662: 538: 466: 373: 702: 667: 563: 506: 875: 848: 824: 787: 578: 511: 446: 431: 401: 324: 124: 1026: 760: 652: 622: 421: 1096: 860: 853: 600: 1016: 642: 568: 533: 806: 555: 406: 190: 8: 1125: 1078: 908: 682: 436: 416: 351: 346: 841: 687: 489: 426: 178: 1105: 750: 657: 614: 545: 461: 441: 396: 356: 334: 263: 772: 722: 499: 253: 898: 836: 526: 521: 136: 1007: 984: 951: 755: 632: 214: 160: 279: 1168: 829: 647: 573: 258: 1049: 974: 154: 1059: 913: 451: 1120: 1054: 918: 903: 34: 1088: 1064: 923: 888: 1115: 732: 1092: 588: 196: 250:
Proceedings of the 26th Pan-Hellenic Conference on Informatics
361: 220: 172: 142: 1110: 583: 516: 148: 128: 247: 727: 712: 139:. After that, many other protocols have been defined. 554: 1166: 309: 295: 68:"List of quantum key distribution protocols" 57:introducing citations to additional sources 302: 288: 143:List of quantum key distribution protocols 257: 209:Three-stage quantum cryptography protocol 121:Quantum key distribution (QKD) protocols 820:Continuous-variable quantum information 14: 1167: 127:. The first protocol of that kind was 283: 28: 24: 25: 1186: 1149: 1148: 1139: 1138: 44:relies largely or entirely on a 33: 241: 13: 1: 815:Adiabatic quantum computation 234: 18:Quantum cryptography protocol 866:Topological quantum computer 7: 1144:Quantum information science 311:Quantum information science 10: 1191: 539:quantum gate teleportation 1134: 1077: 1040: 1006: 983: 950: 941: 874: 803: 741: 701: 668:Quantum Fourier transform 613: 564:Post-quantum cryptography 507:Entanglement distillation 480: 389: 317: 131:, introduced in 1984 by 1154:Quantum mechanics topics 849:Quantum machine learning 825:One-way quantum computer 678:Quantum phase estimation 579:Quantum key distribution 512:Monogamy of entanglement 125:quantum key distribution 761:Randomized benchmarking 623:Amplitude amplification 259:10.1145/3575879.3576022 861:Quantum Turing machine 854:quantum neural network 601:Quantum secret sharing 933:Entanglement-assisted 894:quantum convolutional 569:Quantum coin flipping 534:Quantum teleportation 495:entanglement-assisted 325:DiVincenzo's criteria 1175:Quantum cryptography 744:processor benchmarks 673:Quantum optimization 556:Quantum cryptography 367:physical vs. logical 252:. pp. 383–388. 191:Decoy state protocol 53:improve this article 457:Quantum speed limit 352:Quantum programming 347:Quantum information 1106:Forest/Rigetti QCS 842:quantum logic gate 628:Bernstein–Vazirani 615:Quantum algorithms 490:Classical capacity 374:Quantum processors 357:Quantum simulation 179:Six-state protocol 133:Charles H. Bennett 1162: 1161: 1073: 1072: 970:Linear optical QC 751:Quantum supremacy 705:complexity theory 658:Quantum annealing 609: 608: 546:Superdense coding 335:Quantum computing 269:978-1-4503-9854-1 118: 117: 103: 16:(Redirected from 1182: 1152: 1151: 1142: 1141: 948: 947: 878:error correction 807:computing models 773:Relaxation times 663:Quantum counting 552: 551: 500:quantum capacity 447:No-teleportation 432:No-communication 304: 297: 290: 281: 280: 274: 273: 261: 245: 113: 110: 104: 102: 61: 37: 29: 21: 1190: 1189: 1185: 1184: 1183: 1181: 1180: 1179: 1165: 1164: 1163: 1158: 1130: 1080: 1069: 1042:Superconducting 1036: 1002: 993:Neutral atom QC 985:Ultracold atoms 979: 944:implementations 943: 937: 877: 870: 837:Quantum circuit 805: 799: 793: 783: 743: 737: 704: 697: 653:Hidden subgroup 605: 594:other protocols 550: 527:quantum network 522:Quantum channel 482: 476: 422:No-broadcasting 412:Gottesman–Knill 385: 313: 308: 278: 277: 270: 246: 242: 237: 145: 137:Gilles Brassard 114: 108: 105: 62: 60: 50: 38: 23: 22: 15: 12: 11: 5: 1188: 1178: 1177: 1160: 1159: 1157: 1156: 1146: 1135: 1132: 1131: 1129: 1128: 1126:many others... 1123: 1118: 1113: 1108: 1099: 1085: 1083: 1075: 1074: 1071: 1070: 1068: 1067: 1062: 1057: 1052: 1046: 1044: 1038: 1037: 1035: 1034: 1029: 1024: 1019: 1013: 1011: 1004: 1003: 1001: 1000: 998:Trapped-ion QC 995: 989: 987: 981: 980: 978: 977: 972: 967: 962: 956: 954: 952:Quantum optics 945: 939: 938: 936: 935: 930: 929: 928: 921: 916: 911: 906: 901: 896: 891: 882: 880: 872: 871: 869: 868: 863: 858: 857: 856: 846: 845: 844: 834: 833: 832: 822: 817: 811: 809: 801: 800: 798: 797: 796: 795: 791: 785: 781: 770: 769: 768: 758: 756:Quantum volume 753: 747: 745: 739: 738: 736: 735: 730: 725: 720: 715: 709: 707: 699: 698: 696: 695: 690: 685: 680: 675: 670: 665: 660: 655: 650: 645: 640: 635: 633:Boson sampling 630: 625: 619: 617: 611: 610: 607: 606: 604: 603: 598: 597: 596: 591: 586: 576: 571: 566: 560: 558: 549: 548: 543: 542: 541: 531: 530: 529: 519: 514: 509: 504: 503: 502: 497: 486: 484: 478: 477: 475: 474: 469: 467:Solovay–Kitaev 464: 459: 454: 449: 444: 439: 434: 429: 424: 419: 414: 409: 404: 399: 393: 391: 387: 386: 384: 383: 382: 381: 371: 370: 369: 359: 354: 349: 344: 343: 342: 332: 327: 321: 319: 315: 314: 307: 306: 299: 292: 284: 276: 275: 268: 239: 238: 236: 233: 232: 231: 225: 218: 215:KMB09 protocol 212: 206: 200: 194: 188: 182: 176: 170: 164: 161:BBM92 protocol 158: 152: 144: 141: 116: 115: 41: 39: 32: 9: 6: 4: 3: 2: 1187: 1176: 1173: 1172: 1170: 1155: 1147: 1145: 1137: 1136: 1133: 1127: 1124: 1122: 1119: 1117: 1114: 1112: 1109: 1107: 1103: 1100: 1098: 1094: 1090: 1087: 1086: 1084: 1082: 1076: 1066: 1063: 1061: 1058: 1056: 1053: 1051: 1048: 1047: 1045: 1043: 1039: 1033: 1030: 1028: 1025: 1023: 1022:Spin qubit QC 1020: 1018: 1015: 1014: 1012: 1009: 1005: 999: 996: 994: 991: 990: 988: 986: 982: 976: 973: 971: 968: 966: 963: 961: 958: 957: 955: 953: 949: 946: 940: 934: 931: 927: 926: 922: 920: 917: 915: 912: 910: 907: 905: 902: 900: 897: 895: 892: 890: 887: 886: 884: 883: 881: 879: 873: 867: 864: 862: 859: 855: 852: 851: 850: 847: 843: 840: 839: 838: 835: 831: 830:cluster state 828: 827: 826: 823: 821: 818: 816: 813: 812: 810: 808: 802: 794: 790: 786: 784: 780: 776: 775: 774: 771: 767: 764: 763: 762: 759: 757: 754: 752: 749: 748: 746: 740: 734: 731: 729: 726: 724: 721: 719: 716: 714: 711: 710: 708: 706: 700: 694: 691: 689: 686: 684: 681: 679: 676: 674: 671: 669: 666: 664: 661: 659: 656: 654: 651: 649: 646: 644: 641: 639: 638:Deutsch–Jozsa 636: 634: 631: 629: 626: 624: 621: 620: 618: 616: 612: 602: 599: 595: 592: 590: 587: 585: 582: 581: 580: 577: 575: 574:Quantum money 572: 570: 567: 565: 562: 561: 559: 557: 553: 547: 544: 540: 537: 536: 535: 532: 528: 525: 524: 523: 520: 518: 515: 513: 510: 508: 505: 501: 498: 496: 493: 492: 491: 488: 487: 485: 483:communication 479: 473: 470: 468: 465: 463: 460: 458: 455: 453: 450: 448: 445: 443: 440: 438: 435: 433: 430: 428: 425: 423: 420: 418: 415: 413: 410: 408: 405: 403: 400: 398: 395: 394: 392: 388: 380: 377: 376: 375: 372: 368: 365: 364: 363: 360: 358: 355: 353: 350: 348: 345: 341: 338: 337: 336: 333: 331: 328: 326: 323: 322: 320: 316: 312: 305: 300: 298: 293: 291: 286: 285: 282: 271: 265: 260: 255: 251: 244: 240: 229: 226: 222: 219: 216: 213: 210: 207: 204: 201: 198: 195: 192: 189: 186: 183: 180: 177: 174: 171: 168: 165: 162: 159: 156: 153: 150: 147: 146: 140: 138: 134: 130: 126: 122: 112: 101: 98: 94: 91: 87: 84: 80: 77: 73: 70: â€“  69: 65: 64:Find sources: 58: 54: 48: 47: 46:single source 42:This article 40: 36: 31: 30: 27: 19: 1050:Charge qubit 975:KLM protocol 924: 788: 778: 593: 472:Purification 402:Eastin–Knill 249: 243: 228:T12 protocol 203:COW protocol 185:DPS protocol 167:B92 protocol 155:E91 protocol 123:are used in 120: 119: 106: 96: 89: 82: 75: 63: 51:Please help 43: 26: 1081:programming 1060:Phase qubit 965:Circuit QED 437:No-deleting 379:cloud-based 109:August 2024 1121:libquantum 1055:Flux qubit 960:Cavity QED 909:Bacon–Shor 899:stabilizer 427:No-cloning 235:References 79:newspapers 1027:NV center 462:Threshold 442:No-hiding 407:Gleason's 1169:Category 1089:OpenQASM 1065:Transmon 942:Physical 742:Quantum 643:Grover's 417:Holevo's 390:Theorems 340:timeline 330:NISQ era 1079:Quantum 1017:Kane QC 876:Quantum 804:Quantum 733:PostBQP 703:Quantum 688:Simon's 481:Quantum 318:General 93:scholar 1097:IBM QX 1093:Qiskit 1032:NMR QC 1010:-based 914:Steane 885:Codes 683:Shor's 589:SARG04 397:Bell's 266:  224:links. 197:SARG04 95:  88:  81:  74:  66:  919:Toric 362:Qubit 221:HDQKD 173:MSZ96 100:JSTOR 86:books 1111:Cirq 1102:Quil 1008:Spin 904:Shor 584:BB84 517:LOCC 264:ISBN 149:BB84 135:and 129:BB84 72:news 925:gnu 889:CSS 766:XEB 728:QMA 723:QIP 718:EQP 713:BQP 693:VQE 648:HHL 452:PBR 254:doi 55:by 1171:: 1116:Q# 262:. 1104:– 1095:– 1091:– 792:2 789:T 782:1 779:T 303:e 296:t 289:v 272:. 256:: 111:) 107:( 97:· 90:· 83:· 76:· 59:. 49:. 20:)

Index

Quantum cryptography protocol

single source
improve this article
introducing citations to additional sources
"List of quantum key distribution protocols"
news
newspapers
books
scholar
JSTOR
quantum key distribution
BB84
Charles H. Bennett
Gilles Brassard
BB84
E91 protocol
BBM92 protocol
B92 protocol
MSZ96
Six-state protocol
DPS protocol
Decoy state protocol
SARG04
COW protocol
Three-stage quantum cryptography protocol
KMB09 protocol
HDQKD
T12 protocol
doi

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑