Knowledge

Ideal (ring theory)

Source πŸ“

6879: 713:
consisting of the multiples of a single non-negative number. However, in other rings, the ideals may not correspond directly to the ring elements, and certain properties of integers, when generalized to rings, attach more naturally to the ideals than to the elements of the ring. For instance, the
7898: 8996:
In the first computation, we see the general pattern for taking the sum of two finitely generated ideals, it is the ideal generated by the union of their generators. In the last three we observe that products and intersections agree whenever the two ideals intersect in the zero ideal. These
7475: 9864: 7376: 7289: 4984: 6681: 6635: 10595: 8754: 12129: 8991: 4789: 772:
to serve as the "missing" factors in number rings in which unique factorization fails; here the word "ideal" is in the sense of existing in imagination only, in analogy with "ideal" objects in geometry such as points at infinity. In 1876,
8377: 13801: 9469: 9143: 8906: 7663: 7784: 9275: 7390: 8010: 11093: 8854: 8488: 10180: 3926: 10111: 8116: 4024: 10010: 7201: 4332: 9790: 6310: 4253: 10981: 10936: 10248: 13830: 11134: 8546: 7941: 7300: 7213: 12373: 12052: 11691: 11645: 7712: 7067: 4122: 12328: 11971: 11597: 7608: 6983: 6874:{\displaystyle {\mathfrak {a}}{\mathfrak {b}}:=\{a_{1}b_{1}+\dots +a_{n}b_{n}\mid a_{i}\in {\mathfrak {a}}{\mbox{ and }}b_{i}\in {\mathfrak {b}},i=1,2,\dots ,n;{\mbox{ for }}n=1,2,\dots \},} 6673: 4810: 3964: 1895: 7100: 4410: 244: 12890: 12842: 6552: 4174: 13809: 9705: 9084: 536: 13772: 5174: 11485: 11400: 10669: 9958: 9907: 9307: 4522: 3281: 5509: 5254: 1837: 11863: 11776: 11317: 11043: 10886: 10707: 10478: 10401: 8552: 4445: 10468: 10347: 3796: 3123: 682:
or the multiples of 3. Addition and subtraction of even numbers preserves evenness, and multiplying an even number by any integer (even or odd) results in an even number; these
13306: 12724: 12684: 12290: 12228: 12192: 12161: 11547: 9393: 11833: 11746: 489: 452: 12425: 12399: 12254: 12006: 11806: 11719: 11008: 10833: 10802: 10774: 10731: 10622: 10425: 10310: 9355: 9331: 7965: 7767: 7737: 7550: 7526: 7502: 7150: 7124: 7031: 7007: 6944: 6914: 6538: 6512: 4080: 4056: 3420: 3008: 2847: 2255: 1807: 13201: 9662: 8259: 3356: 13276: 10058: 9614: 3749: 2761: 2570: 2360: 2311: 13332: 13249: 13225: 12786: 12472: 12059: 11187: 10856: 8046: 2914: 2892: 2487: 2410: 2384: 2284: 198: 8157: 12752: 8911: 4373: 3839: 1577: 3501: 2789: 2703: 2598: 1732: 5367: 3652: 3213: 2677: 1378: 1241: 11262: 11225: 5333: 4658: 4556: 4479: 3454: 3172: 2454: 2013: 1971: 1206: 1156: 1125: 6160: 6132: 5058: 4281: 3089: 3054: 2975: 2091: 1923: 1539: 1501: 1475: 1024: 996: 6106: 5650: 5433: 5389: 2286:
of all integers, since the sum of any two even integers is even, and the product of any integer with an even integer is also even; this ideal is usually denoted by
1697: 965: 927: 787:, to which Dedekind had added many supplements. Later the notion was extended beyond number rings to the setting of polynomial rings and other commutative rings by 9744: 9576: 9534: 9501: 9203: 3604: 3567: 3538: 2173: 2120: 9776: 5200: 5114: 5086: 1770: 1668: 1603: 1341: 1284: 5795: 5021: 4635: 4606: 2056: 1445: 1049: 13838: 13166: 13144: 13124: 13102: 13080: 13060: 13040: 13018: 12992: 12972: 12952: 12916: 12644: 12620: 12593: 12571: 12549: 12526: 12494: 9166: 8199: 8177: 6348: 6230: 5881: 5859: 5839: 5817: 5770: 5748: 5728: 5704: 5676: 5553: 5531: 5455: 5411: 5305: 5283: 4205: 3714: 3694: 3674: 3378: 3303: 3028: 2938: 2870: 2809: 2725: 2641: 2621: 2534: 2512: 2333: 2193: 2142: 2033: 1071: 892: 870: 848: 1409:
By convention, a ring has the multiplicative identity. But some authors do not require a ring to have the multiplicative identity; i.e., for them, a ring is a
8266: 9403: 9096: 8860: 7617: 7893:{\displaystyle \operatorname {Tor} _{1}^{R}(R/{\mathfrak {a}},R/{\mathfrak {b}})=({\mathfrak {a}}\cap {\mathfrak {b}})/{\mathfrak {a}}{\mathfrak {b}}} 7558:: The sum and the intersection of ideals is again an ideal; with these two operations as join and meet, the set of all ideals of a given ring forms a 1624:(For the sake of brevity, some results are stated only for left ideals but are usually also true for right ideals with appropriate notation changes.) 8014:. It can then be shown that every nonzero ideal of a Dedekind domain can be uniquely written as a product of maximal ideals, a generalization of the 7470:{\displaystyle {\mathfrak {a}}\cap ({\mathfrak {b}}+{\mathfrak {c}})\supset {\mathfrak {a}}\cap {\mathfrak {b}}+{\mathfrak {a}}\cap {\mathfrak {c}}} 9208: 7972: 5567:
To simplify the description all rings are assumed to be commutative. The non-commutative case is discussed in detail in the respective articles.
13375: 13424:
does not have a unit, then the internal descriptions above must be modified slightly. In addition to the finite sums of products of things in
11057: 8760: 8387: 641: 13780: 10116: 9536:
is (see the link) and so this last characterization shows that the radical can be defined both in terms of left and right primitive ideals.
3847: 10067: 3800:. Moreover, for commutative rings, this bijective correspondence restricts to prime ideals, maximal ideals, and radical ideals (see the 9859:{\displaystyle \operatorname {nil} (R)=\bigcap _{{\mathfrak {p}}{\text{ prime ideals }}}{\mathfrak {p}}\subset \operatorname {Jac} (R)} 8054: 3977: 9965: 7162: 4288: 6249: 4560:, in particular, there exists a left ideal that is maximal among proper left ideals (often simply called a maximal left ideal); see 4210: 13660: 10942: 10897: 10187: 13722: 11100: 7371:{\displaystyle ({\mathfrak {a}}+{\mathfrak {b}}){\mathfrak {c}}={\mathfrak {a}}{\mathfrak {c}}+{\mathfrak {b}}{\mathfrak {c}}} 7284:{\displaystyle {\mathfrak {a}}({\mathfrak {b}}+{\mathfrak {c}})={\mathfrak {a}}{\mathfrak {b}}+{\mathfrak {a}}{\mathfrak {c}}} 13979: 13946: 8493: 7912: 9020:
For simplicity, we work with commutative rings but, with some changes, the results are also true for non-commutative rings.
98: 12335: 12013: 11652: 11606: 13880: 7671: 7038: 12995: 12918:
is a commutative monoid object respectively, the definitions of left, right, and two-sided ideal coincide, and the term
6393:
Two other important terms using "ideal" are not always ideals of their ring. See their respective articles for details:
4979:{\displaystyle RXR=\{r_{1}x_{1}s_{1}+\dots +r_{n}x_{n}s_{n}\mid n\in \mathbb {N} ,r_{i}\in R,s_{i}\in R,x_{i}\in X\}.\,} 7569:. The three operations of intersection, sum (or join), and product make the set of ideals of a commutative ring into a 4087: 12297: 1507:(say a left ideal) is rarely a subring; since a subring shares the same multiplicative identity with the ambient ring 14027: 14001: 13908: 13889: 13732: 11942: 11566: 8015: 7579: 6954: 6644: 3935: 1842: 777:
replaced Kummer's undefined concept by concrete sets of numbers, sets that he called ideals, in the third edition of
727: 634: 586: 7074: 783: 14100: 6630:{\displaystyle {\mathfrak {a}}+{\mathfrak {b}}:=\{a+b\mid a\in {\mathfrak {a}}{\mbox{ and }}b\in {\mathfrak {b}}\}} 6058:: An ideal is said to be irreducible if it cannot be written as an intersection of ideals that properly contain it. 4567:
An arbitrary union of ideals need not be an ideal, but the following is still true: given a possibly empty subset
4378: 208: 12851: 12803: 4136: 9669: 9051: 5575:. Different types of ideals are studied because they can be used to construct different types of factor rings. 503: 6386: 5121: 14090: 14085: 13926: 11409: 11324: 10631: 9931: 9880: 9280: 4484: 10590:{\displaystyle {\mathfrak {a}}^{e}={\Big \{}\sum y_{i}f(x_{i}):x_{i}\in {\mathfrak {a}},y_{i}\in B{\Big \}}} 8749:{\displaystyle {\mathfrak {a}}{\mathfrak {b}}=(z(x+z),z(y+w),w(x+z),w(y+w))=(z^{2}+xz,zy+wz,wx+wz,wy+w^{2})} 14095: 3656:, there is a bijective order-preserving correspondence between the left (resp. right, two-sided) ideals of 3222: 627: 494: 17: 5464: 5207: 4805:
is defined in the similar way. For "two-sided", one has to use linear combinations from both sides; i.e.,
1812: 13355: 13350: 11837: 11750: 11271: 11017: 10860: 10681: 10375: 6322: 4419: 344: 10440: 10319: 3756: 3096: 686:
and absorption properties are the defining properties of an ideal. An ideal can be used to construct a
14019: 13283: 12691: 12651: 12265: 12203: 12168: 12136: 11494: 9366: 104: 11818: 11731: 465: 428: 119: 12406: 12380: 12235: 12124:{\displaystyle {\mathfrak {p}}^{e}B_{\mathfrak {p}}=B_{\mathfrak {p}}\Rightarrow {\mathfrak {p}}^{e}} 11987: 11787: 11700: 10989: 10814: 10783: 10755: 10712: 10603: 10406: 10291: 9710: 9336: 9312: 7946: 7748: 7718: 7531: 7507: 7483: 7131: 7105: 7012: 6988: 6925: 6895: 6519: 6493: 6039: 6027: 4061: 4037: 3842: 3385: 2982: 2821: 2198: 1788: 723: 13178: 9621: 8209: 3312: 3010:
is given by those functions that vanish for large enough arguments, i.e. those continuous functions
1774:. Every (left, right or two-sided) ideal contains the zero ideal and is contained in the unit ideal. 13256: 10017: 9593: 8986:{\displaystyle {\mathfrak {a}}\cap {\mathfrak {c}}=(w,xz+z^{2})\neq {\mathfrak {a}}{\mathfrak {c}}} 7775:(More generally, the difference between a product and an intersection of ideals is measured by the 3719: 2917: 2734: 2543: 2340: 2291: 579: 382: 332: 13315: 13232: 13208: 12759: 12445: 11139: 10841: 8029: 5571:
Ideals are important because they appear as kernels of ring homomorphisms and allow one to define
2897: 2875: 2461: 2393: 2367: 2267: 181: 11978: 8124: 391: 125: 84: 12731: 4784:{\displaystyle RX=\{r_{1}x_{1}+\dots +r_{n}x_{n}\mid n\in \mathbb {N} ,r_{i}\in R,x_{i}\in X\}.} 4352: 3818: 1544: 3467: 2768: 2682: 2577: 2413: 1704: 548: 399: 350: 131: 5340: 3625: 3186: 2646: 1349: 1214: 11234: 11192: 5312: 4529: 4458: 3427: 3139: 2426: 1980: 1938: 1185: 1132: 1101: 683: 6139: 6111: 5028: 4260: 3059: 3033: 2945: 2061: 1902: 1518: 1480: 1454: 1003: 975: 14037: 13956: 13365: 12926: 9870: 7566: 6241: 6197: 6079: 6047: 5629: 5418: 5374: 2600: 1675: 1609: 1247: 938: 900: 742: 706: 272: 146: 14045: 12898:
is a left ideal that is also a right ideal, and is sometimes simply called an ideal. When
9720: 9552: 9510: 9477: 9179: 3580: 3543: 3514: 2149: 2096: 1608:
The notion of an ideal does not involve associativity; thus, an ideal is also defined for
8: 11559: 9755: 9540: 6237: 5897: 5609: 5262: 5179: 5093: 5065: 4638: 2850: 1749: 1647: 1582: 1318: 1301: 1261: 554: 362: 313: 258: 152: 138: 34: 5777: 5003: 4617: 4588: 2038: 1427: 1031: 13989: 13718: 13345: 13151: 13129: 13109: 13087: 13065: 13045: 13025: 13003: 12977: 12957: 12937: 12901: 12629: 12605: 12578: 12556: 12534: 12511: 12479: 11913: 9151: 8372:{\displaystyle {\mathfrak {a}}=(z,w),{\mathfrak {b}}=(x+z,y+w),{\mathfrak {c}}=(x+z,w)} 8184: 8162: 6382: 6333: 6215: 6008:. Every prime ideal is primary, but not conversely. A semiprime primary ideal is prime. 5866: 5844: 5824: 5802: 5755: 5733: 5713: 5689: 5661: 5538: 5516: 5440: 5396: 5290: 5268: 4561: 4190: 3699: 3679: 3659: 3363: 3288: 3013: 2923: 2855: 2794: 2710: 2626: 2606: 2519: 2497: 2387: 2318: 2178: 2127: 2018: 1305: 1056: 877: 855: 833: 804: 667: 567: 53: 9015:
Ideals appear naturally in the study of modules, especially in the form of a radical.
14023: 13997: 13975: 13942: 13904: 13885: 13728: 12501: 10285: 9910: 9585: 9010: 6054: 3216: 1410: 1391: 1255: 608: 405: 170: 111: 13992:; Gubareni, Nadiya; Gubareni, Nadezhda MikhaΔ­lovna; Kirichenko, Vladimir V. (2004). 9464:{\displaystyle J=\{x\in R\mid 1-yx\,{\text{ is a unit element for every }}y\in R\}.} 9138:{\displaystyle J=\bigcap _{{\mathfrak {m}}{\text{ maximal ideals}}}{\mathfrak {m}}.} 5265:(equivalence relations that respect the ring structure) on the ring: Given an ideal 14041: 13934: 13875: 11897: 11563: 10269: 9046: 7740: 7559: 6433: 6398: 6359: 1395: 1175:. In the non-commutative case, "ideal" is often used instead of "two-sided ideal". 1168: 774: 750: 614: 600: 414: 356: 319: 92: 78: 8901:{\displaystyle {\mathfrak {a}}\cap {\mathfrak {b}}={\mathfrak {a}}{\mathfrak {b}}} 7658:{\displaystyle {\mathfrak {a}}\cap {\mathfrak {b}}={\mathfrak {a}}{\mathfrak {b}}} 4610:. Such an ideal exists since it is the intersection of all left ideals containing 14033: 13971: 13952: 13930: 11881: 9030: 7906: 7562: 6192: 6184: 6034: 6012: 5902: 5890: 4346: 4178: 1398:. Conversely, the kernel of a ring homomorphism is a two-sided ideal. Therefore, 1288: 731: 710: 695: 376: 326: 164: 11049:. Many classic examples of this stem from algebraic number theory. For example, 14067: 13918: 13871: 13676: 7384:
If a product is replaced by an intersection, a partial distributive law holds:
6407: 6002: 5946: 4031: 827: 699: 420: 13938: 14079: 12438: 11925: 11809: 10358: 9925: 9038: 6441:
is defined as a fractional ideal for which there is another fractional ideal
6315: 6204: 6168: 6043: 5957: 5616: 5580: 3176:. Thus, a skew-field is simple and a simple commutative ring is a field. The 1782: 1670:
since it is precisely the two-sided ideal generated (see below) by the unity
788: 735: 687: 561: 457: 72: 13852: 13360: 9504: 9270:{\displaystyle R/\operatorname {Ann} (M)=R/\operatorname {Ann} (x)\simeq M} 5950: 1777:
An (left, right or two-sided) ideal that is not the unit ideal is called a
1503:. (Right and two-sided ideals are defined similarly.) For a ring, an ideal 792: 769: 765: 753:
is a generalization of an ideal, and the usual ideals are sometimes called
746: 719: 691: 679: 593: 368: 264: 14062: 8005:{\displaystyle {\mathfrak {\mathfrak {a}}}={\mathfrak {b}}{\mathfrak {c}}} 6421:
with a special property. If the fractional ideal is contained entirely in
5620:: A nonzero ideal is called minimal if it contains no other nonzero ideal. 14011: 13380: 11937: 11722: 7776: 6459:. Some authors may also apply "invertible ideal" to ordinary ring ideals 5682: 5605: 5572: 4996:
is called the principal left (resp. right, two-sided) ideal generated by
3177: 3131: 1613: 1088: 715: 659: 655: 573: 284: 158: 40: 13527:
Fermat's last theorem. A genetic introduction to algebraic number theory
11088:{\displaystyle \mathbb {Z} \to \mathbb {Z} \left\lbrack i\right\rbrack } 8849:{\displaystyle {\mathfrak {a}}{\mathfrak {c}}=(xz+z^{2},zw,xw+zw,w^{2})} 13963: 13370: 8998: 8483:{\displaystyle {\mathfrak {a}}+{\mathfrak {b}}=(z,w,x+z,y+w)=(x,y,z,w)} 5886: 2420: 2315:. More generally, the set of all integers divisible by a fixed integer 1932: 1388: 338: 10175:{\displaystyle J\cdot ({\mathfrak {a}}/\operatorname {Ann} (J^{n}))=0} 3921:{\displaystyle \operatorname {Ann} _{R}(S)=\{r\in R\mid rs=0,s\in S\}} 1809:
is proper if and only if it does not contain a unit element, since if
12623: 12529: 11050: 10106:{\displaystyle {\mathfrak {a}}\supsetneq \operatorname {Ann} (J^{n})} 6176: 4416:, then there is an ideal that is maximal among the ideals containing 4127: 1080: 778: 298: 203: 13988: 6884:
i.e. the product is the ideal generated by all products of the form
4992:
A left (resp. right, two-sided) ideal generated by a single element
27:
Additive subgroup of a mathematical ring that absorbs multiplication
7570: 2386:
is generated by its smallest positive element, as a consequence of
1400:
the two-sided ideals are exactly the kernels of ring homomorphisms.
930: 823: 292: 278: 9474:
For a not-necessarily-commutative ring, it is a general fact that
9397:. There is also another characterization (the proof is not hard): 8111:{\displaystyle (n)\cap (m)=\operatorname {lcm} (n,m)\mathbb {Z} } 4019:{\displaystyle ({\mathfrak {b}}+{\mathfrak {a}})/{\mathfrak {a}}} 2261: 1171:, the three definitions are the same, and one talks simply of an 675: 176: 60: 6180:: An ideal is a nil ideal if each of its elements is nilpotent. 12497: 10005:{\displaystyle \operatorname {nil} (R)=\operatorname {Jac} (R)} 7196:{\displaystyle {\mathfrak {a}},{\mathfrak {b}},{\mathfrak {c}}} 4327:{\displaystyle \textstyle \bigcup _{i\in S}{\mathfrak {a}}_{i}} 705:
Among the integers, the ideals correspond one-for-one with the
671: 14018:. Annals of Mathematics Studies. Vol. 72. Princeton, NJ: 6305:{\displaystyle {\textrm {grade}}(I)={\textrm {proj}}\dim(R/I)} 4248:{\displaystyle {\mathfrak {a}}_{i}\subset {\mathfrak {a}}_{j}} 894:
is a left ideal if it satisfies the following two conditions:
13617: 13615: 13613: 13611: 10976:{\displaystyle {\mathfrak {b}}^{ce}\subseteq {\mathfrak {b}}} 10931:{\displaystyle {\mathfrak {a}}^{ec}\supseteq {\mathfrak {a}}} 10243:{\displaystyle J^{n}{\mathfrak {a}}=J^{n+1}{\mathfrak {a}}=0} 2456:
is an ideal in the ring of all real-coefficient polynomials
2423:
with real coefficients that are divisible by the polynomial
1973:
are its only ideals and conversely: that is, a nonzero ring
13903:(Third ed.). Hoboken, NJ: John Wiley & Sons, Inc. 9090:
is the intersection of all primitive ideals. Equivalently,
6490:
The sum and product of ideals are defined as follows. For
1927:. Typically there are plenty of proper ideals. In fact, if 13699: 13687: 13639: 13608: 12551:
that "absorbs multiplication from the left by elements of
11129:{\displaystyle B=\mathbb {Z} \left\lbrack i\right\rbrack } 9543:) is built-in to the definition of a Jacobson radical: if 6172:: This term has multiple uses. See the article for a list. 3611: 850:
that "absorbs multiplication from the left by elements of
674:
of its elements. Ideals generalize certain subsets of the
13923:
Commutative Algebra with a View toward Algebraic Geometry
6985:
is the smallest left (resp. right) ideal containing both
4797:(since such a span is the smallest left ideal containing 10255: 3134:
if it is nonzero and has no two-sided ideals other than
14063:"The Geometric Interpretation for Extension of Ideals?" 13486:
has a unit, this extra requirement becomes superfluous.
8541:{\displaystyle {\mathfrak {a}}+{\mathfrak {c}}=(z,w,x)} 5261:
There is a bijective correspondence between ideals and
3456:
is a proper ideal. More generally, for each left ideal
13727:. Cambridge: Cambridge University Press. p. 132. 12925:
An ideal can also be thought of as a specific type of
7936:{\displaystyle {\mathfrak {a}}\subset {\mathfrak {b}}} 6838: 6778: 6605: 4292: 1612:(often without the multiplicative identity) such as a 749:
is derived from the notion of ideal in ring theory. A
13399:
Some authors call the zero and unit ideals of a ring
13318: 13286: 13259: 13235: 13211: 13181: 13154: 13132: 13112: 13090: 13068: 13048: 13028: 13006: 12980: 12974:-module (by left multiplication), then a left ideal 12960: 12940: 12904: 12854: 12806: 12762: 12734: 12694: 12654: 12632: 12608: 12581: 12559: 12537: 12514: 12482: 12448: 12409: 12383: 12338: 12300: 12268: 12238: 12206: 12171: 12139: 12062: 12016: 11990: 11945: 11840: 11821: 11790: 11753: 11734: 11703: 11655: 11609: 11569: 11497: 11412: 11327: 11274: 11237: 11195: 11142: 11103: 11060: 11020: 10992: 10945: 10900: 10863: 10844: 10817: 10786: 10758: 10715: 10684: 10634: 10606: 10481: 10443: 10409: 10378: 10322: 10294: 10190: 10119: 10070: 10020: 9968: 9934: 9883: 9793: 9758: 9723: 9672: 9624: 9596: 9555: 9513: 9480: 9406: 9369: 9339: 9315: 9283: 9211: 9182: 9154: 9099: 9054: 8914: 8863: 8763: 8555: 8496: 8390: 8269: 8212: 8187: 8165: 8127: 8057: 8032: 7975: 7949: 7915: 7787: 7751: 7721: 7674: 7620: 7582: 7534: 7510: 7486: 7393: 7303: 7216: 7165: 7134: 7108: 7077: 7041: 7015: 6991: 6957: 6928: 6898: 6684: 6647: 6555: 6522: 6496: 6336: 6252: 6218: 6142: 6114: 6082: 5869: 5847: 5827: 5805: 5780: 5758: 5736: 5716: 5692: 5664: 5632: 5541: 5519: 5467: 5443: 5421: 5399: 5377: 5343: 5315: 5293: 5271: 5210: 5182: 5124: 5096: 5068: 5031: 5006: 4813: 4661: 4620: 4591: 4532: 4487: 4461: 4422: 4381: 4355: 4291: 4263: 4213: 4193: 4139: 4090: 4064: 4040: 3980: 3938: 3850: 3821: 3759: 3722: 3702: 3682: 3662: 3628: 3583: 3546: 3517: 3470: 3430: 3388: 3366: 3315: 3291: 3225: 3189: 3142: 3099: 3062: 3036: 3016: 2985: 2948: 2926: 2900: 2878: 2858: 2824: 2797: 2771: 2737: 2713: 2685: 2649: 2629: 2609: 2580: 2546: 2522: 2500: 2464: 2429: 2396: 2370: 2343: 2321: 2294: 2270: 2201: 2181: 2152: 2130: 2099: 2064: 2041: 2021: 1983: 1941: 1905: 1845: 1815: 1791: 1752: 1707: 1678: 1650: 1585: 1547: 1521: 1483: 1457: 1430: 1352: 1321: 1264: 1217: 1188: 1135: 1104: 1059: 1034: 1006: 978: 941: 903: 880: 858: 836: 726:
can be generalized to ideals. There is a version of
506: 468: 431: 211: 184: 13899:
Dummit, David Steven; Foote, Richard Martin (2004).
12368:{\displaystyle {\mathfrak {p}}^{e}B_{\mathfrak {p}}} 12047:{\displaystyle {\mathfrak {p}}={\mathfrak {p}}^{ec}} 11686:{\displaystyle {\mathfrak {b}}^{ce}={\mathfrak {b}}} 11640:{\displaystyle {\mathfrak {a}}^{ec}={\mathfrak {a}}} 9713:
admits a maximal submodule, in particular, one has:
2035:
is a nonzero element, then the principal left ideal
13753: 13539: 10113:is an ideal properly minimal over the latter, then 7707:{\displaystyle {\mathfrak {a}}+{\mathfrak {b}}=(1)} 7062:{\displaystyle {\mathfrak {a}}\cup {\mathfrak {b}}} 13326: 13300: 13270: 13243: 13219: 13195: 13160: 13138: 13118: 13096: 13074: 13054: 13034: 13012: 12986: 12966: 12946: 12910: 12884: 12836: 12780: 12746: 12718: 12678: 12638: 12614: 12587: 12565: 12543: 12520: 12488: 12466: 12419: 12393: 12367: 12322: 12284: 12248: 12222: 12186: 12155: 12123: 12046: 12000: 11977:under extension is one of the central problems of 11965: 11857: 11827: 11800: 11770: 11740: 11713: 11685: 11639: 11591: 11541: 11479: 11394: 11311: 11256: 11219: 11181: 11128: 11087: 11037: 11002: 10975: 10930: 10880: 10850: 10827: 10796: 10768: 10725: 10701: 10663: 10616: 10589: 10462: 10419: 10395: 10341: 10304: 10242: 10174: 10105: 10052: 10004: 9952: 9901: 9858: 9770: 9738: 9699: 9656: 9608: 9570: 9528: 9495: 9463: 9387: 9349: 9325: 9301: 9269: 9197: 9160: 9137: 9078: 8985: 8900: 8848: 8748: 8540: 8482: 8371: 8253: 8193: 8171: 8159:is the set of integers that are divisible by both 8151: 8110: 8040: 8004: 7959: 7935: 7892: 7761: 7731: 7706: 7657: 7602: 7544: 7520: 7496: 7469: 7370: 7283: 7195: 7144: 7118: 7094: 7061: 7025: 7001: 6977: 6938: 6908: 6873: 6667: 6629: 6532: 6506: 6342: 6304: 6224: 6154: 6126: 6100: 5875: 5853: 5833: 5811: 5789: 5764: 5742: 5722: 5698: 5670: 5644: 5547: 5525: 5503: 5449: 5427: 5405: 5383: 5361: 5327: 5299: 5277: 5248: 5194: 5168: 5108: 5080: 5052: 5015: 4978: 4783: 4629: 4600: 4550: 4516: 4473: 4439: 4404: 4367: 4326: 4275: 4247: 4199: 4168: 4116: 4074: 4050: 4018: 3958: 3920: 3833: 3790: 3743: 3708: 3688: 3668: 3646: 3598: 3561: 3532: 3495: 3448: 3414: 3372: 3350: 3297: 3275: 3207: 3166: 3117: 3083: 3048: 3022: 3002: 2969: 2932: 2908: 2886: 2864: 2841: 2803: 2783: 2755: 2719: 2697: 2671: 2635: 2615: 2592: 2564: 2528: 2506: 2481: 2448: 2404: 2378: 2354: 2327: 2305: 2278: 2249: 2187: 2167: 2136: 2114: 2085: 2050: 2027: 2007: 1965: 1917: 1889: 1831: 1801: 1764: 1726: 1691: 1662: 1597: 1571: 1533: 1495: 1469: 1439: 1372: 1335: 1278: 1235: 1200: 1182:is a left, right or two-sided ideal, the relation 1150: 1119: 1065: 1043: 1018: 990: 959: 921: 886: 864: 842: 530: 483: 446: 238: 192: 13657:Because simple commutative rings are fields. See 13524: 12008:is a contraction of a prime ideal if and only if 11984:The following is sometimes useful: a prime ideal 10582: 10501: 9869:where the intersection on the left is called the 4117:{\displaystyle ({\mathfrak {a}}:{\mathfrak {b}})} 14077: 12323:{\displaystyle {\mathfrak {q}}B_{\mathfrak {p}}} 9784:A maximal ideal is a prime ideal and so one has 7157:The distributive law holds for two-sided ideals 4801:.) A right (resp. two-sided) ideal generated by 3696:and the left (resp. right, two-sided) ideals of 2015:are the only left (or right) ideals. (Proof: if 13870: 13858: 11966:{\displaystyle {\mathfrak {a}}={\mathfrak {p}}} 11592:{\displaystyle {\mathfrak {a}}\supseteq \ker f} 8021: 7603:{\displaystyle {\mathfrak {a}},{\mathfrak {b}}} 6978:{\displaystyle {\mathfrak {a}}+{\mathfrak {b}}} 6668:{\displaystyle {\mathfrak {a}},{\mathfrak {b}}} 5658:: the whole ring (being the ideal generated by 3959:{\displaystyle {\mathfrak {a}},{\mathfrak {b}}} 2920:contains the ideal of all continuous functions 1890:{\displaystyle r=(ru^{-1})u\in {\mathfrak {a}}} 13509: 13376:Splitting of prime ideals in Galois extensions 12599:if it satisfies the following two conditions: 11268:(and therefore not maximal, as well). Indeed, 7095:{\displaystyle {\mathfrak {a}}{\mathfrak {b}}} 4575:, there is the smallest left ideal containing 2815:is zero is a left ideal but not a right ideal. 2729:. It is not a left ideal. Similarly, for each 1424:is a subrng with the additional property that 6641:which is a left (resp. right) ideal, and, if 6413:. Despite their names, fractional ideals are 3804:section for the definitions of these ideals). 2643:-th row is zero is a right ideal in the ring 635: 12165:, a contradiction. Now, the prime ideals of 9455: 9413: 6865: 6702: 6624: 6576: 5639: 5633: 5498: 5474: 5163: 5131: 4969: 4826: 4775: 4671: 4545: 4539: 4405:{\displaystyle {\mathfrak {a}}_{0}\subset R} 3915: 3876: 3106: 3100: 2364:. In fact, every non-zero ideal of the ring 1721: 1708: 1164:is a left ideal that is also a right ideal. 239:{\displaystyle 0=\mathbb {Z} /1\mathbb {Z} } 13898: 13705: 13693: 13645: 13621: 13602: 13590: 13578: 13566: 13554: 13533: 13505: 13503: 5604:. The factor ring of a maximal ideal is a 13711: 12885:{\displaystyle x\otimes r\in (I,\otimes )} 12837:{\displaystyle r\otimes x\in (I,\otimes )} 5945:. The factor ring of a radical ideal is a 5415:. Conversely, given a congruence relation 4169:{\displaystyle {\mathfrak {a}}_{i},i\in S} 1734:consisting of only the additive identity 0 1619: 642: 628: 13717: 13320: 13294: 13264: 13237: 13213: 13189: 11111: 11070: 11062: 9700:{\displaystyle M=JM\subset L\subsetneq M} 9539:The following simple but important fact ( 9440: 9079:{\displaystyle J=\operatorname {Jac} (R)} 8220: 8104: 8034: 4975: 4908: 4733: 4451:. (Again this is still valid if the ring 2993: 2902: 2880: 2832: 2466: 2398: 2372: 2348: 2299: 2272: 1258:forms a left, right or bi module denoted 1098:is defined similarly, with the condition 741:The related, but distinct, concept of an 531:{\displaystyle \mathbb {Z} (p^{\infty })} 508: 471: 434: 232: 219: 186: 14060: 13917: 13747: 13500: 13227:is an abelian group that is a subset of 9588:, since if there is a maximal submodule 9029:be a commutative ring. By definition, a 5885:. The factor ring of a prime ideal is a 5169:{\displaystyle X=\{x_{1},\dots ,x_{n}\}} 4338:. (Note: this fact remains true even if 11480:{\displaystyle (1-i)=((1+i)-(1+i)^{2})} 11395:{\displaystyle (1+i)=((1-i)-(1-i)^{2})} 10664:{\displaystyle f^{-1}({\mathfrak {b}})} 9953:{\displaystyle \operatorname {Jac} (R)} 9902:{\displaystyle \operatorname {nil} (R)} 9443: is a unit element for every  9302:{\displaystyle \operatorname {Ann} (M)} 7665:in the following two cases (at least) 4517:{\displaystyle {\mathfrak {a}}_{0}=(0)} 3620:: Given a surjective ring homomorphism 1079:In other words, a left ideal is a left 14: 14078: 14010: 13802:"sums, products, and powers of ideals" 13759: 13662:A First Course in Noncommutative Rings 6542:, left (resp. right) ideals of a ring 5592:if there exists no other proper ideal 4412:is a left ideal that is disjoint from 3612:#Extension and contraction of an ideal 10256:Extension and contraction of an ideal 10014:. (Proof: first note the DCC implies 7739:is generated by elements that form a 6373:. (This is stronger than saying that 4579:, called the left ideal generated by 3276:{\displaystyle \ker(f)=f^{-1}(0_{S})} 1404: 13962: 13633: 13126:is a two-sided ideal if it is a sub- 13062:if and only if it is a left (right) 12056:. (Proof: Assuming the latter, note 9004: 7565:. The lattice is not, in general, a 7102:is contained in the intersection of 5504:{\displaystyle I=\{x\in R:x\sim 0\}} 5249:{\displaystyle (x_{1},\dots ,x_{n})} 3801: 1832:{\displaystyle u\in {\mathfrak {a}}} 99:Free product of associative algebras 13929:, vol. 150, Berlin, New York: 13881:Introduction to Commutative Algebra 13658: 13310:. So these give all the ideals of 12412: 12386: 12359: 12342: 12314: 12303: 12277: 12241: 12215: 12178: 12148: 12110: 12098: 12083: 12066: 12030: 12019: 11993: 11958: 11948: 11858:{\displaystyle {\mathfrak {a}}^{e}} 11844: 11793: 11771:{\displaystyle {\mathfrak {a}}^{e}} 11757: 11706: 11678: 11659: 11632: 11613: 11572: 11312:{\displaystyle (1\pm i)^{2}=\pm 2i} 11038:{\displaystyle {\mathfrak {a}}^{e}} 11024: 10995: 10968: 10949: 10923: 10904: 10881:{\displaystyle {\mathfrak {b}}^{c}} 10867: 10820: 10789: 10761: 10718: 10702:{\displaystyle {\mathfrak {b}}^{c}} 10688: 10653: 10609: 10556: 10485: 10452: 10412: 10396:{\displaystyle {\mathfrak {a}}^{e}} 10382: 10331: 10297: 10229: 10203: 10131: 10073: 9833: 9819: 9709:, a contradiction. Since a nonzero 9380: 9342: 9318: 9309:is a maximal ideal. Conversely, if 9127: 9113: 8978: 8971: 8927: 8917: 8893: 8886: 8876: 8866: 8773: 8766: 8565: 8558: 8509: 8499: 8403: 8393: 8340: 8300: 8272: 7997: 7990: 7979: 7952: 7928: 7918: 7885: 7878: 7863: 7853: 7837: 7819: 7754: 7724: 7687: 7677: 7650: 7643: 7633: 7623: 7595: 7585: 7537: 7513: 7489: 7462: 7452: 7442: 7432: 7419: 7409: 7396: 7363: 7356: 7346: 7339: 7329: 7319: 7309: 7276: 7269: 7259: 7252: 7239: 7229: 7219: 7188: 7178: 7168: 7137: 7111: 7087: 7080: 7054: 7044: 7018: 6994: 6970: 6960: 6931: 6901: 6799: 6772: 6694: 6687: 6660: 6650: 6619: 6599: 6568: 6558: 6525: 6499: 6485: 4491: 4440:{\displaystyle {\mathfrak {a}}_{0}} 4426: 4385: 4312: 4234: 4217: 4143: 4106: 4096: 4067: 4043: 4011: 3996: 3986: 3951: 3941: 3180:over a skew-field is a simple ring. 1882: 1824: 1794: 1740:forms a two-sided ideal called the 1383:that associates to each element of 24: 14016:Introduction to algebraic K-theory 13518: 12432: 10463:{\displaystyle f({\mathfrak {a}})} 10342:{\displaystyle f({\mathfrak {a}})} 9037:is the annihilator of a (nonzero) 8997:computations can be checked using 5561: 3791:{\displaystyle J\mapsto f^{-1}(J)} 3118:{\displaystyle \vert x\vert >L} 1636:itself forms a two-sided ideal of 520: 25: 14112: 14054: 13301:{\displaystyle m\in \mathbb {Z} } 12719:{\displaystyle x\in (I,\otimes )} 12679:{\displaystyle r\in (R,\otimes )} 12437:Ideals can be generalized to any 12285:{\displaystyle A-{\mathfrak {p}}} 12223:{\displaystyle A-{\mathfrak {p}}} 12187:{\displaystyle B_{\mathfrak {p}}} 12156:{\displaystyle A-{\mathfrak {p}}} 11542:{\displaystyle (2)^{e}=(1+i)^{2}} 9388:{\displaystyle R/{\mathfrak {m}}} 9357:is the annihilator of the simple 8016:fundamental theorem of arithmetic 7610:are ideals of a commutative ring 6244:of the associated quotient ring, 5062:). The principal two-sided ideal 3716:: the correspondence is given by 709:: in this ring, every ideal is a 587:Noncommutative algebraic geometry 14061:Levinson, Jake (July 14, 2014). 13542:An introduction to number theory 13432:, we must allow the addition of 12232:. Hence, there is a prime ideal 11828:{\displaystyle \Leftrightarrow } 11741:{\displaystyle \Leftrightarrow } 11189:where (one can show) neither of 6358:is equal to the height of every 6038:: A left primitive ideal is the 3807:(For those who know modules) If 3030:for which there exists a number 2058:(see below) is nonzero and thus 484:{\displaystyle \mathbb {Q} _{p}} 447:{\displaystyle \mathbb {Z} _{p}} 13823: 13794: 13765: 13741: 13669: 13651: 13627: 13414: 12798:is defined with the condition " 12420:{\displaystyle {\mathfrak {p}}} 12394:{\displaystyle {\mathfrak {q}}} 12249:{\displaystyle {\mathfrak {q}}} 12001:{\displaystyle {\mathfrak {p}}} 11801:{\displaystyle {\mathfrak {a}}} 11714:{\displaystyle {\mathfrak {a}}} 11003:{\displaystyle {\mathfrak {a}}} 10828:{\displaystyle {\mathfrak {b}}} 10797:{\displaystyle {\mathfrak {b}}} 10769:{\displaystyle {\mathfrak {a}}} 10726:{\displaystyle {\mathfrak {b}}} 10617:{\displaystyle {\mathfrak {b}}} 10420:{\displaystyle {\mathfrak {a}}} 10305:{\displaystyle {\mathfrak {a}}} 9350:{\displaystyle {\mathfrak {m}}} 9326:{\displaystyle {\mathfrak {m}}} 7960:{\displaystyle {\mathfrak {c}}} 7905:An integral domain is called a 7762:{\displaystyle {\mathfrak {b}}} 7732:{\displaystyle {\mathfrak {a}}} 7545:{\displaystyle {\mathfrak {c}}} 7521:{\displaystyle {\mathfrak {b}}} 7497:{\displaystyle {\mathfrak {a}}} 7145:{\displaystyle {\mathfrak {b}}} 7119:{\displaystyle {\mathfrak {a}}} 7026:{\displaystyle {\mathfrak {b}}} 7002:{\displaystyle {\mathfrak {a}}} 6939:{\displaystyle {\mathfrak {b}}} 6909:{\displaystyle {\mathfrak {a}}} 6533:{\displaystyle {\mathfrak {b}}} 6507:{\displaystyle {\mathfrak {a}}} 6425:, then it is truly an ideal of 6402:: This is usually defined when 4375:is a possibly empty subset and 4075:{\displaystyle {\mathfrak {b}}} 4051:{\displaystyle {\mathfrak {a}}} 3540:is a left ideal of the subring 3415:{\displaystyle 1_{S}\neq 0_{S}} 3003:{\displaystyle C(\mathbb {R} )} 2842:{\displaystyle C(\mathbb {R} )} 2250:{\displaystyle z=z(yx)=(zy)x=x} 1802:{\displaystyle {\mathfrak {a}}} 13596: 13584: 13572: 13560: 13548: 13393: 13196:{\displaystyle R=\mathbb {Z} } 12879: 12867: 12831: 12819: 12775: 12763: 12713: 12701: 12673: 12661: 12461: 12449: 12330:is a maximal ideal containing 12104: 11822: 11735: 11530: 11517: 11505: 11498: 11474: 11465: 11452: 11446: 11434: 11431: 11425: 11413: 11389: 11380: 11367: 11361: 11349: 11346: 11340: 11328: 11288: 11275: 11245: 11238: 11176: 11164: 11161: 11149: 11066: 10986:It is false, in general, that 10845: 10658: 10648: 10535: 10522: 10457: 10447: 10431:is defined to be the ideal in 10336: 10326: 10163: 10160: 10147: 10126: 10100: 10087: 9999: 9993: 9981: 9975: 9947: 9941: 9896: 9890: 9853: 9847: 9806: 9800: 9657:{\displaystyle J\cdot (M/L)=0} 9645: 9631: 9296: 9290: 9258: 9252: 9232: 9226: 9073: 9067: 8963: 8935: 8843: 8781: 8743: 8663: 8657: 8654: 8642: 8633: 8621: 8612: 8600: 8591: 8579: 8573: 8535: 8517: 8477: 8453: 8447: 8411: 8366: 8348: 8332: 8308: 8292: 8280: 8254:{\displaystyle R=\mathbb {C} } 8248: 8224: 8146: 8140: 8134: 8128: 8100: 8088: 8076: 8070: 8064: 8058: 7868: 7848: 7842: 7806: 7701: 7695: 7424: 7404: 7324: 7304: 7244: 7224: 6437:: Usually an invertible ideal 6299: 6285: 6266: 6260: 5243: 5211: 5103: 5097: 4511: 4505: 4111: 4091: 4001: 3981: 3932:is a left ideal. Given ideals 3870: 3864: 3785: 3779: 3763: 3738: 3732: 3726: 3638: 3593: 3587: 3556: 3550: 3527: 3521: 3490: 3484: 3443: 3437: 3351:{\displaystyle f(1_{R})=1_{S}} 3332: 3319: 3270: 3257: 3238: 3232: 3199: 3161: 3155: 3149: 3143: 3072: 3066: 2997: 2989: 2958: 2952: 2836: 2828: 2666: 2660: 2476: 2470: 2235: 2226: 2220: 2211: 2080: 2074: 2002: 1996: 1990: 1984: 1960: 1954: 1948: 1942: 1871: 1852: 1759: 1753: 1657: 1651: 1644:. It is often also denoted by 1356: 954: 942: 916: 904: 798: 784:Vorlesungen ΓΌber Zahlentheorie 525: 512: 13: 1: 13927:Graduate Texts in Mathematics 13859:Atiyah & Macdonald (1969) 13493: 13482:in the natural numbers. When 13271:{\displaystyle m\mathbb {Z} } 10053:{\displaystyle J^{n}=J^{n+1}} 9609:{\displaystyle L\subsetneq M} 6406:is a commutative domain with 6354:(in height) if the height of 4345:The above fact together with 4207:is a totally ordered set and 3744:{\displaystyle I\mapsto f(I)} 2756:{\displaystyle 1\leq j\leq n} 2565:{\displaystyle 1\leq i\leq n} 2355:{\displaystyle n\mathbb {Z} } 2306:{\displaystyle 2\mathbb {Z} } 1343:is a ring, and the function 734:(a type of ring important in 13540:Everest G., Ward T. (2005). 13327:{\displaystyle \mathbb {Z} } 13244:{\displaystyle \mathbb {Z} } 13220:{\displaystyle \mathbb {Z} } 13082:-module that is a subset of 12781:{\displaystyle (I,\otimes )} 12467:{\displaystyle (R,\otimes )} 12429:. The converse is obvious.) 11182:{\displaystyle 2=(1+i)(1-i)} 11010:being prime (or maximal) in 10851:{\displaystyle \Rightarrow } 10365:into the field of rationals 9750:is finitely generated, then 8041:{\displaystyle \mathbb {Z} } 8022:Examples of ideal operations 7480:where the equality holds if 6481:in rings other than domains. 6188:: Some power of it is zero. 5949:for general rings, and is a 5391:is a congruence relation on 2909:{\displaystyle \mathbb {R} } 2887:{\displaystyle \mathbb {R} } 2482:{\displaystyle \mathbb {R} } 2405:{\displaystyle \mathbb {Z} } 2379:{\displaystyle \mathbb {Z} } 2279:{\displaystyle \mathbb {Z} } 690:in a way similar to how, in 193:{\displaystyle \mathbb {Z} } 7: 13994:Algebras, rings and modules 13512:Mathematics and its history 13356:Boolean prime ideal theorem 13351:Noether isomorphism theorem 13339: 13042:is a left (right) ideal of 11136:, the element 2 factors as 8152:{\displaystyle (n)\cap (m)} 7909:if for each pair of ideals 1387:its equivalence class is a 1304:and is a generalization of 718:of a ring are analogous to 698:can be used to construct a 658:, and more specifically in 345:Unique factorization domain 10: 14117: 14020:Princeton University Press 13525:Harold M. Edwards (1977). 12747:{\displaystyle r\otimes x} 9008: 6196:: an ideal generated by a 4368:{\displaystyle E\subset R} 3834:{\displaystyle S\subset M} 2264:form an ideal in the ring 1572:{\displaystyle r=r1\in I;} 1515:were a subring, for every 1394:that has the ideal as its 1300:. (It is an instance of a 760: 728:unique prime factorization 105:Tensor product of algebras 13996:. Vol. 1. Springer. 13939:10.1007/978-1-4612-5350-1 13706:Dummit & Foote (2004) 13694:Dummit & Foote (2004) 13646:Dummit & Foote (2004) 13622:Dummit & Foote (2004) 13581:, Β§ 10.1., Proposition 3. 11045:is prime (or maximal) in 9711:finitely generated module 9333:is a maximal ideal, then 5088:is often also denoted by 4455:lacks the unity 1.) When 4349:proves the following: if 3676:containing the kernel of 3496:{\displaystyle f^{-1}(I)} 3380:is not the zero ring (so 2784:{\displaystyle n\times n} 2705:matrices with entries in 2698:{\displaystyle n\times n} 2593:{\displaystyle n\times n} 1727:{\displaystyle \{0_{R}\}} 724:Chinese remainder theorem 13831:"intersection of ideals" 13569:, Β§ 10.1., Examples (1). 13386: 12496:is the object where the 10752:is a ring homomorphism, 10361:of the ring of integers 10349:need not be an ideal in 9826: prime ideals  9172:is a nonzero element in 6026:: This type of ideal is 6024:Finitely generated ideal 6016:: An ideal generated by 5362:{\displaystyle x-y\in I} 4342:is without the unity 1.) 3647:{\displaystyle f:R\to S} 3606:need not be an ideal of 3283:is a two-sided ideal of 3208:{\displaystyle f:R\to S} 2918:pointwise multiplication 2672:{\displaystyle M_{n}(R)} 1839:is a unit element, then 1373:{\displaystyle R\to R/I} 1236:{\displaystyle x-y\in I} 768:invented the concept of 383:Formal power series ring 333:Integrally closed domain 14101:Algebraic number theory 13724:Commutative Ring Theory 13603:Dummit & Foote 2004 13593:, Ch. 7, Proposition 6. 13591:Dummit & Foote 2004 13579:Dummit & Foote 2004 13567:Dummit & Foote 2004 13555:Dummit & Foote 2004 13510:John Stillwell (2010). 13454:-fold sums of the form 13436:-fold sums of the form 12377:. One then checks that 12198:that are disjoint from 12194:correspond to those in 11979:algebraic number theory 11257:{\displaystyle (2)^{e}} 11220:{\displaystyle 1+i,1-i} 9168:is a simple module and 5989:, then at least one of 5821:, then at least one of 5328:{\displaystyle x\sim y} 4551:{\displaystyle E=\{1\}} 4474:{\displaystyle R\neq 0} 4130:in commutative algebra. 4126:; it is an instance of 3449:{\displaystyle \ker(f)} 3167:{\displaystyle (0),(1)} 2449:{\displaystyle x^{2}+1} 2008:{\displaystyle (0),(1)} 1966:{\displaystyle (0),(1)} 1620:Examples and properties 1201:{\displaystyle x\sim y} 1151:{\displaystyle xr\in I} 1120:{\displaystyle rx\in I} 392:Algebraic number theory 85:Total ring of fractions 13328: 13302: 13272: 13245: 13221: 13197: 13162: 13140: 13120: 13098: 13076: 13056: 13036: 13014: 12994:is really just a left 12988: 12968: 12948: 12912: 12886: 12838: 12782: 12748: 12720: 12680: 12640: 12616: 12589: 12567: 12545: 12522: 12490: 12468: 12421: 12395: 12369: 12324: 12286: 12250: 12224: 12188: 12157: 12125: 12048: 12002: 11967: 11865:is a maximal ideal in 11859: 11829: 11802: 11772: 11742: 11715: 11687: 11641: 11593: 11554:On the other hand, if 11543: 11481: 11396: 11313: 11258: 11221: 11183: 11130: 11089: 11039: 11004: 10977: 10932: 10882: 10852: 10829: 10798: 10770: 10727: 10703: 10671:is always an ideal of 10665: 10618: 10591: 10464: 10421: 10397: 10343: 10306: 10244: 10176: 10107: 10054: 10006: 9954: 9903: 9860: 9772: 9740: 9701: 9658: 9610: 9572: 9547:is a module such that 9530: 9497: 9465: 9389: 9351: 9327: 9303: 9271: 9199: 9162: 9139: 9080: 8987: 8902: 8850: 8750: 8542: 8484: 8373: 8255: 8195: 8173: 8153: 8112: 8042: 8006: 7961: 7937: 7894: 7763: 7733: 7708: 7659: 7604: 7546: 7522: 7498: 7471: 7372: 7285: 7197: 7146: 7120: 7096: 7071:), while the product 7063: 7027: 7003: 6979: 6940: 6910: 6875: 6669: 6631: 6534: 6508: 6344: 6306: 6226: 6156: 6155:{\displaystyle y\in J} 6128: 6127:{\displaystyle x\in I} 6102: 5953:for commutative rings. 5893:for commutative rings. 5877: 5855: 5835: 5813: 5791: 5766: 5744: 5724: 5700: 5672: 5646: 5612:for commutative rings. 5549: 5527: 5505: 5451: 5429: 5407: 5385: 5363: 5329: 5301: 5279: 5250: 5196: 5176:is a finite set, then 5170: 5110: 5082: 5054: 5053:{\displaystyle xR,RxR} 5017: 4980: 4785: 4637:is the set of all the 4631: 4602: 4552: 4518: 4475: 4441: 4406: 4369: 4328: 4277: 4276:{\displaystyle i<j} 4249: 4201: 4170: 4118: 4076: 4052: 4020: 3966:of a commutative ring 3960: 3922: 3835: 3792: 3745: 3710: 3690: 3670: 3648: 3600: 3563: 3534: 3497: 3450: 3416: 3374: 3352: 3299: 3277: 3209: 3168: 3119: 3085: 3084:{\displaystyle f(x)=0} 3050: 3049:{\displaystyle L>0} 3024: 3004: 2971: 2970:{\displaystyle f(1)=0} 2934: 2910: 2888: 2866: 2843: 2805: 2785: 2757: 2721: 2699: 2673: 2637: 2617: 2594: 2566: 2530: 2508: 2483: 2450: 2414:principal ideal domain 2406: 2380: 2356: 2329: 2307: 2280: 2251: 2189: 2169: 2138: 2116: 2087: 2086:{\displaystyle Rx=(1)} 2052: 2029: 2009: 1967: 1919: 1918:{\displaystyle r\in R} 1891: 1833: 1803: 1785:). Note: a left ideal 1766: 1728: 1693: 1664: 1599: 1573: 1535: 1534:{\displaystyle r\in R} 1497: 1496:{\displaystyle x\in I} 1471: 1470:{\displaystyle r\in R} 1441: 1374: 1337: 1280: 1237: 1202: 1152: 1121: 1067: 1045: 1020: 1019:{\displaystyle x\in I} 992: 991:{\displaystyle r\in R} 961: 923: 888: 866: 844: 549:Noncommutative algebra 532: 485: 448: 400:Algebraic number field 351:Principal ideal domain 240: 194: 132:Frobenius endomorphism 13968:Undergraduate Algebra 13329: 13303: 13273: 13246: 13222: 13198: 13163: 13141: 13121: 13099: 13077: 13057: 13037: 13015: 12989: 12969: 12949: 12913: 12887: 12839: 12783: 12749: 12721: 12681: 12641: 12617: 12590: 12568: 12546: 12523: 12491: 12469: 12422: 12396: 12370: 12325: 12287: 12251: 12225: 12189: 12158: 12126: 12049: 12003: 11968: 11936:. The behaviour of a 11908:, respectively. Then 11860: 11830: 11803: 11773: 11743: 11716: 11688: 11642: 11594: 11544: 11482: 11397: 11314: 11259: 11222: 11184: 11131: 11090: 11040: 11005: 10978: 10933: 10883: 10853: 10830: 10799: 10771: 10728: 10704: 10666: 10619: 10592: 10465: 10422: 10398: 10344: 10307: 10245: 10177: 10108: 10055: 10007: 9955: 9904: 9861: 9773: 9741: 9702: 9659: 9611: 9573: 9531: 9498: 9466: 9390: 9352: 9328: 9304: 9272: 9200: 9163: 9140: 9081: 8988: 8903: 8851: 8751: 8543: 8485: 8374: 8256: 8196: 8174: 8154: 8113: 8043: 8007: 7962: 7938: 7895: 7764: 7734: 7709: 7660: 7605: 7547: 7523: 7499: 7472: 7373: 7286: 7198: 7147: 7121: 7097: 7064: 7028: 7004: 6980: 6941: 6911: 6876: 6670: 6632: 6535: 6509: 6345: 6330:in a Noetherian ring 6314:. A perfect ideal is 6307: 6227: 6212:in a Noetherian ring 6157: 6129: 6103: 6101:{\displaystyle x+y=1} 5889:in general and is an 5878: 5856: 5836: 5814: 5792: 5767: 5745: 5725: 5701: 5673: 5647: 5645:{\displaystyle \{0\}} 5550: 5528: 5506: 5452: 5430: 5428:{\displaystyle \sim } 5408: 5386: 5384:{\displaystyle \sim } 5364: 5330: 5302: 5280: 5251: 5197: 5171: 5111: 5083: 5055: 5018: 4981: 4786: 4632: 4603: 4553: 4519: 4476: 4442: 4407: 4370: 4329: 4278: 4250: 4202: 4171: 4119: 4077: 4053: 4021: 3961: 3923: 3836: 3793: 3746: 3711: 3691: 3671: 3649: 3601: 3564: 3535: 3498: 3451: 3417: 3375: 3353: 3300: 3278: 3210: 3169: 3120: 3086: 3051: 3025: 3005: 2972: 2935: 2911: 2889: 2867: 2844: 2806: 2786: 2758: 2722: 2700: 2674: 2638: 2618: 2595: 2567: 2531: 2514:and positive integer 2509: 2484: 2451: 2407: 2381: 2357: 2330: 2308: 2281: 2252: 2190: 2170: 2139: 2117: 2088: 2053: 2030: 2010: 1968: 1920: 1892: 1834: 1804: 1767: 1729: 1694: 1692:{\displaystyle 1_{R}} 1665: 1610:non-associative rings 1600: 1574: 1536: 1498: 1472: 1442: 1375: 1338: 1281: 1238: 1203: 1153: 1122: 1068: 1046: 1021: 993: 962: 960:{\displaystyle (R,+)} 924: 922:{\displaystyle (I,+)} 889: 867: 845: 707:non-negative integers 533: 486: 449: 241: 195: 14091:Algebraic structures 14086:Ideals (ring theory) 14012:Milnor, John Willard 13366:Ideal (order theory) 13316: 13284: 13257: 13233: 13209: 13179: 13152: 13130: 13110: 13088: 13066: 13046: 13026: 13004: 12978: 12958: 12938: 12902: 12852: 12804: 12760: 12732: 12692: 12652: 12630: 12606: 12579: 12557: 12535: 12512: 12480: 12446: 12407: 12381: 12336: 12298: 12266: 12236: 12204: 12169: 12137: 12060: 12014: 11988: 11943: 11838: 11819: 11788: 11778:is a prime ideal in 11751: 11732: 11701: 11653: 11607: 11567: 11495: 11410: 11325: 11272: 11235: 11193: 11140: 11101: 11058: 11018: 10990: 10943: 10898: 10861: 10842: 10815: 10784: 10756: 10713: 10682: 10632: 10604: 10479: 10441: 10407: 10376: 10320: 10292: 10252:, a contradiction.) 10188: 10117: 10068: 10018: 9966: 9932: 9881: 9791: 9756: 9739:{\displaystyle JM=M} 9721: 9670: 9622: 9594: 9571:{\displaystyle JM=M} 9553: 9529:{\displaystyle 1-xy} 9511: 9496:{\displaystyle 1-yx} 9478: 9404: 9367: 9337: 9313: 9281: 9209: 9198:{\displaystyle Rx=M} 9180: 9152: 9120: maximal ideals 9097: 9052: 8912: 8861: 8761: 8553: 8494: 8388: 8267: 8210: 8185: 8163: 8125: 8055: 8030: 7973: 7947: 7943:, there is an ideal 7913: 7785: 7749: 7719: 7672: 7618: 7580: 7567:distributive lattice 7532: 7508: 7484: 7391: 7301: 7214: 7163: 7132: 7106: 7075: 7039: 7013: 6989: 6955: 6926: 6896: 6682: 6645: 6553: 6520: 6494: 6387:equidimensional ring 6334: 6250: 6242:projective dimension 6216: 6198:system of parameters 6140: 6112: 6080: 5867: 5845: 5825: 5803: 5778: 5756: 5734: 5714: 5690: 5662: 5630: 5608:in general and is a 5539: 5517: 5465: 5441: 5419: 5397: 5375: 5341: 5313: 5291: 5269: 5263:congruence relations 5208: 5180: 5122: 5094: 5066: 5029: 5004: 4811: 4659: 4643:-linear combinations 4618: 4589: 4530: 4485: 4459: 4420: 4379: 4353: 4289: 4261: 4211: 4191: 4137: 4088: 4062: 4038: 3978: 3936: 3848: 3819: 3757: 3720: 3700: 3680: 3660: 3626: 3618:Ideal correspondence 3599:{\displaystyle f(I)} 3581: 3562:{\displaystyle f(R)} 3544: 3533:{\displaystyle f(I)} 3515: 3503:is a left ideal. If 3468: 3428: 3386: 3364: 3313: 3289: 3223: 3187: 3140: 3097: 3060: 3034: 3014: 2983: 2946: 2924: 2898: 2876: 2856: 2851:continuous functions 2822: 2795: 2769: 2735: 2711: 2683: 2647: 2627: 2607: 2578: 2544: 2520: 2498: 2462: 2427: 2394: 2368: 2341: 2335:is an ideal denoted 2319: 2292: 2268: 2199: 2179: 2168:{\displaystyle zy=1} 2150: 2128: 2115:{\displaystyle yx=1} 2097: 2062: 2039: 2019: 1981: 1939: 1903: 1843: 1813: 1789: 1750: 1705: 1676: 1648: 1583: 1545: 1519: 1481: 1455: 1428: 1350: 1319: 1262: 1248:equivalence relation 1215: 1186: 1133: 1102: 1057: 1032: 1004: 976: 939: 901: 878: 856: 834: 730:for the ideals of a 555:Noncommutative rings 504: 466: 429: 273:Non-associative ring 209: 182: 139:Algebraic structures 14096:Commutative algebra 13990:Hazewinkel, Michiel 13861:, Proposition 3.16. 13719:Matsumura, Hideyuki 13605:, Ch. 7, Theorem 7. 13173:Example: If we let 12500:structure has been 9909:is also the set of 9877:. As it turns out, 9771:{\displaystyle M=0} 7802: 5600:a proper subset of 5202:is also written as 5195:{\displaystyle RXR} 5109:{\displaystyle (x)} 5081:{\displaystyle RxR} 4334:is a left ideal of 3841:a subset, then the 3507:is a left ideal of 3130:A ring is called a 2979:. Another ideal in 1977:is a skew-field if 1765:{\displaystyle (0)} 1663:{\displaystyle (1)} 1598:{\displaystyle I=R} 1336:{\displaystyle R/I} 1302:congruence relation 1279:{\displaystyle R/I} 1256:equivalence classes 314:Commutative algebra 153:Associative algebra 35:Algebraic structure 13970:(Third ed.). 13872:Atiyah, Michael F. 13346:Modular arithmetic 13324: 13298: 13268: 13241: 13217: 13193: 13158: 13136: 13116: 13094: 13072: 13052: 13032: 13022:. In other words, 13010: 12984: 12964: 12944: 12934:. If we consider 12908: 12882: 12834: 12778: 12744: 12716: 12676: 12636: 12612: 12585: 12563: 12541: 12518: 12486: 12464: 12417: 12391: 12365: 12320: 12282: 12246: 12220: 12184: 12153: 12121: 12044: 11998: 11963: 11914:integral extension 11855: 11825: 11798: 11768: 11738: 11711: 11683: 11637: 11589: 11539: 11477: 11392: 11309: 11254: 11217: 11179: 11126: 11085: 11035: 11000: 10973: 10928: 10878: 10848: 10825: 10794: 10766: 10723: 10699: 10661: 10614: 10587: 10460: 10417: 10393: 10339: 10302: 10240: 10172: 10103: 10050: 10002: 9950: 9911:nilpotent elements 9899: 9856: 9830: 9768: 9736: 9697: 9654: 9606: 9568: 9526: 9493: 9461: 9385: 9347: 9323: 9299: 9267: 9195: 9158: 9135: 9124: 9076: 8983: 8898: 8846: 8746: 8538: 8480: 8369: 8251: 8191: 8169: 8149: 8108: 8038: 8002: 7957: 7933: 7890: 7788: 7759: 7729: 7704: 7655: 7600: 7542: 7518: 7494: 7467: 7368: 7281: 7193: 7142: 7116: 7092: 7059: 7023: 6999: 6975: 6936: 6906: 6871: 6842: 6782: 6665: 6627: 6609: 6530: 6504: 6340: 6302: 6222: 6152: 6124: 6098: 6028:finitely generated 5873: 5851: 5831: 5809: 5790:{\displaystyle ab} 5787: 5762: 5740: 5720: 5696: 5668: 5642: 5545: 5523: 5501: 5447: 5425: 5403: 5381: 5359: 5325: 5297: 5275: 5246: 5192: 5166: 5106: 5078: 5050: 5016:{\displaystyle Rx} 5013: 5000:and is denoted by 4976: 4781: 4630:{\displaystyle RX} 4627: 4601:{\displaystyle RX} 4598: 4583:and is denoted by 4548: 4514: 4471: 4447:and disjoint from 4437: 4402: 4365: 4324: 4323: 4308: 4273: 4245: 4197: 4166: 4114: 4082:and is denoted by 4072: 4048: 4016: 3956: 3918: 3831: 3788: 3751:and the pre-image 3741: 3706: 3686: 3666: 3644: 3596: 3559: 3530: 3493: 3446: 3412: 3370: 3348: 3295: 3273: 3219:, then the kernel 3205: 3164: 3115: 3081: 3046: 3020: 3000: 2967: 2930: 2906: 2884: 2862: 2839: 2801: 2781: 2753: 2717: 2695: 2669: 2633: 2613: 2590: 2562: 2526: 2504: 2479: 2446: 2402: 2388:Euclidean division 2376: 2352: 2325: 2303: 2276: 2247: 2185: 2165: 2134: 2112: 2083: 2051:{\displaystyle Rx} 2048: 2025: 2005: 1963: 1915: 1887: 1829: 1799: 1762: 1744:and is denoted by 1724: 1689: 1660: 1595: 1569: 1531: 1493: 1467: 1440:{\displaystyle rx} 1437: 1405:Note on convention 1370: 1333: 1306:modular arithmetic 1276: 1233: 1198: 1148: 1117: 1087:, considered as a 1063: 1044:{\displaystyle rx} 1041: 1016: 988: 957: 919: 884: 862: 840: 568:Semiprimitive ring 528: 481: 444: 252:Related structures 236: 190: 126:Inner automorphism 112:Ring homomorphisms 13981:978-0-387-22025-3 13948:978-0-387-94268-1 13884:. Perseus Books. 13876:Macdonald, Ian G. 13835:www.math.uiuc.edu 13806:www.math.uiuc.edu 13777:www.math.uiuc.edu 13750:, Exercise A 3.17 13161:{\displaystyle R} 13139:{\displaystyle R} 13119:{\displaystyle I} 13097:{\displaystyle R} 13075:{\displaystyle R} 13055:{\displaystyle R} 13035:{\displaystyle I} 13013:{\displaystyle R} 12987:{\displaystyle I} 12967:{\displaystyle R} 12947:{\displaystyle R} 12911:{\displaystyle R} 12639:{\displaystyle R} 12615:{\displaystyle I} 12588:{\displaystyle I} 12566:{\displaystyle R} 12544:{\displaystyle I} 12521:{\displaystyle R} 12489:{\displaystyle R} 11898:rings of integers 10286:ring homomorphism 10270:commutative rings 9960:is nilpotent and 9827: 9812: 9586:maximal submodule 9584:does not admit a 9444: 9161:{\displaystyle M} 9121: 9106: 9011:Radical of a ring 9005:Radical of a ring 8194:{\displaystyle m} 8172:{\displaystyle n} 6841: 6781: 6608: 6343:{\displaystyle R} 6326:: A proper ideal 6276: 6257: 6225:{\displaystyle R} 6208:: A proper ideal 6055:Irreducible ideal 5905:: A proper ideal 5876:{\displaystyle I} 5854:{\displaystyle b} 5834:{\displaystyle a} 5812:{\displaystyle I} 5765:{\displaystyle R} 5743:{\displaystyle b} 5723:{\displaystyle a} 5699:{\displaystyle I} 5686:: A proper ideal 5671:{\displaystyle 1} 5584:: A proper ideal 5548:{\displaystyle R} 5526:{\displaystyle I} 5450:{\displaystyle R} 5406:{\displaystyle R} 5300:{\displaystyle R} 5278:{\displaystyle I} 4293: 4285:. Then the union 4200:{\displaystyle S} 3709:{\displaystyle S} 3689:{\displaystyle f} 3669:{\displaystyle R} 3373:{\displaystyle S} 3307:. By definition, 3298:{\displaystyle R} 3217:ring homomorphism 3023:{\displaystyle f} 2933:{\displaystyle f} 2865:{\displaystyle f} 2804:{\displaystyle j} 2765:, the set of all 2720:{\displaystyle R} 2636:{\displaystyle i} 2616:{\displaystyle R} 2574:, the set of all 2529:{\displaystyle n} 2507:{\displaystyle R} 2328:{\displaystyle n} 2188:{\displaystyle z} 2175:for some nonzero 2137:{\displaystyle y} 2122:for some nonzero 2028:{\displaystyle x} 1392:ring homomorphism 1254:, and the set of 1066:{\displaystyle I} 887:{\displaystyle I} 865:{\displaystyle R} 843:{\displaystyle R} 652: 651: 609:Geometric algebra 320:Commutative rings 171:Category of rings 16:(Redirected from 14108: 14072: 14049: 14007: 13985: 13959: 13914: 13901:Abstract algebra 13895: 13862: 13856: 13850: 13849: 13847: 13846: 13837:. Archived from 13827: 13821: 13820: 13818: 13817: 13808:. Archived from 13798: 13792: 13791: 13789: 13788: 13779:. Archived from 13769: 13763: 13757: 13751: 13745: 13739: 13738: 13715: 13709: 13703: 13697: 13691: 13685: 13684: 13673: 13667: 13666: 13655: 13649: 13643: 13637: 13631: 13625: 13619: 13606: 13600: 13594: 13588: 13582: 13576: 13570: 13564: 13558: 13552: 13546: 13545: 13537: 13531: 13530: 13522: 13516: 13515: 13507: 13487: 13469: 13449: 13418: 13412: 13397: 13335: 13333: 13331: 13330: 13325: 13323: 13309: 13307: 13305: 13304: 13299: 13297: 13277: 13275: 13274: 13269: 13267: 13252: 13250: 13248: 13247: 13242: 13240: 13226: 13224: 13223: 13218: 13216: 13204: 13202: 13200: 13199: 13194: 13192: 13169: 13167: 13165: 13164: 13159: 13145: 13143: 13142: 13137: 13125: 13123: 13122: 13117: 13105: 13103: 13101: 13100: 13095: 13081: 13079: 13078: 13073: 13061: 13059: 13058: 13053: 13041: 13039: 13038: 13033: 13021: 13019: 13017: 13016: 13011: 12993: 12991: 12990: 12985: 12973: 12971: 12970: 12965: 12953: 12951: 12950: 12945: 12931: 12917: 12915: 12914: 12909: 12893: 12891: 12889: 12888: 12883: 12846:" replaced by "' 12845: 12843: 12841: 12840: 12835: 12789: 12787: 12785: 12784: 12779: 12753: 12751: 12750: 12745: 12727: 12725: 12723: 12722: 12717: 12685: 12683: 12682: 12677: 12645: 12643: 12642: 12637: 12621: 12619: 12618: 12613: 12594: 12592: 12591: 12586: 12574: 12572: 12570: 12569: 12564: 12550: 12548: 12547: 12542: 12527: 12525: 12524: 12519: 12495: 12493: 12492: 12487: 12475: 12473: 12471: 12470: 12465: 12428: 12426: 12424: 12423: 12418: 12416: 12415: 12400: 12398: 12397: 12392: 12390: 12389: 12376: 12374: 12372: 12371: 12366: 12364: 12363: 12362: 12352: 12351: 12346: 12345: 12329: 12327: 12326: 12321: 12319: 12318: 12317: 12307: 12306: 12293: 12291: 12289: 12288: 12283: 12281: 12280: 12260:, disjoint from 12255: 12253: 12252: 12247: 12245: 12244: 12231: 12229: 12227: 12226: 12221: 12219: 12218: 12193: 12191: 12190: 12185: 12183: 12182: 12181: 12164: 12162: 12160: 12159: 12154: 12152: 12151: 12130: 12128: 12127: 12122: 12120: 12119: 12114: 12113: 12103: 12102: 12101: 12088: 12087: 12086: 12076: 12075: 12070: 12069: 12055: 12053: 12051: 12050: 12045: 12043: 12042: 12034: 12033: 12023: 12022: 12007: 12005: 12004: 11999: 11997: 11996: 11972: 11970: 11969: 11964: 11962: 11961: 11952: 11951: 11864: 11862: 11861: 11856: 11854: 11853: 11848: 11847: 11834: 11832: 11831: 11826: 11807: 11805: 11804: 11799: 11797: 11796: 11777: 11775: 11774: 11769: 11767: 11766: 11761: 11760: 11747: 11745: 11744: 11739: 11720: 11718: 11717: 11712: 11710: 11709: 11694: 11692: 11690: 11689: 11684: 11682: 11681: 11672: 11671: 11663: 11662: 11646: 11644: 11643: 11638: 11636: 11635: 11626: 11625: 11617: 11616: 11598: 11596: 11595: 11590: 11576: 11575: 11550: 11548: 11546: 11545: 11540: 11538: 11537: 11513: 11512: 11489:, and therefore 11488: 11486: 11484: 11483: 11478: 11473: 11472: 11403: 11401: 11399: 11398: 11393: 11388: 11387: 11318: 11316: 11315: 11310: 11296: 11295: 11264:is not prime in 11263: 11261: 11260: 11255: 11253: 11252: 11226: 11224: 11223: 11218: 11188: 11186: 11185: 11180: 11135: 11133: 11132: 11127: 11125: 11114: 11096: 11094: 11092: 11091: 11086: 11084: 11073: 11065: 11044: 11042: 11041: 11036: 11034: 11033: 11028: 11027: 11009: 11007: 11006: 11001: 10999: 10998: 10982: 10980: 10979: 10974: 10972: 10971: 10962: 10961: 10953: 10952: 10937: 10935: 10934: 10929: 10927: 10926: 10917: 10916: 10908: 10907: 10887: 10885: 10884: 10879: 10877: 10876: 10871: 10870: 10857: 10855: 10854: 10849: 10834: 10832: 10831: 10826: 10824: 10823: 10803: 10801: 10800: 10795: 10793: 10792: 10775: 10773: 10772: 10767: 10765: 10764: 10732: 10730: 10729: 10724: 10722: 10721: 10708: 10706: 10705: 10700: 10698: 10697: 10692: 10691: 10670: 10668: 10667: 10662: 10657: 10656: 10647: 10646: 10623: 10621: 10620: 10615: 10613: 10612: 10596: 10594: 10593: 10588: 10586: 10585: 10573: 10572: 10560: 10559: 10550: 10549: 10534: 10533: 10518: 10517: 10505: 10504: 10495: 10494: 10489: 10488: 10471: 10469: 10467: 10466: 10461: 10456: 10455: 10426: 10424: 10423: 10418: 10416: 10415: 10402: 10400: 10399: 10394: 10392: 10391: 10386: 10385: 10348: 10346: 10345: 10340: 10335: 10334: 10311: 10309: 10308: 10303: 10301: 10300: 10251: 10249: 10247: 10246: 10241: 10233: 10232: 10226: 10225: 10207: 10206: 10200: 10199: 10181: 10179: 10178: 10173: 10159: 10158: 10140: 10135: 10134: 10112: 10110: 10109: 10104: 10099: 10098: 10077: 10076: 10059: 10057: 10056: 10051: 10049: 10048: 10030: 10029: 10013: 10011: 10009: 10008: 10003: 9959: 9957: 9956: 9951: 9908: 9906: 9905: 9900: 9865: 9863: 9862: 9857: 9837: 9836: 9829: 9828: 9825: 9823: 9822: 9779: 9777: 9775: 9774: 9769: 9745: 9743: 9742: 9737: 9708: 9706: 9704: 9703: 9698: 9663: 9661: 9660: 9655: 9641: 9617: 9615: 9613: 9612: 9607: 9579: 9577: 9575: 9574: 9569: 9541:Nakayama's lemma 9535: 9533: 9532: 9527: 9502: 9500: 9499: 9494: 9470: 9468: 9467: 9462: 9445: 9442: 9396: 9394: 9392: 9391: 9386: 9384: 9383: 9377: 9356: 9354: 9353: 9348: 9346: 9345: 9332: 9330: 9329: 9324: 9322: 9321: 9308: 9306: 9305: 9300: 9276: 9274: 9273: 9268: 9245: 9219: 9204: 9202: 9201: 9196: 9167: 9165: 9164: 9159: 9144: 9142: 9141: 9136: 9131: 9130: 9123: 9122: 9119: 9117: 9116: 9085: 9083: 9082: 9077: 9047:Jacobson radical 8992: 8990: 8989: 8984: 8982: 8981: 8975: 8974: 8962: 8961: 8931: 8930: 8921: 8920: 8907: 8905: 8904: 8899: 8897: 8896: 8890: 8889: 8880: 8879: 8870: 8869: 8855: 8853: 8852: 8847: 8842: 8841: 8802: 8801: 8777: 8776: 8770: 8769: 8755: 8753: 8752: 8747: 8742: 8741: 8675: 8674: 8569: 8568: 8562: 8561: 8547: 8545: 8544: 8539: 8513: 8512: 8503: 8502: 8489: 8487: 8486: 8481: 8407: 8406: 8397: 8396: 8380: 8378: 8376: 8375: 8370: 8344: 8343: 8304: 8303: 8276: 8275: 8260: 8258: 8257: 8252: 8223: 8202: 8200: 8198: 8197: 8192: 8178: 8176: 8175: 8170: 8158: 8156: 8155: 8150: 8117: 8115: 8114: 8109: 8107: 8047: 8045: 8044: 8039: 8037: 8013: 8011: 8009: 8008: 8003: 8001: 8000: 7994: 7993: 7984: 7983: 7982: 7966: 7964: 7963: 7958: 7956: 7955: 7942: 7940: 7939: 7934: 7932: 7931: 7922: 7921: 7901: 7899: 7897: 7896: 7891: 7889: 7888: 7882: 7881: 7875: 7867: 7866: 7857: 7856: 7841: 7840: 7834: 7823: 7822: 7816: 7801: 7796: 7770: 7768: 7766: 7765: 7760: 7758: 7757: 7741:regular sequence 7738: 7736: 7735: 7730: 7728: 7727: 7713: 7711: 7710: 7705: 7691: 7690: 7681: 7680: 7664: 7662: 7661: 7656: 7654: 7653: 7647: 7646: 7637: 7636: 7627: 7626: 7609: 7607: 7606: 7601: 7599: 7598: 7589: 7588: 7551: 7549: 7548: 7543: 7541: 7540: 7527: 7525: 7524: 7519: 7517: 7516: 7503: 7501: 7500: 7495: 7493: 7492: 7476: 7474: 7473: 7468: 7466: 7465: 7456: 7455: 7446: 7445: 7436: 7435: 7423: 7422: 7413: 7412: 7400: 7399: 7379: 7377: 7375: 7374: 7369: 7367: 7366: 7360: 7359: 7350: 7349: 7343: 7342: 7333: 7332: 7323: 7322: 7313: 7312: 7292: 7290: 7288: 7287: 7282: 7280: 7279: 7273: 7272: 7263: 7262: 7256: 7255: 7243: 7242: 7233: 7232: 7223: 7222: 7204: 7202: 7200: 7199: 7194: 7192: 7191: 7182: 7181: 7172: 7171: 7153: 7151: 7149: 7148: 7143: 7141: 7140: 7125: 7123: 7122: 7117: 7115: 7114: 7101: 7099: 7098: 7093: 7091: 7090: 7084: 7083: 7070: 7068: 7066: 7065: 7060: 7058: 7057: 7048: 7047: 7032: 7030: 7029: 7024: 7022: 7021: 7008: 7006: 7005: 7000: 6998: 6997: 6984: 6982: 6981: 6976: 6974: 6973: 6964: 6963: 6947: 6945: 6943: 6942: 6937: 6935: 6934: 6915: 6913: 6912: 6907: 6905: 6904: 6880: 6878: 6877: 6872: 6843: 6839: 6803: 6802: 6793: 6792: 6783: 6779: 6776: 6775: 6766: 6765: 6753: 6752: 6743: 6742: 6724: 6723: 6714: 6713: 6698: 6697: 6691: 6690: 6674: 6672: 6671: 6666: 6664: 6663: 6654: 6653: 6636: 6634: 6633: 6628: 6623: 6622: 6610: 6606: 6603: 6602: 6572: 6571: 6562: 6561: 6541: 6539: 6537: 6536: 6531: 6529: 6528: 6513: 6511: 6510: 6505: 6503: 6502: 6486:Ideal operations 6480: 6458: 6434:Invertible ideal 6399:Fractional ideal 6360:associated prime 6349: 6347: 6346: 6341: 6329: 6313: 6311: 6309: 6308: 6303: 6295: 6278: 6277: 6274: 6259: 6258: 6255: 6231: 6229: 6228: 6223: 6211: 6163: 6161: 6159: 6158: 6153: 6133: 6131: 6130: 6125: 6107: 6105: 6104: 6099: 6071: 6067: 6062:Comaximal ideals 6000: 5988: 5964: 5944: 5932: 5908: 5884: 5882: 5880: 5879: 5874: 5860: 5858: 5857: 5852: 5840: 5838: 5837: 5832: 5820: 5818: 5816: 5815: 5810: 5796: 5794: 5793: 5788: 5773: 5771: 5769: 5768: 5763: 5749: 5747: 5746: 5741: 5729: 5727: 5726: 5721: 5705: 5703: 5702: 5697: 5677: 5675: 5674: 5669: 5651: 5649: 5648: 5643: 5599: 5587: 5556: 5554: 5552: 5551: 5546: 5532: 5530: 5529: 5524: 5512: 5510: 5508: 5507: 5502: 5458: 5456: 5454: 5453: 5448: 5434: 5432: 5431: 5426: 5414: 5412: 5410: 5409: 5404: 5390: 5388: 5387: 5382: 5370: 5368: 5366: 5365: 5360: 5334: 5332: 5331: 5326: 5308: 5306: 5304: 5303: 5298: 5284: 5282: 5281: 5276: 5257: 5255: 5253: 5252: 5247: 5242: 5241: 5223: 5222: 5201: 5199: 5198: 5193: 5175: 5173: 5172: 5167: 5162: 5161: 5143: 5142: 5117: 5115: 5113: 5112: 5107: 5087: 5085: 5084: 5079: 5061: 5059: 5057: 5056: 5051: 5022: 5020: 5019: 5014: 4985: 4983: 4982: 4977: 4962: 4961: 4943: 4942: 4924: 4923: 4911: 4897: 4896: 4887: 4886: 4877: 4876: 4858: 4857: 4848: 4847: 4838: 4837: 4790: 4788: 4787: 4782: 4768: 4767: 4749: 4748: 4736: 4722: 4721: 4712: 4711: 4693: 4692: 4683: 4682: 4636: 4634: 4633: 4628: 4614:. Equivalently, 4609: 4607: 4605: 4604: 4599: 4559: 4557: 4555: 4554: 4549: 4523: 4521: 4520: 4515: 4501: 4500: 4495: 4494: 4480: 4478: 4477: 4472: 4446: 4444: 4443: 4438: 4436: 4435: 4430: 4429: 4411: 4409: 4408: 4403: 4395: 4394: 4389: 4388: 4374: 4372: 4371: 4366: 4333: 4331: 4330: 4325: 4322: 4321: 4316: 4315: 4307: 4284: 4282: 4280: 4279: 4274: 4254: 4252: 4251: 4246: 4244: 4243: 4238: 4237: 4227: 4226: 4221: 4220: 4206: 4204: 4203: 4198: 4175: 4173: 4172: 4167: 4153: 4152: 4147: 4146: 4125: 4123: 4121: 4120: 4115: 4110: 4109: 4100: 4099: 4081: 4079: 4078: 4073: 4071: 4070: 4057: 4055: 4054: 4049: 4047: 4046: 4025: 4023: 4022: 4017: 4015: 4014: 4008: 4000: 3999: 3990: 3989: 3974:-annihilator of 3965: 3963: 3962: 3957: 3955: 3954: 3945: 3944: 3927: 3925: 3924: 3919: 3860: 3859: 3840: 3838: 3837: 3832: 3799: 3797: 3795: 3794: 3789: 3778: 3777: 3750: 3748: 3747: 3742: 3715: 3713: 3712: 3707: 3695: 3693: 3692: 3687: 3675: 3673: 3672: 3667: 3655: 3653: 3651: 3650: 3645: 3605: 3603: 3602: 3597: 3568: 3566: 3565: 3560: 3539: 3537: 3536: 3531: 3502: 3500: 3499: 3494: 3483: 3482: 3464:, the pre-image 3455: 3453: 3452: 3447: 3423: 3421: 3419: 3418: 3413: 3411: 3410: 3398: 3397: 3379: 3377: 3376: 3371: 3359: 3357: 3355: 3354: 3349: 3347: 3346: 3331: 3330: 3306: 3304: 3302: 3301: 3296: 3282: 3280: 3279: 3274: 3269: 3268: 3256: 3255: 3214: 3212: 3211: 3206: 3175: 3173: 3171: 3170: 3165: 3126: 3124: 3122: 3121: 3116: 3090: 3088: 3087: 3082: 3055: 3053: 3052: 3047: 3029: 3027: 3026: 3021: 3009: 3007: 3006: 3001: 2996: 2978: 2976: 2974: 2973: 2968: 2939: 2937: 2936: 2931: 2915: 2913: 2912: 2907: 2905: 2893: 2891: 2890: 2885: 2883: 2871: 2869: 2868: 2863: 2848: 2846: 2845: 2840: 2835: 2810: 2808: 2807: 2802: 2790: 2788: 2787: 2782: 2764: 2762: 2760: 2759: 2754: 2728: 2726: 2724: 2723: 2718: 2704: 2702: 2701: 2696: 2678: 2676: 2675: 2670: 2659: 2658: 2642: 2640: 2639: 2634: 2622: 2620: 2619: 2614: 2603:with entries in 2599: 2597: 2596: 2591: 2573: 2571: 2569: 2568: 2563: 2537: 2535: 2533: 2532: 2527: 2513: 2511: 2510: 2505: 2490: 2488: 2486: 2485: 2480: 2469: 2455: 2453: 2452: 2447: 2439: 2438: 2411: 2409: 2408: 2403: 2401: 2385: 2383: 2382: 2377: 2375: 2363: 2361: 2359: 2358: 2353: 2351: 2334: 2332: 2331: 2326: 2314: 2312: 2310: 2309: 2304: 2302: 2285: 2283: 2282: 2277: 2275: 2256: 2254: 2253: 2248: 2194: 2192: 2191: 2186: 2174: 2172: 2171: 2166: 2145: 2143: 2141: 2140: 2135: 2121: 2119: 2118: 2113: 2092: 2090: 2089: 2084: 2057: 2055: 2054: 2049: 2034: 2032: 2031: 2026: 2014: 2012: 2011: 2006: 1972: 1970: 1969: 1964: 1926: 1924: 1922: 1921: 1916: 1896: 1894: 1893: 1888: 1886: 1885: 1870: 1869: 1838: 1836: 1835: 1830: 1828: 1827: 1808: 1806: 1805: 1800: 1798: 1797: 1773: 1771: 1769: 1768: 1763: 1733: 1731: 1730: 1725: 1720: 1719: 1701:. Also, the set 1700: 1698: 1696: 1695: 1690: 1688: 1687: 1669: 1667: 1666: 1661: 1604: 1602: 1601: 1596: 1578: 1576: 1575: 1570: 1540: 1538: 1537: 1532: 1514: 1510: 1506: 1502: 1500: 1499: 1494: 1476: 1474: 1473: 1468: 1450: 1446: 1444: 1443: 1438: 1423: 1416: 1386: 1379: 1377: 1376: 1371: 1366: 1342: 1340: 1339: 1334: 1329: 1314: 1299: 1295: 1285: 1283: 1282: 1277: 1272: 1253: 1242: 1240: 1239: 1234: 1207: 1205: 1204: 1199: 1181: 1159: 1157: 1155: 1154: 1149: 1126: 1124: 1123: 1118: 1086: 1074: 1072: 1070: 1069: 1064: 1050: 1048: 1047: 1042: 1027: 1025: 1023: 1022: 1017: 997: 995: 994: 989: 968: 966: 964: 963: 958: 928: 926: 925: 920: 893: 891: 890: 885: 873: 871: 869: 868: 863: 849: 847: 846: 841: 821: 817: 809: 775:Richard Dedekind 751:fractional ideal 644: 637: 630: 615:Operator algebra 601:Clifford algebra 537: 535: 534: 529: 524: 523: 511: 490: 488: 487: 482: 480: 479: 474: 453: 451: 450: 445: 443: 442: 437: 415:Ring of integers 409: 406:Integers modulo 357:Euclidean domain 245: 243: 242: 237: 235: 227: 222: 199: 197: 196: 191: 189: 93:Product of rings 79:Fractional ideal 38: 30: 29: 21: 14116: 14115: 14111: 14110: 14109: 14107: 14106: 14105: 14076: 14075: 14057: 14052: 14030: 14004: 13982: 13972:Springer-Verlag 13949: 13931:Springer-Verlag 13919:Eisenbud, David 13911: 13892: 13866: 13865: 13857: 13853: 13844: 13842: 13829: 13828: 13824: 13815: 13813: 13800: 13799: 13795: 13786: 13784: 13771: 13770: 13766: 13758: 13754: 13746: 13742: 13735: 13716: 13712: 13704: 13700: 13692: 13688: 13675: 13674: 13670: 13656: 13652: 13644: 13640: 13636:, Section III.2 13632: 13628: 13620: 13609: 13601: 13597: 13589: 13585: 13577: 13573: 13565: 13561: 13553: 13549: 13538: 13534: 13523: 13519: 13508: 13501: 13496: 13491: 13490: 13455: 13437: 13428:with things in 13419: 13415: 13398: 13394: 13389: 13342: 13319: 13317: 13314: 13313: 13311: 13293: 13285: 13282: 13281: 13279: 13263: 13258: 13255: 13254: 13236: 13234: 13231: 13230: 13228: 13212: 13210: 13207: 13206: 13188: 13180: 13177: 13176: 13174: 13153: 13150: 13149: 13147: 13131: 13128: 13127: 13111: 13108: 13107: 13089: 13086: 13085: 13083: 13067: 13064: 13063: 13047: 13044: 13043: 13027: 13024: 13023: 13005: 13002: 13001: 12999: 12979: 12976: 12975: 12959: 12956: 12955: 12939: 12936: 12935: 12927: 12922:is used alone. 12903: 12900: 12899: 12896:two-sided ideal 12853: 12850: 12849: 12847: 12805: 12802: 12801: 12799: 12761: 12758: 12757: 12755: 12733: 12730: 12729: 12693: 12690: 12689: 12687: 12653: 12650: 12649: 12631: 12628: 12627: 12607: 12604: 12603: 12580: 12577: 12576: 12558: 12555: 12554: 12552: 12536: 12533: 12532: 12513: 12510: 12509: 12481: 12478: 12477: 12447: 12444: 12443: 12441: 12435: 12433:Generalizations 12411: 12410: 12408: 12405: 12404: 12402: 12385: 12384: 12382: 12379: 12378: 12358: 12357: 12353: 12347: 12341: 12340: 12339: 12337: 12334: 12333: 12331: 12313: 12312: 12308: 12302: 12301: 12299: 12296: 12295: 12276: 12275: 12267: 12264: 12263: 12261: 12240: 12239: 12237: 12234: 12233: 12214: 12213: 12205: 12202: 12201: 12199: 12177: 12176: 12172: 12170: 12167: 12166: 12147: 12146: 12138: 12135: 12134: 12132: 12115: 12109: 12108: 12107: 12097: 12096: 12092: 12082: 12081: 12077: 12071: 12065: 12064: 12063: 12061: 12058: 12057: 12035: 12029: 12028: 12027: 12018: 12017: 12015: 12012: 12011: 12009: 11992: 11991: 11989: 11986: 11985: 11957: 11956: 11947: 11946: 11944: 11941: 11940: 11882:field extension 11849: 11843: 11842: 11841: 11839: 11836: 11835: 11820: 11817: 11816: 11792: 11791: 11789: 11786: 11785: 11762: 11756: 11755: 11754: 11752: 11749: 11748: 11733: 11730: 11729: 11705: 11704: 11702: 11699: 11698: 11677: 11676: 11664: 11658: 11657: 11656: 11654: 11651: 11650: 11648: 11631: 11630: 11618: 11612: 11611: 11610: 11608: 11605: 11604: 11571: 11570: 11568: 11565: 11564: 11533: 11529: 11508: 11504: 11496: 11493: 11492: 11490: 11468: 11464: 11411: 11408: 11407: 11405: 11383: 11379: 11326: 11323: 11322: 11320: 11291: 11287: 11273: 11270: 11269: 11248: 11244: 11236: 11233: 11232: 11194: 11191: 11190: 11141: 11138: 11137: 11115: 11110: 11102: 11099: 11098: 11074: 11069: 11061: 11059: 11056: 11055: 11053: 11029: 11023: 11022: 11021: 11019: 11016: 11015: 10994: 10993: 10991: 10988: 10987: 10967: 10966: 10954: 10948: 10947: 10946: 10944: 10941: 10940: 10922: 10921: 10909: 10903: 10902: 10901: 10899: 10896: 10895: 10872: 10866: 10865: 10864: 10862: 10859: 10858: 10843: 10840: 10839: 10819: 10818: 10816: 10813: 10812: 10804:is an ideal in 10788: 10787: 10785: 10782: 10781: 10776:is an ideal in 10760: 10759: 10757: 10754: 10753: 10717: 10716: 10714: 10711: 10710: 10693: 10687: 10686: 10685: 10683: 10680: 10679: 10652: 10651: 10639: 10635: 10633: 10630: 10629: 10624:is an ideal of 10608: 10607: 10605: 10602: 10601: 10581: 10580: 10568: 10564: 10555: 10554: 10545: 10541: 10529: 10525: 10513: 10509: 10500: 10499: 10490: 10484: 10483: 10482: 10480: 10477: 10476: 10451: 10450: 10442: 10439: 10438: 10436: 10411: 10410: 10408: 10405: 10404: 10387: 10381: 10380: 10379: 10377: 10374: 10373: 10330: 10329: 10321: 10318: 10317: 10312:is an ideal in 10296: 10295: 10293: 10290: 10289: 10258: 10228: 10227: 10215: 10211: 10202: 10201: 10195: 10191: 10189: 10186: 10185: 10183: 10154: 10150: 10136: 10130: 10129: 10118: 10115: 10114: 10094: 10090: 10072: 10071: 10069: 10066: 10065: 10038: 10034: 10025: 10021: 10019: 10016: 10015: 9967: 9964: 9963: 9961: 9933: 9930: 9929: 9882: 9879: 9878: 9832: 9831: 9824: 9818: 9817: 9816: 9792: 9789: 9788: 9757: 9754: 9753: 9751: 9722: 9719: 9718: 9671: 9668: 9667: 9665: 9637: 9623: 9620: 9619: 9595: 9592: 9591: 9589: 9554: 9551: 9550: 9548: 9512: 9509: 9508: 9507:if and only if 9479: 9476: 9475: 9441: 9405: 9402: 9401: 9379: 9378: 9373: 9368: 9365: 9364: 9362: 9341: 9340: 9338: 9335: 9334: 9317: 9316: 9314: 9311: 9310: 9282: 9279: 9278: 9241: 9215: 9210: 9207: 9206: 9181: 9178: 9177: 9153: 9150: 9149: 9126: 9125: 9118: 9112: 9111: 9110: 9098: 9095: 9094: 9053: 9050: 9049: 9031:primitive ideal 9013: 9007: 8977: 8976: 8970: 8969: 8957: 8953: 8926: 8925: 8916: 8915: 8913: 8910: 8909: 8892: 8891: 8885: 8884: 8875: 8874: 8865: 8864: 8862: 8859: 8858: 8837: 8833: 8797: 8793: 8772: 8771: 8765: 8764: 8762: 8759: 8758: 8737: 8733: 8670: 8666: 8564: 8563: 8557: 8556: 8554: 8551: 8550: 8508: 8507: 8498: 8497: 8495: 8492: 8491: 8402: 8401: 8392: 8391: 8389: 8386: 8385: 8339: 8338: 8299: 8298: 8271: 8270: 8268: 8265: 8264: 8262: 8219: 8211: 8208: 8207: 8186: 8183: 8182: 8180: 8164: 8161: 8160: 8126: 8123: 8122: 8103: 8056: 8053: 8052: 8033: 8031: 8028: 8027: 8024: 7996: 7995: 7989: 7988: 7978: 7977: 7976: 7974: 7971: 7970: 7968: 7951: 7950: 7948: 7945: 7944: 7927: 7926: 7917: 7916: 7914: 7911: 7910: 7907:Dedekind domain 7884: 7883: 7877: 7876: 7871: 7862: 7861: 7852: 7851: 7836: 7835: 7830: 7818: 7817: 7812: 7797: 7792: 7786: 7783: 7782: 7780: 7753: 7752: 7750: 7747: 7746: 7744: 7723: 7722: 7720: 7717: 7716: 7686: 7685: 7676: 7675: 7673: 7670: 7669: 7649: 7648: 7642: 7641: 7632: 7631: 7622: 7621: 7619: 7616: 7615: 7594: 7593: 7584: 7583: 7581: 7578: 7577: 7563:modular lattice 7536: 7535: 7533: 7530: 7529: 7512: 7511: 7509: 7506: 7505: 7488: 7487: 7485: 7482: 7481: 7461: 7460: 7451: 7450: 7441: 7440: 7431: 7430: 7418: 7417: 7408: 7407: 7395: 7394: 7392: 7389: 7388: 7362: 7361: 7355: 7354: 7345: 7344: 7338: 7337: 7328: 7327: 7318: 7317: 7308: 7307: 7302: 7299: 7298: 7296: 7275: 7274: 7268: 7267: 7258: 7257: 7251: 7250: 7238: 7237: 7228: 7227: 7218: 7217: 7215: 7212: 7211: 7209: 7187: 7186: 7177: 7176: 7167: 7166: 7164: 7161: 7160: 7158: 7136: 7135: 7133: 7130: 7129: 7127: 7110: 7109: 7107: 7104: 7103: 7086: 7085: 7079: 7078: 7076: 7073: 7072: 7053: 7052: 7043: 7042: 7040: 7037: 7036: 7034: 7017: 7016: 7014: 7011: 7010: 6993: 6992: 6990: 6987: 6986: 6969: 6968: 6959: 6958: 6956: 6953: 6952: 6930: 6929: 6927: 6924: 6923: 6921: 6900: 6899: 6897: 6894: 6893: 6840: for  6837: 6798: 6797: 6788: 6784: 6780: and  6777: 6771: 6770: 6761: 6757: 6748: 6744: 6738: 6734: 6719: 6715: 6709: 6705: 6693: 6692: 6686: 6685: 6683: 6680: 6679: 6675:are two-sided, 6659: 6658: 6649: 6648: 6646: 6643: 6642: 6618: 6617: 6607: and  6604: 6598: 6597: 6567: 6566: 6557: 6556: 6554: 6551: 6550: 6546:, their sum is 6524: 6523: 6521: 6518: 6517: 6515: 6498: 6497: 6495: 6492: 6491: 6488: 6468: 6446: 6383:equidimensional 6335: 6332: 6331: 6327: 6291: 6273: 6272: 6254: 6253: 6251: 6248: 6247: 6245: 6217: 6214: 6213: 6209: 6193:Parameter ideal 6185:Nilpotent ideal 6141: 6138: 6137: 6135: 6113: 6110: 6109: 6081: 6078: 6077: 6072:are said to be 6069: 6065: 6035:Primitive ideal 6013:Principal ideal 5998: 5986: 5962: 5942: 5930: 5906: 5903:semiprime ideal 5891:integral domain 5868: 5865: 5864: 5862: 5846: 5843: 5842: 5826: 5823: 5822: 5804: 5801: 5800: 5798: 5779: 5776: 5775: 5757: 5754: 5753: 5751: 5735: 5732: 5731: 5715: 5712: 5711: 5691: 5688: 5687: 5663: 5660: 5659: 5631: 5628: 5627: 5597: 5585: 5564: 5562:Types of ideals 5540: 5537: 5536: 5534: 5533:is an ideal of 5518: 5515: 5514: 5466: 5463: 5462: 5460: 5442: 5439: 5438: 5436: 5420: 5417: 5416: 5398: 5395: 5394: 5392: 5376: 5373: 5372: 5342: 5339: 5338: 5336: 5314: 5311: 5310: 5292: 5289: 5288: 5286: 5270: 5267: 5266: 5237: 5233: 5218: 5214: 5209: 5206: 5205: 5203: 5181: 5178: 5177: 5157: 5153: 5138: 5134: 5123: 5120: 5119: 5095: 5092: 5091: 5089: 5067: 5064: 5063: 5030: 5027: 5026: 5024: 5005: 5002: 5001: 4957: 4953: 4938: 4934: 4919: 4915: 4907: 4892: 4888: 4882: 4878: 4872: 4868: 4853: 4849: 4843: 4839: 4833: 4829: 4812: 4809: 4808: 4763: 4759: 4744: 4740: 4732: 4717: 4713: 4707: 4703: 4688: 4684: 4678: 4674: 4660: 4657: 4656: 4645:of elements of 4619: 4616: 4615: 4590: 4587: 4586: 4584: 4562:Krull's theorem 4531: 4528: 4527: 4525: 4496: 4490: 4489: 4488: 4486: 4483: 4482: 4460: 4457: 4456: 4431: 4425: 4424: 4423: 4421: 4418: 4417: 4390: 4384: 4383: 4382: 4380: 4377: 4376: 4354: 4351: 4350: 4317: 4311: 4310: 4309: 4297: 4290: 4287: 4286: 4262: 4259: 4258: 4256: 4239: 4233: 4232: 4231: 4222: 4216: 4215: 4214: 4212: 4209: 4208: 4192: 4189: 4188: 4179:ascending chain 4148: 4142: 4141: 4140: 4138: 4135: 4134: 4105: 4104: 4095: 4094: 4089: 4086: 4085: 4083: 4066: 4065: 4063: 4060: 4059: 4042: 4041: 4039: 4036: 4035: 4026:is an ideal of 4010: 4009: 4004: 3995: 3994: 3985: 3984: 3979: 3976: 3975: 3950: 3949: 3940: 3939: 3937: 3934: 3933: 3855: 3851: 3849: 3846: 3845: 3820: 3817: 3816: 3802:Types of ideals 3770: 3766: 3758: 3755: 3754: 3752: 3721: 3718: 3717: 3701: 3698: 3697: 3681: 3678: 3677: 3661: 3658: 3657: 3627: 3624: 3623: 3621: 3582: 3579: 3578: 3577:is surjective, 3545: 3542: 3541: 3516: 3513: 3512: 3475: 3471: 3469: 3466: 3465: 3429: 3426: 3425: 3406: 3402: 3393: 3389: 3387: 3384: 3383: 3381: 3365: 3362: 3361: 3342: 3338: 3326: 3322: 3314: 3311: 3310: 3308: 3290: 3287: 3286: 3284: 3264: 3260: 3248: 3244: 3224: 3221: 3220: 3188: 3185: 3184: 3141: 3138: 3137: 3135: 3098: 3095: 3094: 3092: 3061: 3058: 3057: 3035: 3032: 3031: 3015: 3012: 3011: 2992: 2984: 2981: 2980: 2947: 2944: 2943: 2941: 2925: 2922: 2921: 2901: 2899: 2896: 2895: 2879: 2877: 2874: 2873: 2857: 2854: 2853: 2831: 2823: 2820: 2819: 2796: 2793: 2792: 2791:matrices whose 2770: 2767: 2766: 2736: 2733: 2732: 2730: 2712: 2709: 2708: 2706: 2684: 2681: 2680: 2654: 2650: 2648: 2645: 2644: 2628: 2625: 2624: 2608: 2605: 2604: 2579: 2576: 2575: 2545: 2542: 2541: 2539: 2521: 2518: 2517: 2515: 2499: 2496: 2495: 2465: 2463: 2460: 2459: 2457: 2434: 2430: 2428: 2425: 2424: 2419:The set of all 2397: 2395: 2392: 2391: 2371: 2369: 2366: 2365: 2347: 2342: 2339: 2338: 2336: 2320: 2317: 2316: 2298: 2293: 2290: 2289: 2287: 2271: 2269: 2266: 2265: 2200: 2197: 2196: 2180: 2177: 2176: 2151: 2148: 2147: 2129: 2126: 2125: 2123: 2098: 2095: 2094: 2063: 2060: 2059: 2040: 2037: 2036: 2020: 2017: 2016: 1982: 1979: 1978: 1940: 1937: 1936: 1904: 1901: 1900: 1898: 1881: 1880: 1862: 1858: 1844: 1841: 1840: 1823: 1822: 1814: 1811: 1810: 1793: 1792: 1790: 1787: 1786: 1751: 1748: 1747: 1745: 1739: 1715: 1711: 1706: 1703: 1702: 1683: 1679: 1677: 1674: 1673: 1671: 1649: 1646: 1645: 1622: 1584: 1581: 1580: 1546: 1543: 1542: 1520: 1517: 1516: 1512: 1508: 1504: 1482: 1479: 1478: 1456: 1453: 1452: 1448: 1429: 1426: 1425: 1421: 1414: 1407: 1384: 1362: 1351: 1348: 1347: 1325: 1320: 1317: 1316: 1312: 1297: 1293: 1286:and called the 1268: 1263: 1260: 1259: 1251: 1216: 1213: 1212: 1208:if and only if 1187: 1184: 1183: 1179: 1167:If the ring is 1162:two-sided ideal 1134: 1131: 1130: 1128: 1103: 1100: 1099: 1084: 1058: 1055: 1054: 1052: 1033: 1030: 1029: 1005: 1002: 1001: 999: 977: 974: 973: 940: 937: 936: 934: 902: 899: 898: 879: 876: 875: 857: 854: 853: 851: 835: 832: 831: 819: 815: 807: 801: 791:and especially 763: 755:integral ideals 732:Dedekind domain 711:principal ideal 696:normal subgroup 648: 619: 618: 551: 541: 540: 519: 515: 507: 505: 502: 501: 475: 470: 469: 467: 464: 463: 438: 433: 432: 430: 427: 426: 407: 377:Polynomial ring 327:Integral domain 316: 306: 305: 231: 223: 218: 210: 207: 206: 185: 183: 180: 179: 165:Involutive ring 50: 39: 33: 28: 23: 22: 15: 12: 11: 5: 14114: 14104: 14103: 14098: 14093: 14088: 14074: 14073: 14068:Stack Exchange 14056: 14055:External links 14053: 14051: 14050: 14028: 14008: 14002: 13986: 13980: 13960: 13947: 13915: 13909: 13896: 13890: 13867: 13864: 13863: 13851: 13822: 13793: 13764: 13752: 13740: 13733: 13710: 13708:, p. 251. 13698: 13696:, p. 255. 13686: 13683:. 22 Aug 2024. 13668: 13650: 13648:, p. 244. 13638: 13626: 13624:, p. 243. 13607: 13595: 13583: 13571: 13559: 13547: 13532: 13517: 13514:. p. 439. 13498: 13497: 13495: 13492: 13489: 13488: 13413: 13405:trivial ideals 13391: 13390: 13388: 13385: 13384: 13383: 13378: 13373: 13368: 13363: 13358: 13353: 13348: 13341: 13338: 13322: 13296: 13292: 13289: 13266: 13262: 13239: 13215: 13205:, an ideal of 13191: 13187: 13184: 13157: 13135: 13115: 13093: 13071: 13051: 13031: 13009: 12983: 12963: 12943: 12907: 12881: 12878: 12875: 12872: 12869: 12866: 12863: 12860: 12857: 12833: 12830: 12827: 12824: 12821: 12818: 12815: 12812: 12809: 12792: 12791: 12777: 12774: 12771: 12768: 12765: 12743: 12740: 12737: 12728:, the product 12715: 12712: 12709: 12706: 12703: 12700: 12697: 12675: 12672: 12669: 12666: 12663: 12660: 12657: 12646: 12635: 12611: 12584: 12562: 12540: 12517: 12485: 12463: 12460: 12457: 12454: 12451: 12434: 12431: 12414: 12388: 12361: 12356: 12350: 12344: 12316: 12311: 12305: 12279: 12274: 12271: 12243: 12217: 12212: 12209: 12180: 12175: 12150: 12145: 12142: 12118: 12112: 12106: 12100: 12095: 12091: 12085: 12080: 12074: 12068: 12041: 12038: 12032: 12026: 12021: 11995: 11960: 11955: 11950: 11871: 11870: 11852: 11846: 11824: 11795: 11783: 11765: 11759: 11737: 11708: 11696: 11680: 11675: 11670: 11667: 11661: 11634: 11629: 11624: 11621: 11615: 11588: 11585: 11582: 11579: 11574: 11536: 11532: 11528: 11525: 11522: 11519: 11516: 11511: 11507: 11503: 11500: 11476: 11471: 11467: 11463: 11460: 11457: 11454: 11451: 11448: 11445: 11442: 11439: 11436: 11433: 11430: 11427: 11424: 11421: 11418: 11415: 11391: 11386: 11382: 11378: 11375: 11372: 11369: 11366: 11363: 11360: 11357: 11354: 11351: 11348: 11345: 11342: 11339: 11336: 11333: 11330: 11308: 11305: 11302: 11299: 11294: 11290: 11286: 11283: 11280: 11277: 11251: 11247: 11243: 11240: 11216: 11213: 11210: 11207: 11204: 11201: 11198: 11178: 11175: 11172: 11169: 11166: 11163: 11160: 11157: 11154: 11151: 11148: 11145: 11124: 11121: 11118: 11113: 11109: 11106: 11083: 11080: 11077: 11072: 11068: 11064: 11032: 11026: 10997: 10984: 10983: 10970: 10965: 10960: 10957: 10951: 10938: 10925: 10920: 10915: 10912: 10906: 10893: 10875: 10869: 10847: 10822: 10791: 10763: 10720: 10696: 10690: 10660: 10655: 10650: 10645: 10642: 10638: 10611: 10598: 10597: 10584: 10579: 10576: 10571: 10567: 10563: 10558: 10553: 10548: 10544: 10540: 10537: 10532: 10528: 10524: 10521: 10516: 10512: 10508: 10503: 10498: 10493: 10487: 10472:. Explicitly, 10459: 10454: 10449: 10446: 10414: 10390: 10384: 10338: 10333: 10328: 10325: 10299: 10257: 10254: 10239: 10236: 10231: 10224: 10221: 10218: 10214: 10210: 10205: 10198: 10194: 10171: 10168: 10165: 10162: 10157: 10153: 10149: 10146: 10143: 10139: 10133: 10128: 10125: 10122: 10102: 10097: 10093: 10089: 10086: 10083: 10080: 10075: 10047: 10044: 10041: 10037: 10033: 10028: 10024: 10001: 9998: 9995: 9992: 9989: 9986: 9983: 9980: 9977: 9974: 9971: 9949: 9946: 9943: 9940: 9937: 9898: 9895: 9892: 9889: 9886: 9867: 9866: 9855: 9852: 9849: 9846: 9843: 9840: 9835: 9821: 9815: 9811: 9808: 9805: 9802: 9799: 9796: 9782: 9781: 9767: 9764: 9761: 9735: 9732: 9729: 9726: 9696: 9693: 9690: 9687: 9684: 9681: 9678: 9675: 9653: 9650: 9647: 9644: 9640: 9636: 9633: 9630: 9627: 9605: 9602: 9599: 9567: 9564: 9561: 9558: 9525: 9522: 9519: 9516: 9492: 9489: 9486: 9483: 9472: 9471: 9460: 9457: 9454: 9451: 9448: 9439: 9436: 9433: 9430: 9427: 9424: 9421: 9418: 9415: 9412: 9409: 9382: 9376: 9372: 9344: 9320: 9298: 9295: 9292: 9289: 9286: 9266: 9263: 9260: 9257: 9254: 9251: 9248: 9244: 9240: 9237: 9234: 9231: 9228: 9225: 9222: 9218: 9214: 9194: 9191: 9188: 9185: 9157: 9146: 9145: 9134: 9129: 9115: 9109: 9105: 9102: 9075: 9072: 9069: 9066: 9063: 9060: 9057: 9023: 9022: 9009:Main article: 9006: 9003: 8994: 8993: 8980: 8973: 8968: 8965: 8960: 8956: 8952: 8949: 8946: 8943: 8940: 8937: 8934: 8929: 8924: 8919: 8895: 8888: 8883: 8878: 8873: 8868: 8856: 8845: 8840: 8836: 8832: 8829: 8826: 8823: 8820: 8817: 8814: 8811: 8808: 8805: 8800: 8796: 8792: 8789: 8786: 8783: 8780: 8775: 8768: 8756: 8745: 8740: 8736: 8732: 8729: 8726: 8723: 8720: 8717: 8714: 8711: 8708: 8705: 8702: 8699: 8696: 8693: 8690: 8687: 8684: 8681: 8678: 8673: 8669: 8665: 8662: 8659: 8656: 8653: 8650: 8647: 8644: 8641: 8638: 8635: 8632: 8629: 8626: 8623: 8620: 8617: 8614: 8611: 8608: 8605: 8602: 8599: 8596: 8593: 8590: 8587: 8584: 8581: 8578: 8575: 8572: 8567: 8560: 8548: 8537: 8534: 8531: 8528: 8525: 8522: 8519: 8516: 8511: 8506: 8501: 8479: 8476: 8473: 8470: 8467: 8464: 8461: 8458: 8455: 8452: 8449: 8446: 8443: 8440: 8437: 8434: 8431: 8428: 8425: 8422: 8419: 8416: 8413: 8410: 8405: 8400: 8395: 8368: 8365: 8362: 8359: 8356: 8353: 8350: 8347: 8342: 8337: 8334: 8331: 8328: 8325: 8322: 8319: 8316: 8313: 8310: 8307: 8302: 8297: 8294: 8291: 8288: 8285: 8282: 8279: 8274: 8250: 8247: 8244: 8241: 8238: 8235: 8232: 8229: 8226: 8222: 8218: 8215: 8190: 8168: 8148: 8145: 8142: 8139: 8136: 8133: 8130: 8119: 8118: 8106: 8102: 8099: 8096: 8093: 8090: 8087: 8084: 8081: 8078: 8075: 8072: 8069: 8066: 8063: 8060: 8036: 8023: 8020: 7999: 7992: 7987: 7981: 7954: 7930: 7925: 7920: 7887: 7880: 7874: 7870: 7865: 7860: 7855: 7850: 7847: 7844: 7839: 7833: 7829: 7826: 7821: 7815: 7811: 7808: 7805: 7800: 7795: 7791: 7773: 7772: 7756: 7726: 7714: 7703: 7700: 7697: 7694: 7689: 7684: 7679: 7652: 7645: 7640: 7635: 7630: 7625: 7597: 7592: 7587: 7539: 7515: 7491: 7478: 7477: 7464: 7459: 7454: 7449: 7444: 7439: 7434: 7429: 7426: 7421: 7416: 7411: 7406: 7403: 7398: 7382: 7381: 7365: 7358: 7353: 7348: 7341: 7336: 7331: 7326: 7321: 7316: 7311: 7306: 7294: 7278: 7271: 7266: 7261: 7254: 7249: 7246: 7241: 7236: 7231: 7226: 7221: 7190: 7185: 7180: 7175: 7170: 7139: 7113: 7089: 7082: 7056: 7051: 7046: 7033:(or the union 7020: 6996: 6972: 6967: 6962: 6933: 6903: 6882: 6881: 6870: 6867: 6864: 6861: 6858: 6855: 6852: 6849: 6846: 6836: 6833: 6830: 6827: 6824: 6821: 6818: 6815: 6812: 6809: 6806: 6801: 6796: 6791: 6787: 6774: 6769: 6764: 6760: 6756: 6751: 6747: 6741: 6737: 6733: 6730: 6727: 6722: 6718: 6712: 6708: 6704: 6701: 6696: 6689: 6662: 6657: 6652: 6639: 6638: 6626: 6621: 6616: 6613: 6601: 6596: 6593: 6590: 6587: 6584: 6581: 6578: 6575: 6570: 6565: 6560: 6527: 6501: 6487: 6484: 6483: 6482: 6430: 6417:submodules of 6408:quotient field 6391: 6390: 6339: 6319: 6301: 6298: 6294: 6290: 6287: 6284: 6281: 6271: 6268: 6265: 6262: 6221: 6201: 6189: 6181: 6173: 6165: 6151: 6148: 6145: 6123: 6120: 6117: 6097: 6094: 6091: 6088: 6085: 6059: 6051: 6031: 6021: 6009: 6003:natural number 5954: 5947:semiprime ring 5894: 5872: 5850: 5830: 5808: 5786: 5783: 5761: 5739: 5719: 5695: 5679: 5667: 5653: 5641: 5638: 5635: 5621: 5613: 5563: 5560: 5559: 5558: 5544: 5522: 5500: 5497: 5494: 5491: 5488: 5485: 5482: 5479: 5476: 5473: 5470: 5446: 5424: 5402: 5380: 5358: 5355: 5352: 5349: 5346: 5324: 5321: 5318: 5296: 5274: 5259: 5245: 5240: 5236: 5232: 5229: 5226: 5221: 5217: 5213: 5191: 5188: 5185: 5165: 5160: 5156: 5152: 5149: 5146: 5141: 5137: 5133: 5130: 5127: 5105: 5102: 5099: 5077: 5074: 5071: 5049: 5046: 5043: 5040: 5037: 5034: 5012: 5009: 4989: 4988: 4987: 4986: 4974: 4971: 4968: 4965: 4960: 4956: 4952: 4949: 4946: 4941: 4937: 4933: 4930: 4927: 4922: 4918: 4914: 4910: 4906: 4903: 4900: 4895: 4891: 4885: 4881: 4875: 4871: 4867: 4864: 4861: 4856: 4852: 4846: 4842: 4836: 4832: 4828: 4825: 4822: 4819: 4816: 4794: 4793: 4792: 4791: 4780: 4777: 4774: 4771: 4766: 4762: 4758: 4755: 4752: 4747: 4743: 4739: 4735: 4731: 4728: 4725: 4720: 4716: 4710: 4706: 4702: 4699: 4696: 4691: 4687: 4681: 4677: 4673: 4670: 4667: 4664: 4639:(finite) left 4626: 4623: 4597: 4594: 4565: 4547: 4544: 4541: 4538: 4535: 4513: 4510: 4507: 4504: 4499: 4493: 4470: 4467: 4464: 4434: 4428: 4401: 4398: 4393: 4387: 4364: 4361: 4358: 4343: 4320: 4314: 4306: 4303: 4300: 4296: 4272: 4269: 4266: 4242: 4236: 4230: 4225: 4219: 4196: 4181:of left ideals 4165: 4162: 4159: 4156: 4151: 4145: 4131: 4113: 4108: 4103: 4098: 4093: 4069: 4045: 4032:ideal quotient 4013: 4007: 4003: 3998: 3993: 3988: 3983: 3953: 3948: 3943: 3917: 3914: 3911: 3908: 3905: 3902: 3899: 3896: 3893: 3890: 3887: 3884: 3881: 3878: 3875: 3872: 3869: 3866: 3863: 3858: 3854: 3830: 3827: 3824: 3805: 3787: 3784: 3781: 3776: 3773: 3769: 3765: 3762: 3740: 3737: 3734: 3731: 3728: 3725: 3705: 3685: 3665: 3643: 3640: 3637: 3634: 3631: 3615: 3595: 3592: 3589: 3586: 3558: 3555: 3552: 3549: 3529: 3526: 3523: 3520: 3492: 3489: 3486: 3481: 3478: 3474: 3445: 3442: 3439: 3436: 3433: 3409: 3405: 3401: 3396: 3392: 3369: 3360:, and thus if 3345: 3341: 3337: 3334: 3329: 3325: 3321: 3318: 3294: 3272: 3267: 3263: 3259: 3254: 3251: 3247: 3243: 3240: 3237: 3234: 3231: 3228: 3204: 3201: 3198: 3195: 3192: 3181: 3163: 3160: 3157: 3154: 3151: 3148: 3145: 3128: 3114: 3111: 3108: 3105: 3102: 3080: 3077: 3074: 3071: 3068: 3065: 3045: 3042: 3039: 3019: 2999: 2995: 2991: 2988: 2966: 2963: 2960: 2957: 2954: 2951: 2929: 2904: 2882: 2861: 2838: 2834: 2830: 2827: 2816: 2800: 2780: 2777: 2774: 2752: 2749: 2746: 2743: 2740: 2716: 2694: 2691: 2688: 2668: 2665: 2662: 2657: 2653: 2632: 2612: 2589: 2586: 2583: 2561: 2558: 2555: 2552: 2549: 2525: 2503: 2492: 2478: 2475: 2472: 2468: 2445: 2442: 2437: 2433: 2417: 2400: 2374: 2350: 2346: 2324: 2301: 2297: 2274: 2258: 2246: 2243: 2240: 2237: 2234: 2231: 2228: 2225: 2222: 2219: 2216: 2213: 2210: 2207: 2204: 2184: 2164: 2161: 2158: 2155: 2133: 2111: 2108: 2105: 2102: 2082: 2079: 2076: 2073: 2070: 2067: 2047: 2044: 2024: 2004: 2001: 1998: 1995: 1992: 1989: 1986: 1962: 1959: 1956: 1953: 1950: 1947: 1944: 1914: 1911: 1908: 1884: 1879: 1876: 1873: 1868: 1865: 1861: 1857: 1854: 1851: 1848: 1826: 1821: 1818: 1796: 1775: 1761: 1758: 1755: 1735: 1723: 1718: 1714: 1710: 1686: 1682: 1659: 1656: 1653: 1621: 1618: 1594: 1591: 1588: 1568: 1565: 1562: 1559: 1556: 1553: 1550: 1530: 1527: 1524: 1492: 1489: 1486: 1466: 1463: 1460: 1436: 1433: 1406: 1403: 1381: 1380: 1369: 1365: 1361: 1358: 1355: 1332: 1328: 1324: 1315:is two-sided, 1275: 1271: 1267: 1244: 1243: 1232: 1229: 1226: 1223: 1220: 1197: 1194: 1191: 1147: 1144: 1141: 1138: 1116: 1113: 1110: 1107: 1077: 1076: 1062: 1040: 1037: 1028:, the product 1015: 1012: 1009: 987: 984: 981: 970: 956: 953: 950: 947: 944: 918: 915: 912: 909: 906: 883: 861: 839: 828:additive group 800: 797: 762: 759: 700:quotient group 678:, such as the 650: 649: 647: 646: 639: 632: 624: 621: 620: 612: 611: 583: 582: 576: 570: 564: 552: 547: 546: 543: 542: 539: 538: 527: 522: 518: 514: 510: 491: 478: 473: 454: 441: 436: 424:-adic integers 417: 411: 402: 388: 387: 386: 385: 379: 373: 372: 371: 359: 353: 347: 341: 335: 317: 312: 311: 308: 307: 304: 303: 302: 301: 289: 288: 287: 281: 269: 268: 267: 249: 248: 247: 246: 234: 230: 226: 221: 217: 214: 200: 188: 167: 161: 155: 149: 135: 134: 128: 122: 108: 107: 101: 95: 89: 88: 87: 81: 69: 63: 51: 49:Basic concepts 48: 47: 44: 43: 26: 9: 6: 4: 3: 2: 14113: 14102: 14099: 14097: 14094: 14092: 14089: 14087: 14084: 14083: 14081: 14070: 14069: 14064: 14059: 14058: 14047: 14043: 14039: 14035: 14031: 14029:9780691081014 14025: 14021: 14017: 14013: 14009: 14005: 14003:1-4020-2690-0 13999: 13995: 13991: 13987: 13983: 13977: 13973: 13969: 13965: 13961: 13958: 13954: 13950: 13944: 13940: 13936: 13932: 13928: 13924: 13920: 13916: 13912: 13910:9780471433347 13906: 13902: 13897: 13893: 13891:0-201-00361-9 13887: 13883: 13882: 13877: 13873: 13869: 13868: 13860: 13855: 13841:on 2017-01-16 13840: 13836: 13832: 13826: 13812:on 2017-01-16 13811: 13807: 13803: 13797: 13783:on 2017-01-16 13782: 13778: 13774: 13768: 13761: 13760:Milnor (1971) 13756: 13749: 13748:Eisenbud 1995 13744: 13736: 13734:9781139171762 13730: 13726: 13725: 13720: 13714: 13707: 13702: 13695: 13690: 13682: 13678: 13672: 13665:. p. 39. 13664: 13663: 13654: 13647: 13642: 13635: 13630: 13623: 13618: 13616: 13614: 13612: 13604: 13599: 13592: 13587: 13580: 13575: 13568: 13563: 13557:, p. 242 13556: 13551: 13544:. p. 83. 13543: 13536: 13529:. p. 76. 13528: 13521: 13513: 13506: 13504: 13499: 13485: 13481: 13477: 13473: 13467: 13463: 13459: 13453: 13448: 13444: 13440: 13435: 13431: 13427: 13423: 13417: 13410: 13406: 13402: 13396: 13392: 13382: 13379: 13377: 13374: 13372: 13369: 13367: 13364: 13362: 13359: 13357: 13354: 13352: 13349: 13347: 13344: 13343: 13337: 13290: 13287: 13260: 13185: 13182: 13171: 13155: 13146:-bimodule of 13133: 13113: 13091: 13069: 13049: 13029: 13007: 12997: 12981: 12961: 12941: 12933: 12930: 12923: 12921: 12905: 12897: 12876: 12873: 12870: 12864: 12861: 12858: 12855: 12828: 12825: 12822: 12816: 12813: 12810: 12807: 12797: 12772: 12769: 12766: 12741: 12738: 12735: 12710: 12707: 12704: 12698: 12695: 12670: 12667: 12664: 12658: 12655: 12647: 12633: 12625: 12609: 12602: 12601: 12600: 12598: 12582: 12560: 12538: 12531: 12515: 12507: 12503: 12499: 12483: 12458: 12455: 12452: 12440: 12439:monoid object 12430: 12354: 12348: 12309: 12272: 12269: 12259: 12210: 12207: 12197: 12173: 12143: 12140: 12116: 12093: 12089: 12078: 12072: 12039: 12036: 12024: 11982: 11980: 11976: 11953: 11939: 11935: 11931: 11927: 11926:inclusion map 11923: 11920:, and we let 11919: 11915: 11911: 11907: 11903: 11899: 11895: 11891: 11887: 11883: 11879: 11875: 11868: 11850: 11815: 11811: 11810:maximal ideal 11784: 11781: 11763: 11728: 11724: 11697: 11673: 11668: 11665: 11627: 11622: 11619: 11603: 11602: 11601: 11599: 11586: 11583: 11580: 11577: 11561: 11557: 11552: 11534: 11526: 11523: 11520: 11514: 11509: 11501: 11469: 11461: 11458: 11455: 11449: 11443: 11440: 11437: 11428: 11422: 11419: 11416: 11384: 11376: 11373: 11370: 11364: 11358: 11355: 11352: 11343: 11337: 11334: 11331: 11306: 11303: 11300: 11297: 11292: 11284: 11281: 11278: 11267: 11249: 11241: 11230: 11227:are units in 11214: 11211: 11208: 11205: 11202: 11199: 11196: 11173: 11170: 11167: 11158: 11155: 11152: 11146: 11143: 11122: 11119: 11116: 11107: 11104: 11081: 11078: 11075: 11052: 11048: 11030: 11014:implies that 11013: 10963: 10958: 10955: 10939: 10918: 10913: 10910: 10894: 10891: 10873: 10838: 10811: 10810: 10809: 10807: 10779: 10751: 10747: 10743: 10738: 10736: 10694: 10678: 10675:, called the 10674: 10643: 10640: 10636: 10627: 10577: 10574: 10569: 10565: 10561: 10551: 10546: 10542: 10538: 10530: 10526: 10519: 10514: 10510: 10506: 10496: 10491: 10475: 10474: 10473: 10444: 10435:generated by 10434: 10430: 10388: 10372: 10368: 10364: 10360: 10356: 10352: 10323: 10315: 10287: 10283: 10279: 10275: 10271: 10267: 10263: 10253: 10237: 10234: 10222: 10219: 10216: 10212: 10208: 10196: 10192: 10169: 10166: 10155: 10151: 10144: 10141: 10137: 10123: 10120: 10095: 10091: 10084: 10081: 10078: 10063: 10045: 10042: 10039: 10035: 10031: 10026: 10022: 9996: 9990: 9987: 9984: 9978: 9972: 9969: 9944: 9938: 9935: 9927: 9926:Artinian ring 9923: 9918: 9916: 9912: 9893: 9887: 9884: 9876: 9872: 9850: 9844: 9841: 9838: 9813: 9809: 9803: 9797: 9794: 9787: 9786: 9785: 9765: 9762: 9759: 9749: 9733: 9730: 9727: 9724: 9716: 9715: 9714: 9712: 9694: 9691: 9688: 9685: 9682: 9679: 9676: 9673: 9651: 9648: 9642: 9638: 9634: 9628: 9625: 9603: 9600: 9597: 9587: 9583: 9565: 9562: 9559: 9556: 9546: 9542: 9537: 9523: 9520: 9517: 9514: 9506: 9490: 9487: 9484: 9481: 9458: 9452: 9449: 9446: 9437: 9434: 9431: 9428: 9425: 9422: 9419: 9416: 9410: 9407: 9400: 9399: 9398: 9374: 9370: 9360: 9293: 9287: 9284: 9264: 9261: 9255: 9249: 9246: 9242: 9238: 9235: 9229: 9223: 9220: 9216: 9212: 9192: 9189: 9186: 9183: 9175: 9171: 9155: 9132: 9107: 9103: 9100: 9093: 9092: 9091: 9089: 9070: 9064: 9061: 9058: 9055: 9048: 9044: 9042: 9036: 9032: 9028: 9021: 9018: 9017: 9016: 9012: 9002: 9000: 8966: 8958: 8954: 8950: 8947: 8944: 8941: 8938: 8932: 8922: 8881: 8871: 8857: 8838: 8834: 8830: 8827: 8824: 8821: 8818: 8815: 8812: 8809: 8806: 8803: 8798: 8794: 8790: 8787: 8784: 8778: 8757: 8738: 8734: 8730: 8727: 8724: 8721: 8718: 8715: 8712: 8709: 8706: 8703: 8700: 8697: 8694: 8691: 8688: 8685: 8682: 8679: 8676: 8671: 8667: 8660: 8651: 8648: 8645: 8639: 8636: 8630: 8627: 8624: 8618: 8615: 8609: 8606: 8603: 8597: 8594: 8588: 8585: 8582: 8576: 8570: 8549: 8532: 8529: 8526: 8523: 8520: 8514: 8504: 8474: 8471: 8468: 8465: 8462: 8459: 8456: 8450: 8444: 8441: 8438: 8435: 8432: 8429: 8426: 8423: 8420: 8417: 8414: 8408: 8398: 8384: 8383: 8382: 8363: 8360: 8357: 8354: 8351: 8345: 8335: 8329: 8326: 8323: 8320: 8317: 8314: 8311: 8305: 8295: 8289: 8286: 8283: 8277: 8245: 8242: 8239: 8236: 8233: 8230: 8227: 8216: 8213: 8204: 8188: 8166: 8143: 8137: 8131: 8097: 8094: 8091: 8085: 8082: 8079: 8073: 8067: 8061: 8051: 8050: 8049: 8019: 8017: 7985: 7923: 7908: 7903: 7872: 7858: 7845: 7831: 7827: 7824: 7813: 7809: 7803: 7798: 7793: 7789: 7778: 7742: 7715: 7698: 7692: 7682: 7668: 7667: 7666: 7638: 7628: 7613: 7590: 7574: 7572: 7568: 7564: 7561: 7557: 7553: 7457: 7447: 7437: 7427: 7414: 7401: 7387: 7386: 7385: 7351: 7334: 7314: 7295: 7264: 7247: 7234: 7208: 7207: 7206: 7183: 7173: 7155: 7049: 6965: 6949: 6919: 6891: 6887: 6868: 6862: 6859: 6856: 6853: 6850: 6847: 6844: 6834: 6831: 6828: 6825: 6822: 6819: 6816: 6813: 6810: 6807: 6804: 6794: 6789: 6785: 6767: 6762: 6758: 6754: 6749: 6745: 6739: 6735: 6731: 6728: 6725: 6720: 6716: 6710: 6706: 6699: 6678: 6677: 6676: 6655: 6614: 6611: 6594: 6591: 6588: 6585: 6582: 6579: 6573: 6563: 6549: 6548: 6547: 6545: 6479: 6475: 6471: 6466: 6462: 6457: 6453: 6449: 6444: 6440: 6436: 6435: 6431: 6428: 6424: 6420: 6416: 6412: 6409: 6405: 6401: 6400: 6396: 6395: 6394: 6388: 6384: 6380: 6376: 6372: 6368: 6364: 6361: 6357: 6353: 6352:unmixed ideal 6350:is called an 6337: 6325: 6324: 6323:Unmixed ideal 6320: 6317: 6296: 6292: 6288: 6282: 6279: 6269: 6263: 6243: 6239: 6235: 6234:perfect ideal 6219: 6207: 6206: 6205:Perfect ideal 6202: 6199: 6195: 6194: 6190: 6187: 6186: 6182: 6179: 6178: 6174: 6171: 6170: 6169:Regular ideal 6166: 6149: 6146: 6143: 6121: 6118: 6115: 6095: 6092: 6089: 6086: 6083: 6075: 6064:: Two ideals 6063: 6060: 6057: 6056: 6052: 6049: 6045: 6041: 6037: 6036: 6032: 6029: 6025: 6022: 6019: 6015: 6014: 6010: 6007: 6004: 5996: 5992: 5984: 5980: 5976: 5972: 5968: 5967:primary ideal 5960: 5959: 5958:Primary ideal 5955: 5952: 5948: 5940: 5936: 5928: 5924: 5920: 5916: 5912: 5904: 5900: 5899: 5898:Radical ideal 5895: 5892: 5888: 5870: 5848: 5828: 5806: 5784: 5781: 5759: 5737: 5717: 5709: 5693: 5685: 5684: 5680: 5665: 5657: 5654: 5636: 5625: 5622: 5619: 5618: 5617:Minimal ideal 5614: 5611: 5607: 5603: 5595: 5591: 5590:maximal ideal 5583: 5582: 5581:Maximal ideal 5578: 5577: 5576: 5574: 5569: 5568: 5542: 5520: 5495: 5492: 5489: 5486: 5483: 5480: 5477: 5471: 5468: 5444: 5422: 5400: 5378: 5356: 5353: 5350: 5347: 5344: 5322: 5319: 5316: 5294: 5272: 5264: 5260: 5238: 5234: 5230: 5227: 5224: 5219: 5215: 5189: 5186: 5183: 5158: 5154: 5150: 5147: 5144: 5139: 5135: 5128: 5125: 5100: 5075: 5072: 5069: 5047: 5044: 5041: 5038: 5035: 5032: 5010: 5007: 4999: 4995: 4991: 4990: 4972: 4966: 4963: 4958: 4954: 4950: 4947: 4944: 4939: 4935: 4931: 4928: 4925: 4920: 4916: 4912: 4904: 4901: 4898: 4893: 4889: 4883: 4879: 4873: 4869: 4865: 4862: 4859: 4854: 4850: 4844: 4840: 4834: 4830: 4823: 4820: 4817: 4814: 4807: 4806: 4804: 4800: 4796: 4795: 4778: 4772: 4769: 4764: 4760: 4756: 4753: 4750: 4745: 4741: 4737: 4729: 4726: 4723: 4718: 4714: 4708: 4704: 4700: 4697: 4694: 4689: 4685: 4679: 4675: 4668: 4665: 4662: 4655: 4654: 4652: 4648: 4644: 4642: 4624: 4621: 4613: 4595: 4592: 4582: 4578: 4574: 4570: 4566: 4563: 4542: 4536: 4533: 4508: 4502: 4497: 4468: 4465: 4462: 4454: 4450: 4432: 4415: 4399: 4396: 4391: 4362: 4359: 4356: 4348: 4344: 4341: 4337: 4318: 4304: 4301: 4298: 4294: 4270: 4267: 4264: 4240: 4228: 4223: 4194: 4186: 4182: 4180: 4163: 4160: 4157: 4154: 4149: 4132: 4129: 4101: 4033: 4029: 4005: 3991: 3973: 3969: 3946: 3931: 3912: 3909: 3906: 3903: 3900: 3897: 3894: 3891: 3888: 3885: 3882: 3879: 3873: 3867: 3861: 3856: 3852: 3844: 3828: 3825: 3822: 3814: 3810: 3806: 3803: 3782: 3774: 3771: 3767: 3760: 3735: 3729: 3723: 3703: 3683: 3663: 3641: 3635: 3632: 3629: 3619: 3616: 3613: 3609: 3590: 3584: 3576: 3572: 3553: 3547: 3524: 3518: 3510: 3506: 3487: 3479: 3476: 3472: 3463: 3459: 3440: 3434: 3431: 3407: 3403: 3399: 3394: 3390: 3367: 3343: 3339: 3335: 3327: 3323: 3316: 3292: 3265: 3261: 3252: 3249: 3245: 3241: 3235: 3229: 3226: 3218: 3202: 3196: 3193: 3190: 3182: 3179: 3158: 3152: 3146: 3133: 3129: 3112: 3109: 3103: 3078: 3075: 3069: 3063: 3043: 3040: 3037: 3017: 2986: 2964: 2961: 2955: 2949: 2927: 2919: 2859: 2852: 2825: 2817: 2814: 2798: 2778: 2775: 2772: 2750: 2747: 2744: 2741: 2738: 2714: 2692: 2689: 2686: 2663: 2655: 2651: 2630: 2610: 2602: 2587: 2584: 2581: 2559: 2556: 2553: 2550: 2547: 2523: 2501: 2493: 2473: 2443: 2440: 2435: 2431: 2422: 2418: 2415: 2389: 2344: 2322: 2295: 2263: 2259: 2244: 2241: 2238: 2232: 2229: 2223: 2217: 2214: 2208: 2205: 2202: 2182: 2162: 2159: 2156: 2153: 2131: 2109: 2106: 2103: 2100: 2077: 2071: 2068: 2065: 2045: 2042: 2022: 1999: 1993: 1987: 1976: 1957: 1951: 1945: 1934: 1930: 1912: 1909: 1906: 1877: 1874: 1866: 1863: 1859: 1855: 1849: 1846: 1819: 1816: 1784: 1783:proper subset 1780: 1776: 1756: 1743: 1738: 1716: 1712: 1684: 1680: 1654: 1643: 1639: 1635: 1631: 1627: 1626: 1625: 1617: 1615: 1611: 1606: 1592: 1589: 1586: 1566: 1563: 1560: 1557: 1554: 1551: 1548: 1528: 1525: 1522: 1490: 1487: 1484: 1464: 1461: 1458: 1434: 1431: 1420: 1412: 1402: 1401: 1397: 1393: 1390: 1367: 1363: 1359: 1353: 1346: 1345: 1344: 1330: 1326: 1322: 1311:If the ideal 1309: 1307: 1303: 1291: 1290: 1273: 1269: 1265: 1257: 1249: 1230: 1227: 1224: 1221: 1218: 1211: 1210: 1209: 1195: 1192: 1189: 1176: 1174: 1170: 1165: 1163: 1145: 1142: 1139: 1136: 1114: 1111: 1108: 1105: 1097: 1092: 1091:over itself. 1090: 1082: 1060: 1038: 1035: 1013: 1010: 1007: 985: 982: 979: 971: 951: 948: 945: 932: 913: 910: 907: 897: 896: 895: 881: 859: 837: 829: 825: 813: 806: 796: 794: 790: 789:David Hilbert 786: 785: 780: 776: 771: 770:ideal numbers 767: 758: 757:for clarity. 756: 752: 748: 744: 739: 737: 736:number theory 733: 729: 725: 721: 720:prime numbers 717: 712: 708: 703: 701: 697: 693: 689: 688:quotient ring 685: 681: 677: 673: 670:is a special 669: 665: 661: 657: 645: 640: 638: 633: 631: 626: 625: 623: 622: 617: 616: 610: 606: 605: 604: 603: 602: 597: 596: 595: 590: 589: 588: 581: 577: 575: 571: 569: 565: 563: 562:Division ring 559: 558: 557: 556: 550: 545: 544: 516: 500: 498: 492: 476: 462: 461:-adic numbers 460: 455: 439: 425: 423: 418: 416: 412: 410: 403: 401: 397: 396: 395: 394: 393: 384: 380: 378: 374: 370: 366: 365: 364: 360: 358: 354: 352: 348: 346: 342: 340: 336: 334: 330: 329: 328: 324: 323: 322: 321: 315: 310: 309: 300: 296: 295: 294: 290: 286: 282: 280: 276: 275: 274: 270: 266: 262: 261: 260: 256: 255: 254: 253: 228: 224: 215: 212: 205: 204:Terminal ring 201: 178: 174: 173: 172: 168: 166: 162: 160: 156: 154: 150: 148: 144: 143: 142: 141: 140: 133: 129: 127: 123: 121: 117: 116: 115: 114: 113: 106: 102: 100: 96: 94: 90: 86: 82: 80: 76: 75: 74: 73:Quotient ring 70: 68: 64: 62: 58: 57: 56: 55: 46: 45: 42: 37:β†’ Ring theory 36: 32: 31: 19: 14066: 14015: 13993: 13967: 13922: 13900: 13879: 13854: 13843:. Retrieved 13839:the original 13834: 13825: 13814:. Retrieved 13810:the original 13805: 13796: 13785:. Retrieved 13781:the original 13776: 13767: 13762:, p. 9. 13755: 13743: 13723: 13713: 13701: 13689: 13680: 13677:"Zero ideal" 13671: 13661: 13659:Lam (2001). 13653: 13641: 13629: 13598: 13586: 13574: 13562: 13550: 13541: 13535: 13526: 13520: 13511: 13483: 13479: 13475: 13471: 13465: 13464:) + ... + (βˆ’ 13461: 13457: 13451: 13446: 13442: 13438: 13433: 13429: 13425: 13421: 13416: 13408: 13404: 13400: 13395: 13361:Ideal theory 13172: 12928: 12924: 12919: 12895: 12795: 12793: 12596: 12575:"; that is, 12505: 12436: 12294:, such that 12257: 12195: 11983: 11974: 11933: 11929: 11921: 11917: 11909: 11905: 11901: 11893: 11889: 11885: 11877: 11873: 11872: 11866: 11813: 11779: 11726: 11555: 11553: 11265: 11228: 11046: 11011: 10985: 10889: 10888:is prime in 10836: 10835:is prime in 10805: 10777: 10749: 10745: 10741: 10739: 10734: 10676: 10672: 10625: 10599: 10432: 10428: 10370: 10366: 10362: 10354: 10350: 10313: 10281: 10277: 10273: 10265: 10261: 10259: 10061: 9921: 9919: 9914: 9874: 9868: 9783: 9747: 9581: 9544: 9538: 9505:unit element 9473: 9358: 9173: 9169: 9147: 9087: 9040: 9034: 9026: 9024: 9019: 9014: 8995: 8205: 8120: 8025: 7904: 7774: 7611: 7575: 7555: 7554: 7479: 7383: 7156: 6950: 6917: 6889: 6885: 6883: 6640: 6543: 6489: 6477: 6473: 6469: 6464: 6460: 6455: 6451: 6447: 6442: 6438: 6432: 6426: 6422: 6418: 6414: 6410: 6403: 6397: 6392: 6378: 6374: 6370: 6366: 6362: 6355: 6351: 6321: 6233: 6232:is called a 6203: 6191: 6183: 6175: 6167: 6073: 6061: 6053: 6033: 6030:as a module. 6023: 6017: 6011: 6005: 5994: 5990: 5982: 5978: 5974: 5970: 5966: 5965:is called a 5956: 5951:reduced ring 5938: 5934: 5926: 5922: 5918: 5914: 5910: 5896: 5707: 5706:is called a 5681: 5655: 5626:: the ideal 5623: 5615: 5601: 5593: 5589: 5588:is called a 5579: 5573:factor rings 5570: 5566: 5565: 4997: 4993: 4802: 4798: 4650: 4646: 4640: 4611: 4580: 4576: 4572: 4568: 4452: 4448: 4413: 4347:Zorn's lemma 4339: 4335: 4184: 4177: 4027: 3971: 3967: 3929: 3815:-module and 3812: 3808: 3617: 3607: 3574: 3570: 3508: 3504: 3461: 3457: 2812: 2494:Take a ring 2146:. Likewise, 1974: 1928: 1781:(as it is a 1779:proper ideal 1778: 1741: 1736: 1641: 1637: 1633: 1629: 1623: 1607: 1418: 1413:. For a rng 1408: 1399: 1382: 1310: 1287: 1245: 1177: 1172: 1166: 1161: 1127:replaced by 1095: 1093: 1078: 874:"; that is, 814:is a subset 811: 802: 793:Emmy Noether 782: 766:Ernst Kummer 764: 754: 747:order theory 740: 716:prime ideals 704: 692:group theory 680:even numbers 663: 653: 613: 599: 598: 594:Free algebra 592: 591: 585: 584: 553: 496: 458: 421: 390: 389: 369:Finite field 318: 265:Finite field 251: 250: 177:Initial ring 137: 136: 110: 109: 66: 52: 18:Proper ideal 13964:Lang, Serge 13381:Ideal sheaf 12796:right ideal 12131:intersects 11938:prime ideal 11723:prime ideal 11319:shows that 10677:contraction 10353:(e.g. take 10182:. That is, 10064:. If (DCC) 9148:Indeed, if 7777:Tor functor 6385:. See also 6240:equals the 6040:annihilator 5969:if for all 5961:: An ideal 5917:if for any 5710:if for any 5708:prime ideal 5683:Prime ideal 5606:simple ring 4030:called the 3843:annihilator 3610:; see also 3178:matrix ring 3132:simple ring 2538:. For each 2421:polynomials 1640:called the 1614:Lie algebra 1169:commutative 1096:right ideal 1089:left module 799:Definitions 660:ring theory 656:mathematics 574:Simple ring 285:Jordan ring 159:Graded ring 41:Ring theory 14080:Categories 14046:0237.18005 13845:2017-01-14 13816:2017-01-14 13787:2017-01-14 13681:Math World 13494:References 13478:and every 13470:for every 13371:Ideal norm 12996:sub-module 12954:as a left 12686:and every 12648:For every 12597:left ideal 12506:left ideal 12401:lies over 11888:, and let 11560:surjective 10357:to be the 10272:, and let 9871:nilradical 9277:, meaning 7967:such that 6445:such that 5909:is called 5887:prime ring 5656:Unit ideal 5624:Zero ideal 5285:of a ring 4183:in a ring 3811:is a left 3056:such that 2940:such that 1933:skew-field 1897:for every 1742:zero ideal 1642:unit ideal 1632:, the set 1628:In a ring 1541:, we have 1477:and every 1451:for every 1419:left ideal 1389:surjective 998:and every 972:For every 822:that is a 812:left ideal 722:, and the 580:Commutator 339:GCD domain 13634:Lang 2005 13291:∈ 13278:for some 12877:⊗ 12865:∈ 12859:⊗ 12829:⊗ 12817:∈ 12811:⊗ 12773:⊗ 12739:⊗ 12711:⊗ 12699:∈ 12671:⊗ 12659:∈ 12624:subobject 12530:subobject 12502:forgotten 12459:⊗ 12273:− 12211:− 12144:− 12105:⇒ 11823:⇔ 11736:⇔ 11584:⁡ 11578:⊇ 11450:− 11420:− 11374:− 11365:− 11356:− 11301:± 11282:± 11212:− 11171:− 11067:→ 11051:embedding 10964:⊆ 10919:⊇ 10846:⇒ 10740:Assuming 10641:− 10575:∈ 10552:∈ 10507:∑ 10371:extension 10359:inclusion 10145:⁡ 10124:⋅ 10085:⁡ 10079:⊋ 10060:for some 9991:⁡ 9973:⁡ 9939:⁡ 9888:⁡ 9845:⁡ 9839:⊂ 9814:⋂ 9798:⁡ 9692:⊊ 9686:⊂ 9629:⋅ 9601:⊊ 9518:− 9485:− 9450:∈ 9432:− 9426:∣ 9420:∈ 9288:⁡ 9262:≃ 9250:⁡ 9224:⁡ 9108:⋂ 9065:⁡ 8999:Macaulay2 8967:≠ 8923:∩ 8872:∩ 8138:∩ 8086:⁡ 8068:∩ 7924:⊂ 7859:∩ 7804:⁡ 7629:∩ 7504:contains 7458:∩ 7438:∩ 7428:⊃ 7402:∩ 7050:∪ 6863:… 6826:… 6795:∈ 6768:∈ 6755:∣ 6729:⋯ 6615:∈ 6595:∈ 6589:∣ 6283:⁡ 6177:Nil ideal 6147:∈ 6119:∈ 6108:for some 6074:comaximal 6001:for some 5933:for some 5915:semiprime 5493:∼ 5481:∈ 5423:∼ 5379:∼ 5354:∈ 5348:− 5320:∼ 5228:… 5148:… 4964:∈ 4945:∈ 4926:∈ 4905:∈ 4899:∣ 4863:⋯ 4770:∈ 4751:∈ 4730:∈ 4724:∣ 4698:⋯ 4564:for more. 4481:, taking 4466:≠ 4397:⊂ 4360:⊂ 4302:∈ 4295:⋃ 4255:for each 4229:⊂ 4161:∈ 4128:idealizer 3910:∈ 3889:∣ 3883:∈ 3862:⁡ 3826:⊂ 3772:− 3764:↦ 3727:↦ 3639:→ 3573:: unless 3477:− 3435:⁡ 3400:≠ 3250:− 3230:⁡ 3200:→ 3091:whenever 2818:The ring 2776:× 2748:≤ 2742:≤ 2690:× 2585:× 2557:≤ 2551:≤ 2260:The even 1910:∈ 1878:∈ 1864:− 1820:∈ 1561:∈ 1526:∈ 1488:∈ 1462:∈ 1357:→ 1228:∈ 1222:− 1193:∼ 1143:∈ 1112:∈ 1081:submodule 1011:∈ 983:∈ 779:Dirichlet 521:∞ 299:Semifield 14014:(1971). 13966:(2005). 13921:(1995), 13878:(1969). 13773:"ideals" 13721:(1987). 13445:+ ... + 13340:See also 12476:, where 10808:, then: 10744: : 10276: : 9361:-module 8381:. Then, 8261:and let 8048:we have 7571:quantale 7560:complete 6020:element. 5513:. Then 5371:. Then 4187:; i.e., 3424:), then 2601:matrices 2262:integers 2093:; i.e., 1289:quotient 931:subgroup 824:subgroup 803:Given a 781:'s book 676:integers 293:Semiring 279:Lie ring 61:Subrings 14038:0349811 13957:1322960 13334:⁠ 13312:⁠ 13308:⁠ 13280:⁠ 13253:, i.e. 13251:⁠ 13229:⁠ 13203:⁠ 13175:⁠ 13168:⁠ 13148:⁠ 13104:⁠ 13084:⁠ 13020:⁠ 13000:⁠ 12932:-module 12892:⁠ 12848:⁠ 12844:⁠ 12800:⁠ 12788:⁠ 12756:⁠ 12726:⁠ 12688:⁠ 12573:⁠ 12553:⁠ 12474:⁠ 12442:⁠ 12427:⁠ 12403:⁠ 12375:⁠ 12332:⁠ 12292:⁠ 12262:⁠ 12230:⁠ 12200:⁠ 12163:⁠ 12133:⁠ 12054:⁠ 12010:⁠ 11924:be the 11896:be the 11693:⁠ 11649:⁠ 11549:⁠ 11491:⁠ 11487:⁠ 11406:⁠ 11402:⁠ 11321:⁠ 11095:⁠ 11054:⁠ 10628:, then 10470:⁠ 10437:⁠ 10369:). The 10316:, then 10268:be two 10250:⁠ 10184:⁠ 10012:⁠ 9962:⁠ 9928:, then 9778:⁠ 9752:⁠ 9707:⁠ 9666:⁠ 9664:and so 9616:⁠ 9590:⁠ 9580:, then 9578:⁠ 9549:⁠ 9395:⁠ 9363:⁠ 9176:, then 9043:-module 9039:simple 8379:⁠ 8263:⁠ 8201:⁠ 8181:⁠ 8012:⁠ 7969:⁠ 7900:⁠ 7781:⁠ 7769:⁠ 7745:⁠ 7743:modulo 7614:, then 7378:⁠ 7297:⁠ 7291:⁠ 7210:⁠ 7203:⁠ 7159:⁠ 7152:⁠ 7128:⁠ 7069:⁠ 7035:⁠ 6946:⁠ 6922:⁠ 6540:⁠ 6516:⁠ 6316:unmixed 6312:⁠ 6246:⁠ 6236:if its 6162:⁠ 6136:⁠ 5937:, then 5911:radical 5883:⁠ 5863:⁠ 5819:⁠ 5799:⁠ 5772:⁠ 5752:⁠ 5555:⁠ 5535:⁠ 5511:⁠ 5461:⁠ 5457:⁠ 5437:⁠ 5413:⁠ 5393:⁠ 5369:⁠ 5337:⁠ 5307:⁠ 5287:⁠ 5256:⁠ 5204:⁠ 5116:⁠ 5090:⁠ 5060:⁠ 5025:⁠ 5023:(resp. 4608:⁠ 4585:⁠ 4558:⁠ 4526:⁠ 4283:⁠ 4257:⁠ 4124:⁠ 4084:⁠ 3798:⁠ 3753:⁠ 3654:⁠ 3622:⁠ 3511:, then 3422:⁠ 3382:⁠ 3358:⁠ 3309:⁠ 3305:⁠ 3285:⁠ 3174:⁠ 3136:⁠ 3125:⁠ 3093:⁠ 2977:⁠ 2942:⁠ 2849:of all 2763:⁠ 2731:⁠ 2727:⁠ 2707:⁠ 2679:of all 2572:⁠ 2540:⁠ 2536:⁠ 2516:⁠ 2489:⁠ 2458:⁠ 2362:⁠ 2337:⁠ 2313:⁠ 2288:⁠ 2195:. Then 2144:⁠ 2124:⁠ 1935:, then 1925:⁠ 1899:⁠ 1772:⁠ 1746:⁠ 1699:⁠ 1672:⁠ 1158:⁠ 1129:⁠ 1073:⁠ 1053:⁠ 1026:⁠ 1000:⁠ 967:⁠ 935:⁠ 872:⁠ 852:⁠ 826:of the 761:History 684:closure 495:PrΓΌfer 97:β€’  14044:  14036:  14026:  14000:  13978:  13955:  13945:  13907:  13888:  13731:  13460:) + (βˆ’ 13450:, and 12754:is in 12498:monoid 11912:is an 11876:: Let 11874:Remark 11600:then: 9924:is an 9045:. The 8908:while 8121:since 7556:Remark 6048:module 6044:simple 5997:is in 5985:is in 5941:is in 5929:is in 5861:is in 5797:is in 5459:, let 5309:, let 4176:be an 3970:, the 3614:below. 2916:under 2813:column 2623:whose 1579:i.e., 1447:is in 1396:kernel 1246:is an 1051:is in 672:subset 147:Module 120:Kernel 13387:Notes 12920:ideal 12894:". A 12622:is a 12595:is a 12528:is a 11928:from 11880:be a 11808:is a 11721:is a 11231:. So 11097:. In 10288:. If 10284:be a 9503:is a 6951:Note 6888:with 6467:with 6256:grade 6238:grade 6046:left 6042:of a 5981:, if 5925:, if 5774:, if 5610:field 5596:with 5118:. If 4649:over 3215:is a 2872:from 2412:is a 2390:, so 1931:is a 1511:, if 1173:ideal 929:is a 743:ideal 666:of a 664:ideal 662:, an 499:-ring 363:Field 259:Field 67:Ideal 54:Rings 14024:ISBN 13998:ISBN 13976:ISBN 13943:ISBN 13905:ISBN 13886:ISBN 13729:ISBN 13403:the 12504:. A 11904:and 11892:and 11647:and 11562:and 10264:and 10260:Let 9746:and 9205:and 9025:Let 8490:and 8206:Let 8179:and 7126:and 7009:and 6916:and 6514:and 6463:and 6275:proj 6134:and 5993:and 5973:and 5841:and 5730:and 4524:and 4268:< 4133:Let 3110:> 3041:> 2811:-th 1417:, a 1160:. A 810:, a 805:ring 694:, a 668:ring 14042:Zbl 13935:doi 13474:in 13420:If 13407:of 13106:. 12998:of 12626:of 12508:of 12256:of 11973:of 11932:to 11916:of 11900:of 11884:of 11812:in 11725:in 11581:ker 11558:is 10733:to 10709:of 10600:If 10427:in 10403:of 10142:Ann 10082:Ann 9988:Jac 9970:nil 9936:Jac 9920:If 9913:of 9885:nil 9873:of 9842:Jac 9795:nil 9717:If 9285:Ann 9247:Ann 9221:Ann 9086:of 9062:Jac 9033:of 8083:lcm 8026:In 7902:.) 7790:Tor 7576:If 7528:or 6920:in 6892:in 6381:is 6365:of 6280:dim 6076:if 6018:one 5977:in 5921:in 5913:or 5901:or 5750:in 5435:on 5335:if 4571:of 4058:by 4034:of 3928:of 3853:Ann 3569:of 3460:of 3432:ker 3227:ker 3183:If 2894:to 1411:rng 1308:.) 1296:by 1292:of 1250:on 1178:If 1083:of 933:of 830:of 818:of 745:in 738:). 654:In 14082:: 14065:. 14040:. 14034:MR 14032:. 14022:. 13974:. 13953:MR 13951:, 13941:, 13933:, 13925:, 13874:; 13833:. 13804:. 13775:. 13679:. 13610:^ 13502:^ 13456:(βˆ’ 13441:+ 13336:. 13170:. 12794:A 11981:. 11551:. 11404:, 10780:, 10748:β†’ 10737:. 10280:β†’ 9917:. 9618:, 9001:. 8203:. 8018:. 7779:: 7573:. 7552:. 7205:, 7154:. 6948:. 6886:ab 6700::= 6574::= 6476:= 6474:BA 6472:= 6470:AB 6454:= 6452:BA 6450:= 6448:AB 6068:, 5983:ab 5678:). 4653:: 2257:.) 1616:. 1605:. 1094:A 795:. 702:. 607:β€’ 578:β€’ 572:β€’ 566:β€’ 560:β€’ 493:β€’ 456:β€’ 419:β€’ 413:β€’ 404:β€’ 398:β€’ 381:β€’ 375:β€’ 367:β€’ 361:β€’ 355:β€’ 349:β€’ 343:β€’ 337:β€’ 331:β€’ 325:β€’ 297:β€’ 291:β€’ 283:β€’ 277:β€’ 271:β€’ 263:β€’ 257:β€’ 202:β€’ 175:β€’ 169:β€’ 163:β€’ 157:β€’ 151:β€’ 145:β€’ 130:β€’ 124:β€’ 118:β€’ 103:β€’ 91:β€’ 83:β€’ 77:β€’ 71:β€’ 65:β€’ 59:β€’ 14071:. 14048:. 14006:. 13984:. 13937:: 13913:. 13894:. 13848:. 13819:. 13790:. 13737:. 13484:R 13480:n 13476:X 13472:x 13468:) 13466:x 13462:x 13458:x 13452:n 13447:x 13443:x 13439:x 13434:n 13430:R 13426:X 13422:R 13411:. 13409:R 13401:R 13321:Z 13295:Z 13288:m 13265:Z 13261:m 13238:Z 13214:Z 13190:Z 13186:= 13183:R 13156:R 13134:R 13114:I 13092:R 13070:R 13050:R 13030:I 13008:R 12982:I 12962:R 12942:R 12929:R 12906:R 12880:) 12874:, 12871:I 12868:( 12862:r 12856:x 12832:) 12826:, 12823:I 12820:( 12814:x 12808:r 12790:. 12776:) 12770:, 12767:I 12764:( 12742:x 12736:r 12714:) 12708:, 12705:I 12702:( 12696:x 12674:) 12668:, 12665:R 12662:( 12656:r 12634:R 12610:I 12583:I 12561:R 12539:I 12516:R 12484:R 12462:) 12456:, 12453:R 12450:( 12413:p 12387:q 12360:p 12355:B 12349:e 12343:p 12315:p 12310:B 12304:q 12278:p 12270:A 12258:B 12242:q 12216:p 12208:A 12196:B 12179:p 12174:B 12149:p 12141:A 12117:e 12111:p 12099:p 12094:B 12090:= 12084:p 12079:B 12073:e 12067:p 12040:c 12037:e 12031:p 12025:= 12020:p 11994:p 11975:A 11959:p 11954:= 11949:a 11934:B 11930:A 11922:f 11918:A 11910:B 11906:L 11902:K 11894:A 11890:B 11886:L 11878:K 11869:. 11867:B 11851:e 11845:a 11814:A 11794:a 11782:. 11780:B 11764:e 11758:a 11727:A 11707:a 11695:. 11679:b 11674:= 11669:e 11666:c 11660:b 11633:a 11628:= 11623:c 11620:e 11614:a 11587:f 11573:a 11556:f 11535:2 11531:) 11527:i 11524:+ 11521:1 11518:( 11515:= 11510:e 11506:) 11502:2 11499:( 11475:) 11470:2 11466:) 11462:i 11459:+ 11456:1 11453:( 11447:) 11444:i 11441:+ 11438:1 11435:( 11432:( 11429:= 11426:) 11423:i 11417:1 11414:( 11390:) 11385:2 11381:) 11377:i 11371:1 11368:( 11362:) 11359:i 11353:1 11350:( 11347:( 11344:= 11341:) 11338:i 11335:+ 11332:1 11329:( 11307:i 11304:2 11298:= 11293:2 11289:) 11285:i 11279:1 11276:( 11266:B 11250:e 11246:) 11242:2 11239:( 11229:B 11215:i 11209:1 11206:, 11203:i 11200:+ 11197:1 11177:) 11174:i 11168:1 11165:( 11162:) 11159:i 11156:+ 11153:1 11150:( 11147:= 11144:2 11123:] 11120:i 11117:[ 11112:Z 11108:= 11105:B 11082:] 11079:i 11076:[ 11071:Z 11063:Z 11047:B 11031:e 11025:a 11012:A 10996:a 10969:b 10959:e 10956:c 10950:b 10924:a 10914:c 10911:e 10905:a 10892:. 10890:A 10874:c 10868:b 10837:B 10821:b 10806:B 10790:b 10778:A 10762:a 10750:B 10746:A 10742:f 10735:A 10719:b 10695:c 10689:b 10673:A 10659:) 10654:b 10649:( 10644:1 10637:f 10626:B 10610:b 10583:} 10578:B 10570:i 10566:y 10562:, 10557:a 10547:i 10543:x 10539:: 10536:) 10531:i 10527:x 10523:( 10520:f 10515:i 10511:y 10502:{ 10497:= 10492:e 10486:a 10458:) 10453:a 10448:( 10445:f 10433:B 10429:B 10413:a 10389:e 10383:a 10367:Q 10363:Z 10355:f 10351:B 10337:) 10332:a 10327:( 10324:f 10314:A 10298:a 10282:B 10278:A 10274:f 10266:B 10262:A 10238:0 10235:= 10230:a 10223:1 10220:+ 10217:n 10213:J 10209:= 10204:a 10197:n 10193:J 10170:0 10167:= 10164:) 10161:) 10156:n 10152:J 10148:( 10138:/ 10132:a 10127:( 10121:J 10101:) 10096:n 10092:J 10088:( 10074:a 10062:n 10046:1 10043:+ 10040:n 10036:J 10032:= 10027:n 10023:J 10000:) 9997:R 9994:( 9985:= 9982:) 9979:R 9976:( 9948:) 9945:R 9942:( 9922:R 9915:R 9897:) 9894:R 9891:( 9875:R 9854:) 9851:R 9848:( 9834:p 9820:p 9810:= 9807:) 9804:R 9801:( 9780:. 9766:0 9763:= 9760:M 9748:M 9734:M 9731:= 9728:M 9725:J 9695:M 9689:L 9683:M 9680:J 9677:= 9674:M 9652:0 9649:= 9646:) 9643:L 9639:/ 9635:M 9632:( 9626:J 9604:M 9598:L 9582:M 9566:M 9563:= 9560:M 9557:J 9545:M 9524:y 9521:x 9515:1 9491:x 9488:y 9482:1 9459:. 9456:} 9453:R 9447:y 9438:x 9435:y 9429:1 9423:R 9417:x 9414:{ 9411:= 9408:J 9381:m 9375:/ 9371:R 9359:R 9343:m 9319:m 9297:) 9294:M 9291:( 9265:M 9259:) 9256:x 9253:( 9243:/ 9239:R 9236:= 9233:) 9230:M 9227:( 9217:/ 9213:R 9193:M 9190:= 9187:x 9184:R 9174:M 9170:x 9156:M 9133:. 9128:m 9114:m 9104:= 9101:J 9088:R 9074:) 9071:R 9068:( 9059:= 9056:J 9041:R 9035:R 9027:R 8979:c 8972:a 8964:) 8959:2 8955:z 8951:+ 8948:z 8945:x 8942:, 8939:w 8936:( 8933:= 8928:c 8918:a 8894:b 8887:a 8882:= 8877:b 8867:a 8844:) 8839:2 8835:w 8831:, 8828:w 8825:z 8822:+ 8819:w 8816:x 8813:, 8810:w 8807:z 8804:, 8799:2 8795:z 8791:+ 8788:z 8785:x 8782:( 8779:= 8774:c 8767:a 8744:) 8739:2 8735:w 8731:+ 8728:y 8725:w 8722:, 8719:z 8716:w 8713:+ 8710:x 8707:w 8704:, 8701:z 8698:w 8695:+ 8692:y 8689:z 8686:, 8683:z 8680:x 8677:+ 8672:2 8668:z 8664:( 8661:= 8658:) 8655:) 8652:w 8649:+ 8646:y 8643:( 8640:w 8637:, 8634:) 8631:z 8628:+ 8625:x 8622:( 8619:w 8616:, 8613:) 8610:w 8607:+ 8604:y 8601:( 8598:z 8595:, 8592:) 8589:z 8586:+ 8583:x 8580:( 8577:z 8574:( 8571:= 8566:b 8559:a 8536:) 8533:x 8530:, 8527:w 8524:, 8521:z 8518:( 8515:= 8510:c 8505:+ 8500:a 8478:) 8475:w 8472:, 8469:z 8466:, 8463:y 8460:, 8457:x 8454:( 8451:= 8448:) 8445:w 8442:+ 8439:y 8436:, 8433:z 8430:+ 8427:x 8424:, 8421:w 8418:, 8415:z 8412:( 8409:= 8404:b 8399:+ 8394:a 8367:) 8364:w 8361:, 8358:z 8355:+ 8352:x 8349:( 8346:= 8341:c 8336:, 8333:) 8330:w 8327:+ 8324:y 8321:, 8318:z 8315:+ 8312:x 8309:( 8306:= 8301:b 8296:, 8293:) 8290:w 8287:, 8284:z 8281:( 8278:= 8273:a 8249:] 8246:w 8243:, 8240:z 8237:, 8234:y 8231:, 8228:x 8225:[ 8221:C 8217:= 8214:R 8189:m 8167:n 8147:) 8144:m 8141:( 8135:) 8132:n 8129:( 8105:Z 8101:) 8098:m 8095:, 8092:n 8089:( 8080:= 8077:) 8074:m 8071:( 8065:) 8062:n 8059:( 8035:Z 7998:c 7991:b 7986:= 7980:a 7953:c 7929:b 7919:a 7886:b 7879:a 7873:/ 7869:) 7864:b 7854:a 7849:( 7846:= 7843:) 7838:b 7832:/ 7828:R 7825:, 7820:a 7814:/ 7810:R 7807:( 7799:R 7794:1 7771:. 7755:b 7725:a 7702:) 7699:1 7696:( 7693:= 7688:b 7683:+ 7678:a 7651:b 7644:a 7639:= 7634:b 7624:a 7612:R 7596:b 7591:, 7586:a 7538:c 7514:b 7490:a 7463:c 7453:a 7448:+ 7443:b 7433:a 7425:) 7420:c 7415:+ 7410:b 7405:( 7397:a 7380:. 7364:c 7357:b 7352:+ 7347:c 7340:a 7335:= 7330:c 7325:) 7320:b 7315:+ 7310:a 7305:( 7293:, 7277:c 7270:a 7265:+ 7260:b 7253:a 7248:= 7245:) 7240:c 7235:+ 7230:b 7225:( 7220:a 7189:c 7184:, 7179:b 7174:, 7169:a 7138:b 7112:a 7088:b 7081:a 7055:b 7045:a 7019:b 6995:a 6971:b 6966:+ 6961:a 6932:b 6918:b 6902:a 6890:a 6869:, 6866:} 6860:, 6857:2 6854:, 6851:1 6848:= 6845:n 6835:; 6832:n 6829:, 6823:, 6820:2 6817:, 6814:1 6811:= 6808:i 6805:, 6800:b 6790:i 6786:b 6773:a 6763:i 6759:a 6750:n 6746:b 6740:n 6736:a 6732:+ 6726:+ 6721:1 6717:b 6711:1 6707:a 6703:{ 6695:b 6688:a 6661:b 6656:, 6651:a 6637:, 6625:} 6620:b 6612:b 6600:a 6592:a 6586:b 6583:+ 6580:a 6577:{ 6569:b 6564:+ 6559:a 6544:R 6526:b 6500:a 6478:R 6465:B 6461:A 6456:R 6443:B 6439:A 6429:. 6427:R 6423:R 6419:K 6415:R 6411:K 6404:R 6389:. 6379:I 6377:/ 6375:R 6371:I 6369:/ 6367:R 6363:P 6356:I 6338:R 6328:I 6318:. 6300:) 6297:I 6293:/ 6289:R 6286:( 6270:= 6267:) 6264:I 6261:( 6220:R 6210:I 6200:. 6164:. 6150:J 6144:y 6122:I 6116:x 6096:1 6093:= 6090:y 6087:+ 6084:x 6070:J 6066:I 6050:. 6006:n 5999:I 5995:b 5991:a 5987:I 5979:R 5975:b 5971:a 5963:I 5943:I 5939:a 5935:n 5931:I 5927:a 5923:R 5919:a 5907:I 5871:I 5849:b 5829:a 5807:I 5785:b 5782:a 5760:R 5738:b 5718:a 5694:I 5666:1 5652:. 5640:} 5637:0 5634:{ 5602:J 5598:I 5594:J 5586:I 5557:. 5543:R 5521:I 5499:} 5496:0 5490:x 5487:: 5484:R 5478:x 5475:{ 5472:= 5469:I 5445:R 5401:R 5357:I 5351:y 5345:x 5323:y 5317:x 5295:R 5273:I 5258:. 5244:) 5239:n 5235:x 5231:, 5225:, 5220:1 5216:x 5212:( 5190:R 5187:X 5184:R 5164:} 5159:n 5155:x 5151:, 5145:, 5140:1 5136:x 5132:{ 5129:= 5126:X 5104:) 5101:x 5098:( 5076:R 5073:x 5070:R 5048:R 5045:x 5042:R 5039:, 5036:R 5033:x 5011:x 5008:R 4998:x 4994:x 4973:. 4970:} 4967:X 4959:i 4955:x 4951:, 4948:R 4940:i 4936:s 4932:, 4929:R 4921:i 4917:r 4913:, 4909:N 4902:n 4894:n 4890:s 4884:n 4880:x 4874:n 4870:r 4866:+ 4860:+ 4855:1 4851:s 4845:1 4841:x 4835:1 4831:r 4827:{ 4824:= 4821:R 4818:X 4815:R 4803:X 4799:X 4779:. 4776:} 4773:X 4765:i 4761:x 4757:, 4754:R 4746:i 4742:r 4738:, 4734:N 4727:n 4719:n 4715:x 4709:n 4705:r 4701:+ 4695:+ 4690:1 4686:x 4680:1 4676:r 4672:{ 4669:= 4666:X 4663:R 4651:R 4647:X 4641:R 4625:X 4622:R 4612:X 4596:X 4593:R 4581:X 4577:X 4573:R 4569:X 4546:} 4543:1 4540:{ 4537:= 4534:E 4512:) 4509:0 4506:( 4503:= 4498:0 4492:a 4469:0 4463:R 4453:R 4449:E 4433:0 4427:a 4414:E 4400:R 4392:0 4386:a 4363:R 4357:E 4340:R 4336:R 4319:i 4313:a 4305:S 4299:i 4271:j 4265:i 4241:j 4235:a 4224:i 4218:a 4195:S 4185:R 4164:S 4158:i 4155:, 4150:i 4144:a 4112:) 4107:b 4102:: 4097:a 4092:( 4068:b 4044:a 4028:R 4012:a 4006:/ 4002:) 3997:a 3992:+ 3987:b 3982:( 3972:R 3968:R 3952:b 3947:, 3942:a 3930:S 3916:} 3913:S 3907:s 3904:, 3901:0 3898:= 3895:s 3892:r 3886:R 3880:r 3877:{ 3874:= 3871:) 3868:S 3865:( 3857:R 3829:M 3823:S 3813:R 3809:M 3786:) 3783:J 3780:( 3775:1 3768:f 3761:J 3739:) 3736:I 3733:( 3730:f 3724:I 3704:S 3684:f 3664:R 3642:S 3636:R 3633:: 3630:f 3608:S 3594:) 3591:I 3588:( 3585:f 3575:f 3571:S 3557:) 3554:R 3551:( 3548:f 3528:) 3525:I 3522:( 3519:f 3509:R 3505:I 3491:) 3488:I 3485:( 3480:1 3473:f 3462:S 3458:I 3444:) 3441:f 3438:( 3408:S 3404:0 3395:S 3391:1 3368:S 3344:S 3340:1 3336:= 3333:) 3328:R 3324:1 3320:( 3317:f 3293:R 3271:) 3266:S 3262:0 3258:( 3253:1 3246:f 3242:= 3239:) 3236:f 3233:( 3203:S 3197:R 3194:: 3191:f 3162:) 3159:1 3156:( 3153:, 3150:) 3147:0 3144:( 3127:. 3113:L 3107:| 3104:x 3101:| 3079:0 3076:= 3073:) 3070:x 3067:( 3064:f 3044:0 3038:L 3018:f 2998:) 2994:R 2990:( 2987:C 2965:0 2962:= 2959:) 2956:1 2953:( 2950:f 2928:f 2903:R 2881:R 2860:f 2837:) 2833:R 2829:( 2826:C 2799:j 2779:n 2773:n 2751:n 2745:j 2739:1 2715:R 2693:n 2687:n 2667:) 2664:R 2661:( 2656:n 2652:M 2631:i 2611:R 2588:n 2582:n 2560:n 2554:i 2548:1 2524:n 2502:R 2491:. 2477:] 2474:x 2471:[ 2467:R 2444:1 2441:+ 2436:2 2432:x 2416:. 2399:Z 2373:Z 2349:Z 2345:n 2323:n 2300:Z 2296:2 2273:Z 2245:x 2242:= 2239:x 2236:) 2233:y 2230:z 2227:( 2224:= 2221:) 2218:x 2215:y 2212:( 2209:z 2206:= 2203:z 2183:z 2163:1 2160:= 2157:y 2154:z 2132:y 2110:1 2107:= 2104:x 2101:y 2081:) 2078:1 2075:( 2072:= 2069:x 2066:R 2046:x 2043:R 2023:x 2003:) 2000:1 1997:( 1994:, 1991:) 1988:0 1985:( 1975:R 1961:) 1958:1 1955:( 1952:, 1949:) 1946:0 1943:( 1929:R 1913:R 1907:r 1883:a 1875:u 1872:) 1867:1 1860:u 1856:r 1853:( 1850:= 1847:r 1825:a 1817:u 1795:a 1760:) 1757:0 1754:( 1737:R 1722:} 1717:R 1713:0 1709:{ 1685:R 1681:1 1658:) 1655:1 1652:( 1638:R 1634:R 1630:R 1593:R 1590:= 1587:I 1567:; 1564:I 1558:1 1555:r 1552:= 1549:r 1529:R 1523:r 1513:I 1509:R 1505:I 1491:I 1485:x 1465:R 1459:r 1449:I 1435:x 1432:r 1422:I 1415:R 1385:R 1368:I 1364:/ 1360:R 1354:R 1331:I 1327:/ 1323:R 1313:I 1298:I 1294:R 1274:I 1270:/ 1266:R 1252:R 1231:I 1225:y 1219:x 1196:y 1190:x 1180:I 1146:I 1140:r 1137:x 1115:I 1109:x 1106:r 1085:R 1075:. 1061:I 1039:x 1036:r 1014:I 1008:x 986:R 980:r 969:, 955:) 952:+ 949:, 946:R 943:( 917:) 914:+ 911:, 908:I 905:( 882:I 860:R 838:R 820:R 816:I 808:R 643:e 636:t 629:v 526:) 517:p 513:( 509:Z 497:p 477:p 472:Q 459:p 440:p 435:Z 422:p 408:n 233:Z 229:1 225:/ 220:Z 216:= 213:0 187:Z 20:)

Index

Proper ideal
Algebraic structure
Ring theory
Rings
Subrings
Ideal
Quotient ring
Fractional ideal
Total ring of fractions
Product of rings
Free product of associative algebras
Tensor product of algebras
Ring homomorphisms
Kernel
Inner automorphism
Frobenius endomorphism
Algebraic structures
Module
Associative algebra
Graded ring
Involutive ring
Category of rings
Initial ring
Terminal ring
Field
Finite field
Non-associative ring
Lie ring
Jordan ring
Semiring

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑