Knowledge

Proper map

Source 📝

2993: 2776: 3014: 2982: 3051: 3024: 3004: 1471: 1003: 1644: 779: 835: 1316: 1255: 2109: 1125: 529: 1344: 701: 2038: 1729: 1191: 920: 1762: 2248: 2222: 1921: 1791: 1513: 639: 571: 1870: 477: 346: 2325: 2190: 2003: 307: 112: 2286: 1336: 668: 395: 1690: 597: 1948: 1053: 2132: 2061: 1971: 1076: 1026: 438: 172: 2377: 2345: 1890: 1833: 1813: 1664: 1587: 1561: 1541: 1145: 915: 895: 875: 855: 415: 366: 252: 228: 192: 149: 3054: 2472: 1592: 2607: 706: 3075: 784: 2648: 2530: 1260: 1196: 2348: 2066: 2688: 3042: 3037: 2591: 2564: 1081: 2640: 3032: 2548: 1466:{\displaystyle f^{-1}(K)\subseteq f^{-1}\left(\cup _{i=1}^{s}V_{k_{i}}\right)\subseteq \cup _{a\in \Gamma }U_{a}} 485: 2934: 2636: 673: 2602: 2575: 2008: 1695: 1150: 2942: 2741: 1734: 2292:
A topological space is compact if and only if the map from that space to a single point is proper.
2227: 2201: 1900: 3027: 3013: 2556: 1767: 1476: 602: 534: 2962: 2883: 2760: 2748: 2721: 2681: 1842: 641:
Since the latter is assumed to be compact, it has a finite subcover. In other words, for every
443: 312: 79: 39: 28: 2957: 2298: 2163: 1976: 280: 85: 16:
Map between topological spaces with the property that the preimage of every compact is compact
2804: 2731: 2356: 2352: 2253: 1321: 644: 371: 255: 1669: 576: 2952: 2904: 2878: 2726: 2540: 2495: 2415: 1926: 1031: 8: 2799: 3003: 2418: – A function that sends open (resp. closed) subsets to open (resp. closed) subsets 2114: 2043: 1953: 1058: 1008: 420: 154: 2997: 2967: 2947: 2868: 2858: 2736: 2716: 2389: 2362: 2330: 1875: 1818: 1798: 1649: 1572: 1546: 1526: 1130: 998:{\displaystyle V_{k}=Y\setminus f\left(X\setminus \cup _{a\in \gamma _{k}}U_{a}\right)} 900: 880: 860: 840: 400: 351: 237: 213: 177: 134: 59: 2486: 2467: 2992: 2985: 2851: 2809: 2674: 2654: 2644: 2587: 2560: 2526: 2427: 115: 43: 3017: 2424: – Continuous closed surjective map, each of whose fibers are also compact sets 2765: 2711: 2616: 2514: 2481: 2824: 2819: 2536: 2522: 2491: 2409: 2388:
It is possible to generalize the notion of proper maps of topological spaces to
2143: 259: 67: 24: 3007: 2914: 2846: 2463: 2154: 204: 2620: 3069: 2924: 2834: 2814: 2658: 128: 55: 51: 2412: – Map that satisfies a condition similar to that of being an open map. 2909: 2829: 2775: 1836: 2919: 2628: 2421: 231: 35: 2863: 2794: 2753: 2147: 207: 2605:(1973). "Sequentially proper maps and a sequential compactification". 1639:{\displaystyle f\times \operatorname {id} _{Z}:X\times Z\to Y\times Z} 2888: 2583: 63: 2873: 2841: 2790: 2697: 124: 20: 2598:, esp. p. 90 "Proper maps" and the Exercises to Section 3.6. 2444: 774:{\displaystyle f^{-1}(k)\subseteq \cup _{a\in \gamma _{k}}U_{a}.} 1666:
is Hausdorff, this is equivalent to requiring that for any map
2393: 2666: 1569:. A map is universally closed if for any topological space 1563:
is locally compact Hausdorff then proper is equivalent to
1147:
is assumed to be compact, there are finitely many points
830:{\displaystyle X\setminus \cup _{a\in \gamma _{k}}U_{a}} 2432:
Pages displaying short descriptions of redirect targets
1795:
An equivalent, possibly more intuitive definition when
2005:
is proper if and only if for every sequence of points
1311:{\displaystyle \Gamma =\cup _{i=1}^{s}\gamma _{k_{i}}} 2365: 2333: 2301: 2256: 2230: 2204: 2166: 2117: 2069: 2046: 2011: 1979: 1956: 1929: 1903: 1878: 1845: 1839:
is as follows: we say an infinite sequence of points
1821: 1801: 1770: 1737: 1698: 1672: 1652: 1595: 1575: 1549: 1529: 1479: 1347: 1324: 1263: 1199: 1153: 1133: 1084: 1061: 1034: 1011: 923: 903: 883: 863: 843: 787: 709: 676: 647: 605: 579: 537: 488: 446: 423: 403: 374: 354: 315: 283: 240: 216: 180: 157: 137: 88: 78:
There are several competing definitions of a "proper
2639:. Vol. 218 (Second ed.). New York London: 1250:{\displaystyle K\subseteq \cup _{i=1}^{s}V_{k_{i}}.} 2553:Sketches of an elephant: a topos theory compendium 2371: 2339: 2319: 2280: 2242: 2216: 2184: 2126: 2104:{\displaystyle \left\{f\left(p_{i}\right)\right\}} 2103: 2055: 2032: 1997: 1965: 1942: 1915: 1884: 1864: 1827: 1807: 1785: 1756: 1723: 1684: 1658: 1638: 1581: 1555: 1535: 1507: 1465: 1330: 1310: 1249: 1185: 1139: 1119: 1070: 1047: 1020: 997: 909: 889: 869: 849: 829: 773: 695: 662: 633: 591: 565: 523: 471: 432: 409: 389: 360: 340: 301: 246: 222: 186: 166: 143: 106: 3067: 2473:Proceedings of the American Mathematical Society 2351:(this includes Hausdorff spaces that are either 2142:Every continuous map from a compact space to a 1318:is a finite union of finite sets, which makes 1120:{\displaystyle K\subseteq \cup _{k\in K}V_{k}} 2682: 2521:. Elements of Mathematics. Berlin, New York: 1859: 1846: 524:{\displaystyle \left\{U_{a}:a\in A\right\}} 3050: 3023: 2689: 2675: 2608:Journal of the London Mathematical Society 2547: 2485: 2397: 1731:be closed, as follows from the fact that 2513: 234:. The two definitions are equivalent if 1473:and we have found a finite subcover of 3068: 2462: 2157:proper map is a compact covering map. 696:{\displaystyle \gamma _{k}\subseteq A} 2670: 2601: 2574: 2456: 19:This article is about the concept in 2033:{\displaystyle \left\{p_{i}\right\}} 2627: 2450: 2349:compactly generated Hausdorff space 210:and the preimage of every point in 13: 1724:{\displaystyle X\times _{Y}Z\to Z} 1448: 1325: 1264: 1186:{\displaystyle k_{1},\dots ,k_{s}} 14: 3087: 2571:, esp. section C3.2 "Proper maps" 2487:10.1090/s0002-9939-1970-0254818-x 2383: 2224:there exists some compact subset 954: 940: 791: 82:". Some authors call a function 3049: 3022: 3012: 3002: 2991: 2981: 2980: 2774: 2633:Introduction to Smooth Manifolds 2453:, p. 610, above Prop. A.53. 2519:General topology. Chapters 5–10 2327:is a proper continuous map and 917:is a closed map. Hence the set 3076:Theory of continuous functions 2311: 2266: 2260: 2176: 1989: 1715: 1676: 1624: 1499: 1493: 1367: 1361: 729: 723: 625: 619: 599:this is also an open cover of 557: 551: 466: 460: 335: 329: 293: 98: 1: 2637:Graduate Texts in Mathematics 2506: 2468:"When proper maps are closed" 2136: 1757:{\displaystyle X\times _{Y}Z} 670:there exists a finite subset 73: 2696: 2437: 2430: – Mathematics glossary 2243:{\displaystyle C\subseteq X} 2217:{\displaystyle K\subseteq Y} 2198:if for every compact subset 2040:that escapes to infinity in 1916:{\displaystyle S\subseteq X} 1646:is closed. In the case that 270:Partial proof of equivalence 7: 2403: 1515:which completes the proof. 309:be a closed map, such that 10: 3092: 2943:Banach fixed-point theorem 1923:only finitely many points 1897:if, for every compact set 1786:{\displaystyle X\times Z.} 1508:{\displaystyle f^{-1}(K),} 634:{\displaystyle f^{-1}(k).} 566:{\displaystyle f^{-1}(K).} 200:closed with compact fibers 18: 2976: 2933: 2897: 2783: 2772: 2704: 1865:{\displaystyle \{p_{i}\}} 472:{\displaystyle f^{-1}(K)} 341:{\displaystyle f^{-1}(y)} 174:Other authors call a map 2320:{\displaystyle f:X\to Y} 2185:{\displaystyle f:X\to Y} 1998:{\displaystyle f:X\to Y} 1764:is a closed subspace of 440:It remains to show that 302:{\displaystyle f:X\to Y} 197:if it is continuous and 107:{\displaystyle f:X\to Y} 2621:10.1112/jlms/s2-7.3.515 2557:Oxford University Press 2281:{\displaystyle f(C)=K.} 2111:escapes to infinity in 1872:in a topological space 1331:{\displaystyle \Gamma } 663:{\displaystyle k\in K,} 417:be a compact subset of 390:{\displaystyle y\in Y.} 2998:Mathematics portal 2898:Metrics and properties 2884:Second-countable space 2580:Topology and groupoids 2373: 2341: 2321: 2282: 2244: 2218: 2186: 2128: 2105: 2057: 2034: 1999: 1973:Then a continuous map 1967: 1944: 1917: 1886: 1866: 1829: 1809: 1787: 1758: 1725: 1686: 1685:{\displaystyle Z\to Y} 1660: 1640: 1583: 1557: 1537: 1509: 1467: 1332: 1312: 1251: 1187: 1141: 1121: 1072: 1049: 1022: 999: 911: 891: 871: 851: 831: 775: 697: 664: 635: 593: 592:{\displaystyle k\in K} 567: 525: 473: 434: 411: 391: 362: 342: 303: 248: 224: 188: 168: 145: 108: 29:proper convex function 2374: 2342: 2322: 2283: 2245: 2219: 2187: 2129: 2106: 2058: 2035: 2000: 1968: 1945: 1943:{\displaystyle p_{i}} 1918: 1887: 1867: 1830: 1810: 1788: 1759: 1726: 1687: 1661: 1641: 1584: 1558: 1538: 1510: 1468: 1333: 1313: 1257:Furthermore, the set 1252: 1188: 1142: 1122: 1073: 1050: 1048:{\displaystyle V_{k}} 1023: 1000: 912: 892: 872: 852: 832: 776: 698: 665: 636: 594: 568: 526: 474: 435: 412: 392: 363: 343: 304: 249: 225: 203:; that is if it is a 189: 169: 146: 109: 23:. For the concept in 2953:Invariance of domain 2905:Euler characteristic 2879:Bundle (mathematics) 2416:Open and closed maps 2363: 2331: 2299: 2254: 2228: 2202: 2164: 2115: 2067: 2044: 2009: 1977: 1954: 1927: 1901: 1876: 1843: 1819: 1799: 1768: 1735: 1696: 1670: 1650: 1593: 1573: 1547: 1527: 1477: 1345: 1341:Now it follows that 1322: 1261: 1197: 1151: 1131: 1082: 1059: 1032: 1009: 921: 901: 881: 861: 857:and its image under 841: 785: 707: 674: 645: 603: 577: 535: 531:be an open cover of 486: 444: 421: 401: 372: 352: 313: 281: 238: 214: 178: 155: 135: 86: 66:concept is called a 2963:Tychonoff's theorem 2958:Poincaré conjecture 2712:General (point-set) 2146:is both proper and 1894:escapes to infinity 1411: 1290: 1226: 1055:contains the point 2948:De Rham cohomology 2869:Polyhedral complex 2859:Simplicial complex 2582:. North Carolina: 2464:Palais, Richard S. 2369: 2337: 2317: 2278: 2240: 2214: 2182: 2127:{\displaystyle Y.} 2124: 2101: 2056:{\displaystyle X,} 2053: 2030: 1995: 1966:{\displaystyle S.} 1963: 1940: 1913: 1882: 1862: 1825: 1805: 1783: 1754: 1721: 1682: 1656: 1636: 1579: 1566:universally closed 1553: 1533: 1505: 1463: 1391: 1328: 1308: 1270: 1247: 1206: 1183: 1137: 1117: 1071:{\displaystyle k.} 1068: 1045: 1021:{\displaystyle Y.} 1018: 995: 907: 887: 867: 847: 827: 771: 693: 660: 631: 589: 563: 521: 469: 433:{\displaystyle Y.} 430: 407: 387: 358: 338: 299: 244: 220: 184: 167:{\displaystyle X.} 164: 141: 116:topological spaces 104: 60:algebraic geometry 44:topological spaces 3063: 3062: 2852:fundamental group 2650:978-1-4419-9981-8 2611:. Second series. 2532:978-3-540-64563-4 2515:Bourbaki, Nicolas 2428:Topology glossary 2372:{\displaystyle f} 2340:{\displaystyle Y} 1885:{\displaystyle X} 1828:{\displaystyle Y} 1808:{\displaystyle X} 1659:{\displaystyle Y} 1582:{\displaystyle Z} 1556:{\displaystyle Y} 1543:is Hausdorff and 1536:{\displaystyle X} 1520: 1519: 1140:{\displaystyle K} 910:{\displaystyle f} 890:{\displaystyle Y} 870:{\displaystyle f} 850:{\displaystyle X} 410:{\displaystyle K} 361:{\displaystyle X} 247:{\displaystyle Y} 223:{\displaystyle Y} 187:{\displaystyle f} 144:{\displaystyle Y} 3083: 3053: 3052: 3026: 3025: 3016: 3006: 2996: 2995: 2984: 2983: 2778: 2691: 2684: 2677: 2668: 2667: 2662: 2624: 2597: 2570: 2549:Johnstone, Peter 2544: 2500: 2499: 2489: 2460: 2454: 2448: 2433: 2378: 2376: 2375: 2370: 2346: 2344: 2343: 2338: 2326: 2324: 2323: 2318: 2287: 2285: 2284: 2279: 2249: 2247: 2246: 2241: 2223: 2221: 2220: 2215: 2195:compact covering 2191: 2189: 2188: 2183: 2133: 2131: 2130: 2125: 2110: 2108: 2107: 2102: 2100: 2096: 2095: 2091: 2090: 2062: 2060: 2059: 2054: 2039: 2037: 2036: 2031: 2029: 2025: 2024: 2004: 2002: 2001: 1996: 1972: 1970: 1969: 1964: 1949: 1947: 1946: 1941: 1939: 1938: 1922: 1920: 1919: 1914: 1891: 1889: 1888: 1883: 1871: 1869: 1868: 1863: 1858: 1857: 1834: 1832: 1831: 1826: 1814: 1812: 1811: 1806: 1792: 1790: 1789: 1784: 1763: 1761: 1760: 1755: 1750: 1749: 1730: 1728: 1727: 1722: 1711: 1710: 1691: 1689: 1688: 1683: 1665: 1663: 1662: 1657: 1645: 1643: 1642: 1637: 1611: 1610: 1588: 1586: 1585: 1580: 1562: 1560: 1559: 1554: 1542: 1540: 1539: 1534: 1514: 1512: 1511: 1506: 1492: 1491: 1472: 1470: 1469: 1464: 1462: 1461: 1452: 1451: 1433: 1429: 1428: 1427: 1426: 1425: 1410: 1405: 1385: 1384: 1360: 1359: 1337: 1335: 1334: 1329: 1317: 1315: 1314: 1309: 1307: 1306: 1305: 1304: 1289: 1284: 1256: 1254: 1253: 1248: 1243: 1242: 1241: 1240: 1225: 1220: 1192: 1190: 1189: 1184: 1182: 1181: 1163: 1162: 1146: 1144: 1143: 1138: 1126: 1124: 1123: 1118: 1116: 1115: 1106: 1105: 1077: 1075: 1074: 1069: 1054: 1052: 1051: 1046: 1044: 1043: 1028:It follows that 1027: 1025: 1024: 1019: 1004: 1002: 1001: 996: 994: 990: 989: 988: 979: 978: 977: 976: 933: 932: 916: 914: 913: 908: 896: 894: 893: 888: 876: 874: 873: 868: 856: 854: 853: 848: 836: 834: 833: 828: 826: 825: 816: 815: 814: 813: 780: 778: 777: 772: 767: 766: 757: 756: 755: 754: 722: 721: 702: 700: 699: 694: 686: 685: 669: 667: 666: 661: 640: 638: 637: 632: 618: 617: 598: 596: 595: 590: 572: 570: 569: 564: 550: 549: 530: 528: 527: 522: 520: 516: 503: 502: 478: 476: 475: 470: 459: 458: 439: 437: 436: 431: 416: 414: 413: 408: 396: 394: 393: 388: 367: 365: 364: 359: 347: 345: 344: 339: 328: 327: 308: 306: 305: 300: 266: 265: 253: 251: 250: 245: 229: 227: 226: 221: 193: 191: 190: 185: 173: 171: 170: 165: 150: 148: 147: 142: 113: 111: 110: 105: 58:are compact. In 3091: 3090: 3086: 3085: 3084: 3082: 3081: 3080: 3066: 3065: 3064: 3059: 2990: 2972: 2968:Urysohn's lemma 2929: 2893: 2779: 2770: 2742:low-dimensional 2700: 2695: 2665: 2651: 2641:Springer-Verlag 2594: 2567: 2533: 2523:Springer-Verlag 2509: 2504: 2503: 2461: 2457: 2449: 2445: 2440: 2431: 2410:Almost open map 2406: 2386: 2364: 2361: 2360: 2357:locally compact 2353:first-countable 2332: 2329: 2328: 2300: 2297: 2296: 2255: 2252: 2251: 2229: 2226: 2225: 2203: 2200: 2199: 2165: 2162: 2161: 2144:Hausdorff space 2139: 2116: 2113: 2112: 2086: 2082: 2078: 2074: 2070: 2068: 2065: 2064: 2045: 2042: 2041: 2020: 2016: 2012: 2010: 2007: 2006: 1978: 1975: 1974: 1955: 1952: 1951: 1934: 1930: 1928: 1925: 1924: 1902: 1899: 1898: 1877: 1874: 1873: 1853: 1849: 1844: 1841: 1840: 1820: 1817: 1816: 1800: 1797: 1796: 1769: 1766: 1765: 1745: 1741: 1736: 1733: 1732: 1706: 1702: 1697: 1694: 1693: 1671: 1668: 1667: 1651: 1648: 1647: 1606: 1602: 1594: 1591: 1590: 1574: 1571: 1570: 1548: 1545: 1544: 1528: 1525: 1524: 1521: 1484: 1480: 1478: 1475: 1474: 1457: 1453: 1441: 1437: 1421: 1417: 1416: 1412: 1406: 1395: 1390: 1386: 1377: 1373: 1352: 1348: 1346: 1343: 1342: 1323: 1320: 1319: 1300: 1296: 1295: 1291: 1285: 1274: 1262: 1259: 1258: 1236: 1232: 1231: 1227: 1221: 1210: 1198: 1195: 1194: 1177: 1173: 1158: 1154: 1152: 1149: 1148: 1132: 1129: 1128: 1111: 1107: 1095: 1091: 1083: 1080: 1079: 1060: 1057: 1056: 1039: 1035: 1033: 1030: 1029: 1010: 1007: 1006: 984: 980: 972: 968: 961: 957: 950: 946: 928: 924: 922: 919: 918: 902: 899: 898: 882: 879: 878: 862: 859: 858: 842: 839: 838: 821: 817: 809: 805: 798: 794: 786: 783: 782: 762: 758: 750: 746: 739: 735: 714: 710: 708: 705: 704: 681: 677: 675: 672: 671: 646: 643: 642: 610: 606: 604: 601: 600: 578: 575: 574: 542: 538: 536: 533: 532: 498: 494: 493: 489: 487: 484: 483: 451: 447: 445: 442: 441: 422: 419: 418: 402: 399: 398: 373: 370: 369: 353: 350: 349: 348:is compact (in 320: 316: 314: 311: 310: 282: 279: 278: 271: 256:locally compact 239: 236: 235: 215: 212: 211: 179: 176: 175: 156: 153: 152: 136: 133: 132: 87: 84: 83: 76: 68:proper morphism 56:compact subsets 32: 25:convex analysis 17: 12: 11: 5: 3089: 3079: 3078: 3061: 3060: 3058: 3057: 3047: 3046: 3045: 3040: 3035: 3020: 3010: 3000: 2988: 2977: 2974: 2973: 2971: 2970: 2965: 2960: 2955: 2950: 2945: 2939: 2937: 2931: 2930: 2928: 2927: 2922: 2917: 2915:Winding number 2912: 2907: 2901: 2899: 2895: 2894: 2892: 2891: 2886: 2881: 2876: 2871: 2866: 2861: 2856: 2855: 2854: 2849: 2847:homotopy group 2839: 2838: 2837: 2832: 2827: 2822: 2817: 2807: 2802: 2797: 2787: 2785: 2781: 2780: 2773: 2771: 2769: 2768: 2763: 2758: 2757: 2756: 2746: 2745: 2744: 2734: 2729: 2724: 2719: 2714: 2708: 2706: 2702: 2701: 2694: 2693: 2686: 2679: 2671: 2664: 2663: 2649: 2625: 2615:(3): 515–522. 2599: 2592: 2572: 2565: 2545: 2531: 2510: 2508: 2505: 2502: 2501: 2480:(4): 835–836. 2455: 2442: 2441: 2439: 2436: 2435: 2434: 2425: 2419: 2413: 2405: 2402: 2398:Johnstone 2002 2385: 2384:Generalization 2382: 2381: 2380: 2368: 2336: 2316: 2313: 2310: 2307: 2304: 2293: 2290: 2289: 2288: 2277: 2274: 2271: 2268: 2265: 2262: 2259: 2239: 2236: 2233: 2213: 2210: 2207: 2196: 2181: 2178: 2175: 2172: 2169: 2151: 2138: 2135: 2123: 2120: 2099: 2094: 2089: 2085: 2081: 2077: 2073: 2052: 2049: 2028: 2023: 2019: 2015: 1994: 1991: 1988: 1985: 1982: 1962: 1959: 1937: 1933: 1912: 1909: 1906: 1895: 1881: 1861: 1856: 1852: 1848: 1824: 1804: 1782: 1779: 1776: 1773: 1753: 1748: 1744: 1740: 1720: 1717: 1714: 1709: 1705: 1701: 1681: 1678: 1675: 1655: 1635: 1632: 1629: 1626: 1623: 1620: 1617: 1614: 1609: 1605: 1601: 1598: 1578: 1567: 1552: 1532: 1518: 1517: 1504: 1501: 1498: 1495: 1490: 1487: 1483: 1460: 1456: 1450: 1447: 1444: 1440: 1436: 1432: 1424: 1420: 1415: 1409: 1404: 1401: 1398: 1394: 1389: 1383: 1380: 1376: 1372: 1369: 1366: 1363: 1358: 1355: 1351: 1338:a finite set. 1327: 1303: 1299: 1294: 1288: 1283: 1280: 1277: 1273: 1269: 1266: 1246: 1239: 1235: 1230: 1224: 1219: 1216: 1213: 1209: 1205: 1202: 1180: 1176: 1172: 1169: 1166: 1161: 1157: 1136: 1114: 1110: 1104: 1101: 1098: 1094: 1090: 1087: 1067: 1064: 1042: 1038: 1017: 1014: 993: 987: 983: 975: 971: 967: 964: 960: 956: 953: 949: 945: 942: 939: 936: 931: 927: 906: 886: 866: 846: 824: 820: 812: 808: 804: 801: 797: 793: 790: 770: 765: 761: 753: 749: 745: 742: 738: 734: 731: 728: 725: 720: 717: 713: 692: 689: 684: 680: 659: 656: 653: 650: 630: 627: 624: 621: 616: 613: 609: 588: 585: 582: 562: 559: 556: 553: 548: 545: 541: 519: 515: 512: 509: 506: 501: 497: 492: 468: 465: 462: 457: 454: 450: 429: 426: 406: 386: 383: 380: 377: 357: 337: 334: 331: 326: 323: 319: 298: 295: 292: 289: 286: 273: 272: 269: 264: 243: 219: 201: 196: 183: 163: 160: 151:is compact in 140: 121: 103: 100: 97: 94: 91: 75: 72: 52:inverse images 15: 9: 6: 4: 3: 2: 3088: 3077: 3074: 3073: 3071: 3056: 3048: 3044: 3041: 3039: 3036: 3034: 3031: 3030: 3029: 3021: 3019: 3015: 3011: 3009: 3005: 3001: 2999: 2994: 2989: 2987: 2979: 2978: 2975: 2969: 2966: 2964: 2961: 2959: 2956: 2954: 2951: 2949: 2946: 2944: 2941: 2940: 2938: 2936: 2932: 2926: 2925:Orientability 2923: 2921: 2918: 2916: 2913: 2911: 2908: 2906: 2903: 2902: 2900: 2896: 2890: 2887: 2885: 2882: 2880: 2877: 2875: 2872: 2870: 2867: 2865: 2862: 2860: 2857: 2853: 2850: 2848: 2845: 2844: 2843: 2840: 2836: 2833: 2831: 2828: 2826: 2823: 2821: 2818: 2816: 2813: 2812: 2811: 2808: 2806: 2803: 2801: 2798: 2796: 2792: 2789: 2788: 2786: 2782: 2777: 2767: 2764: 2762: 2761:Set-theoretic 2759: 2755: 2752: 2751: 2750: 2747: 2743: 2740: 2739: 2738: 2735: 2733: 2730: 2728: 2725: 2723: 2722:Combinatorial 2720: 2718: 2715: 2713: 2710: 2709: 2707: 2703: 2699: 2692: 2687: 2685: 2680: 2678: 2673: 2672: 2669: 2660: 2656: 2652: 2646: 2642: 2638: 2634: 2630: 2626: 2622: 2618: 2614: 2610: 2609: 2604: 2603:Brown, Ronald 2600: 2595: 2593:1-4196-2722-8 2589: 2585: 2581: 2577: 2576:Brown, Ronald 2573: 2568: 2566:0-19-851598-7 2562: 2558: 2554: 2550: 2546: 2542: 2538: 2534: 2528: 2524: 2520: 2516: 2512: 2511: 2497: 2493: 2488: 2483: 2479: 2475: 2474: 2469: 2465: 2459: 2452: 2447: 2443: 2429: 2426: 2423: 2420: 2417: 2414: 2411: 2408: 2407: 2401: 2399: 2395: 2391: 2366: 2358: 2354: 2350: 2334: 2314: 2308: 2305: 2302: 2294: 2291: 2275: 2272: 2269: 2263: 2257: 2237: 2234: 2231: 2211: 2208: 2205: 2197: 2194: 2179: 2173: 2170: 2167: 2159: 2158: 2156: 2152: 2149: 2145: 2141: 2140: 2134: 2121: 2118: 2097: 2092: 2087: 2083: 2079: 2075: 2071: 2063:the sequence 2050: 2047: 2026: 2021: 2017: 2013: 1992: 1986: 1983: 1980: 1960: 1957: 1935: 1931: 1910: 1907: 1904: 1896: 1893: 1879: 1854: 1850: 1838: 1837:metric spaces 1822: 1802: 1793: 1780: 1777: 1774: 1771: 1751: 1746: 1742: 1738: 1718: 1712: 1707: 1703: 1699: 1692:the pullback 1679: 1673: 1653: 1633: 1630: 1627: 1621: 1618: 1615: 1612: 1607: 1603: 1599: 1596: 1576: 1568: 1565: 1550: 1530: 1516: 1502: 1496: 1488: 1485: 1481: 1458: 1454: 1445: 1442: 1438: 1434: 1430: 1422: 1418: 1413: 1407: 1402: 1399: 1396: 1392: 1387: 1381: 1378: 1374: 1370: 1364: 1356: 1353: 1349: 1339: 1301: 1297: 1292: 1286: 1281: 1278: 1275: 1271: 1267: 1244: 1237: 1233: 1228: 1222: 1217: 1214: 1211: 1207: 1203: 1200: 1178: 1174: 1170: 1167: 1164: 1159: 1155: 1134: 1112: 1108: 1102: 1099: 1096: 1092: 1088: 1085: 1065: 1062: 1040: 1036: 1015: 1012: 991: 985: 981: 973: 969: 965: 962: 958: 951: 947: 943: 937: 934: 929: 925: 904: 884: 877:is closed in 864: 844: 837:is closed in 822: 818: 810: 806: 802: 799: 795: 788: 768: 763: 759: 751: 747: 743: 740: 736: 732: 726: 718: 715: 711: 690: 687: 682: 678: 657: 654: 651: 648: 628: 622: 614: 611: 607: 586: 583: 580: 573:Then for all 560: 554: 546: 543: 539: 517: 513: 510: 507: 504: 499: 495: 490: 480: 463: 455: 452: 448: 427: 424: 404: 384: 381: 378: 375: 355: 332: 324: 321: 317: 296: 290: 287: 284: 275: 274: 268: 267: 263: 261: 257: 241: 233: 217: 209: 206: 202: 199: 194: 181: 161: 158: 138: 130: 126: 122: 119: 117: 101: 95: 92: 89: 81: 71: 69: 65: 61: 57: 53: 49: 45: 41: 37: 30: 26: 22: 3055:Publications 2920:Chern number 2910:Betti number 2793: / 2784:Key concepts 2732:Differential 2632: 2629:Lee, John M. 2612: 2606: 2579: 2552: 2518: 2477: 2471: 2458: 2446: 2387: 2193: 2192:is called a 1892: 1794: 1564: 1522: 1340: 1127:and because 481: 479:is compact. 276: 198: 118: 114:between two 77: 47: 33: 3018:Wikiversity 2935:Key results 2422:Perfect map 1005:is open in 36:mathematics 2864:CW complex 2805:Continuity 2795:Closed set 2754:cohomology 2555:. Oxford: 2507:References 2379:is closed. 2250:such that 2155:surjective 2137:Properties 1193:such that 703:such that 368:) for all 208:closed map 205:continuous 74:Definition 46:is called 3043:geometric 3038:algebraic 2889:Cobordism 2825:Hausdorff 2820:connected 2737:Geometric 2727:Continuum 2717:Algebraic 2659:808682771 2584:Booksurge 2438:Citations 2312:→ 2235:⊆ 2209:⊆ 2177:→ 1990:→ 1908:⊆ 1775:× 1743:× 1716:→ 1704:× 1677:→ 1631:× 1625:→ 1619:× 1600:× 1486:− 1449:Γ 1446:∈ 1439:∪ 1435:⊆ 1393:∪ 1379:− 1371:⊆ 1354:− 1326:Γ 1293:γ 1272:∪ 1265:Γ 1208:∪ 1204:⊆ 1168:… 1100:∈ 1093:∪ 1089:⊆ 970:γ 966:∈ 959:∪ 955:∖ 941:∖ 807:γ 803:∈ 796:∪ 792:∖ 748:γ 744:∈ 737:∪ 733:⊆ 716:− 688:⊆ 679:γ 652:∈ 612:− 584:∈ 544:− 511:∈ 453:− 379:∈ 322:− 294:→ 260:Hausdorff 127:of every 99:→ 64:analogous 3070:Category 3008:Wikibook 2986:Category 2874:Manifold 2842:Homotopy 2800:Interior 2791:Open set 2749:Homology 2698:Topology 2631:(2012). 2578:(2006). 2551:(2002). 2517:(1998). 2466:(1970). 2451:Lee 2012 2404:See also 2359:), then 1589:the map 897:because 781:The set 125:preimage 80:function 42:between 40:function 21:topology 3033:general 2835:uniform 2815:compact 2766:Digital 2541:1726872 2496:0254818 2396:, see ( 2390:locales 1950:are in 232:compact 131:set in 129:compact 123:if the 3028:Topics 2830:metric 2705:Fields 2657:  2647:  2590:  2563:  2539:  2529:  2494:  2160:A map 2153:Every 2148:closed 195:proper 120:proper 62:, the 48:proper 27:, see 2810:Space 2394:topoi 2347:is a 2655:OCLC 2645:ISBN 2588:ISBN 2561:ISBN 2527:ISBN 2392:and 1835:are 1815:and 1078:Now 482:Let 397:Let 277:Let 258:and 38:, a 2617:doi 2482:doi 2400:). 2355:or 2295:If 1523:If 254:is 230:is 54:of 50:if 34:In 3072:: 2653:. 2643:. 2635:. 2586:. 2559:. 2537:MR 2535:. 2525:. 2492:MR 2490:. 2478:24 2476:. 2470:. 1604:id 262:. 70:. 2690:e 2683:t 2676:v 2661:. 2623:. 2619:: 2613:7 2596:. 2569:. 2543:. 2498:. 2484:: 2367:f 2335:Y 2315:Y 2309:X 2306:: 2303:f 2276:. 2273:K 2270:= 2267:) 2264:C 2261:( 2258:f 2238:X 2232:C 2212:Y 2206:K 2180:Y 2174:X 2171:: 2168:f 2150:. 2122:. 2119:Y 2098:} 2093:) 2088:i 2084:p 2080:( 2076:f 2072:{ 2051:, 2048:X 2027:} 2022:i 2018:p 2014:{ 1993:Y 1987:X 1984:: 1981:f 1961:. 1958:S 1936:i 1932:p 1911:X 1905:S 1880:X 1860:} 1855:i 1851:p 1847:{ 1823:Y 1803:X 1781:. 1778:Z 1772:X 1752:Z 1747:Y 1739:X 1719:Z 1713:Z 1708:Y 1700:X 1680:Y 1674:Z 1654:Y 1634:Z 1628:Y 1622:Z 1616:X 1613:: 1608:Z 1597:f 1577:Z 1551:Y 1531:X 1503:, 1500:) 1497:K 1494:( 1489:1 1482:f 1459:a 1455:U 1443:a 1431:) 1423:i 1419:k 1414:V 1408:s 1403:1 1400:= 1397:i 1388:( 1382:1 1375:f 1368:) 1365:K 1362:( 1357:1 1350:f 1302:i 1298:k 1287:s 1282:1 1279:= 1276:i 1268:= 1245:. 1238:i 1234:k 1229:V 1223:s 1218:1 1215:= 1212:i 1201:K 1179:s 1175:k 1171:, 1165:, 1160:1 1156:k 1135:K 1113:k 1109:V 1103:K 1097:k 1086:K 1066:. 1063:k 1041:k 1037:V 1016:. 1013:Y 992:) 986:a 982:U 974:k 963:a 952:X 948:( 944:f 938:Y 935:= 930:k 926:V 905:f 885:Y 865:f 845:X 823:a 819:U 811:k 800:a 789:X 769:. 764:a 760:U 752:k 741:a 730:) 727:k 724:( 719:1 712:f 691:A 683:k 658:, 655:K 649:k 629:. 626:) 623:k 620:( 615:1 608:f 587:K 581:k 561:. 558:) 555:K 552:( 547:1 540:f 518:} 514:A 508:a 505:: 500:a 496:U 491:{ 467:) 464:K 461:( 456:1 449:f 428:. 425:Y 405:K 385:. 382:Y 376:y 356:X 336:) 333:y 330:( 325:1 318:f 297:Y 291:X 288:: 285:f 242:Y 218:Y 182:f 162:. 159:X 139:Y 102:Y 96:X 93:: 90:f 31:.

Index

topology
convex analysis
proper convex function
mathematics
function
topological spaces
inverse images
compact subsets
algebraic geometry
analogous
proper morphism
function
topological spaces
preimage
compact
continuous
closed map
compact
locally compact
Hausdorff
metric spaces
Hausdorff space
closed
surjective
compactly generated Hausdorff space
first-countable
locally compact
locales
topoi
Johnstone 2002

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.