Knowledge

Prefix order

Source 📝

334:
Every history preserving function and every future preserving function is also order preserving, but not vice versa. In the theory of dynamical systems, history preserving maps capture the intuition that the behavior in one system is a
1214: 1197: 32:
by introducing the possibility of continuous progress and continuous branching. Natural prefix orders often occur when considering
727: 563: 532: 1044: 406:
the Cartesian product of the two orders since the Cartesian product is not always a prefix order. Instead, it leads to an
1180: 1039: 1257: 1034: 670: 752: 1071: 991: 856: 785: 665: 759: 747: 710: 685: 660: 614: 583: 1247: 1056: 690: 680: 556: 1029: 695: 434:
we find that this set is prefix ordered by the subset relation ⊆, and furthermore, that the function
188: 461: 961: 588: 1209: 1192: 1121: 737: 87: 1252: 1099: 934: 925: 794: 675: 629: 593: 549: 513:
Ferlez, James; Cleaveland, Rance; Marcus, Steve (2014). "Generalized Synchronization Trees".
1187: 1146: 1136: 1126: 871: 834: 824: 804: 789: 469:
Proceedings of the 9th International Workshop on Developments in Computational Models (DCM)
339:
of the behavior in another. Furthermore, functions that are history and future preserving
8: 1114: 1025: 971: 930: 920: 809: 742: 705: 355: 340: 91: 41: 1226: 1153: 1006: 915: 905: 846: 764: 700: 489: 95: 1066: 1163: 1141: 1001: 986: 966: 769: 528: 423: 80: 33: 29: 976: 829: 518: 499: 1158: 941: 819: 814: 799: 715: 624: 609: 523: 399: 76: 1076: 1061: 1051: 910: 888: 866: 411: 1241: 1175: 1131: 1109: 981: 851: 839: 644: 359: 996: 861: 779: 619: 572: 344: 191:, the most important type of functions between prefix orders are so-called 21: 1202: 895: 774: 639: 45: 17: 504: 477: 1170: 1104: 945: 517:. Lecture Notes in Computer Science. Vol. 8412. pp. 304–319. 1221: 1094: 900: 410:
of the original prefix orders. The union of two prefix orders is the
60: 1016: 883: 634: 347:
between systems, and thus the intuition that a given refinement is
48:. In this case, the elements of the set are usually referred to as 494: 59:
stems from the prefix order on words, which is a special kind of
541: 515:
Foundations of Software Science and Computation Structures
478:"The Categorical Limit of a Sequence of Dynamical Systems" 63:
relation and, because of its discrete character, a tree.
512: 402:
of prefix orders leads to a notion of product that is
446:
the maximum element in terms of the order on P (i.e.
187:
While between partial orders it is usual to consider
182: 426:. Furthermore, if for a given prefix ordered set 1239: 422:Any bijective history preserving function is an 462:"Prefix Orders as a General Model of Dynamics" 557: 358:of a history preserving function is always a 211:is the (by definition totally ordered) set 1215:Positive cone of a partially ordered group 564: 550: 522: 503: 493: 1198:Positive cone of an ordered vector space 475: 459: 482:EPTCS 120: Proceedings EXPRESS/SOS 2013 28:generalizes the intuitive concept of a 1240: 195:functions. Given a prefix ordered set 545: 389: 66: 13: 725:Properties & Types ( 394:Taking history preserving maps as 14: 1269: 1181:Positive cone of an ordered field 351:with respect to a specification. 1035:Ordered topological vector space 571: 414:, as it is with partial orders. 307:is future preserving if for all 183:Functions between prefix orders 417: 1: 992:Series-parallel partial order 453: 671:Cantor's isomorphism theorem 524:10.1007/978-3-642-54830-7_20 287:is the (prefix ordered) set 7: 711:Szpilrajn extension theorem 686:Hausdorff maximal principle 661:Boolean prime ideal theorem 36:as a set of functions from 10: 1274: 1057:Topological vector lattice 189:order-preserving functions 1087: 1015: 954: 724: 653: 602: 579: 476:Cuijpers, Pieter (2013). 460:Cuijpers, Pieter (2013). 438:is an isomorphism, where 251:if and only if for every 666:Cantor–Bernstein theorem 1258:Trees (data structures) 1210:Partially ordered group 1030:Specialization preorder 362:subset, where a subset 275:)−. Similarly, a 696:Kruskal's tree theorem 691:Knaster–Tarski theorem 681:Dushnik–Miller theorem 408:arbitrary interleaving 343:capture the notion of 239:between prefix orders 442:returns for each set 430:we construct the set 1188:Ordered vector space 178:(downward totality). 1026:Alexandrov topology 972:Lexicographic order 931:Well-quasi-ordering 505:10.4204/EPTCS.120.7 42:totally-ordered set 1007:Transitive closure 967:Converse/Transpose 676:Dilworth's theorem 249:history preserving 193:history preserving 26:prefix ordered set 1248:Dynamical systems 1235: 1234: 1193:Partially ordered 1002:Symmetric closure 987:Reflexive closure 730: 534:978-3-642-54829-1 471:. pp. 25–29. 432:P- ≜ { p- | p∈ P} 424:order isomorphism 390:Product and union 67:Formal definition 34:dynamical systems 1265: 977:Linear extension 726: 706:Mirsky's theorem 566: 559: 552: 543: 542: 538: 526: 509: 507: 497: 472: 466: 118:, we have that: 102:, i.e., for all 1273: 1272: 1268: 1267: 1266: 1264: 1263: 1262: 1238: 1237: 1236: 1231: 1227:Young's lattice 1083: 1011: 950: 800:Heyting algebra 748:Boolean algebra 720: 701:Laver's theorem 649: 615:Boolean algebra 610:Binary relation 598: 575: 570: 535: 464: 456: 420: 392: 185: 159:(transitivity); 144:(antisymmetry); 77:binary relation 69: 52:of the system. 12: 11: 5: 1271: 1261: 1260: 1255: 1250: 1233: 1232: 1230: 1229: 1224: 1219: 1218: 1217: 1207: 1206: 1205: 1200: 1195: 1185: 1184: 1183: 1173: 1168: 1167: 1166: 1161: 1154:Order morphism 1151: 1150: 1149: 1139: 1134: 1129: 1124: 1119: 1118: 1117: 1107: 1102: 1097: 1091: 1089: 1085: 1084: 1082: 1081: 1080: 1079: 1074: 1072:Locally convex 1069: 1064: 1054: 1052:Order topology 1049: 1048: 1047: 1045:Order topology 1042: 1032: 1022: 1020: 1013: 1012: 1010: 1009: 1004: 999: 994: 989: 984: 979: 974: 969: 964: 958: 956: 952: 951: 949: 948: 938: 928: 923: 918: 913: 908: 903: 898: 893: 892: 891: 881: 876: 875: 874: 869: 864: 859: 857:Chain-complete 849: 844: 843: 842: 837: 832: 827: 822: 812: 807: 802: 797: 792: 782: 777: 772: 767: 762: 757: 756: 755: 745: 740: 734: 732: 722: 721: 719: 718: 713: 708: 703: 698: 693: 688: 683: 678: 673: 668: 663: 657: 655: 651: 650: 648: 647: 642: 637: 632: 627: 622: 617: 612: 606: 604: 600: 599: 597: 596: 591: 586: 580: 577: 576: 569: 568: 561: 554: 546: 540: 539: 533: 510: 473: 455: 452: 419: 416: 412:disjoint union 391: 388: 227:}. A function 184: 181: 180: 179: 160: 145: 126: 125:(reflexivity); 100:downward total 68: 65: 9: 6: 4: 3: 2: 1270: 1259: 1256: 1254: 1251: 1249: 1246: 1245: 1243: 1228: 1225: 1223: 1220: 1216: 1213: 1212: 1211: 1208: 1204: 1201: 1199: 1196: 1194: 1191: 1190: 1189: 1186: 1182: 1179: 1178: 1177: 1176:Ordered field 1174: 1172: 1169: 1165: 1162: 1160: 1157: 1156: 1155: 1152: 1148: 1145: 1144: 1143: 1140: 1138: 1135: 1133: 1132:Hasse diagram 1130: 1128: 1125: 1123: 1120: 1116: 1113: 1112: 1111: 1110:Comparability 1108: 1106: 1103: 1101: 1098: 1096: 1093: 1092: 1090: 1086: 1078: 1075: 1073: 1070: 1068: 1065: 1063: 1060: 1059: 1058: 1055: 1053: 1050: 1046: 1043: 1041: 1038: 1037: 1036: 1033: 1031: 1027: 1024: 1023: 1021: 1018: 1014: 1008: 1005: 1003: 1000: 998: 995: 993: 990: 988: 985: 983: 982:Product order 980: 978: 975: 973: 970: 968: 965: 963: 960: 959: 957: 955:Constructions 953: 947: 943: 939: 936: 932: 929: 927: 924: 922: 919: 917: 914: 912: 909: 907: 904: 902: 899: 897: 894: 890: 887: 886: 885: 882: 880: 877: 873: 870: 868: 865: 863: 860: 858: 855: 854: 853: 852:Partial order 850: 848: 845: 841: 840:Join and meet 838: 836: 833: 831: 828: 826: 823: 821: 818: 817: 816: 813: 811: 808: 806: 803: 801: 798: 796: 793: 791: 787: 783: 781: 778: 776: 773: 771: 768: 766: 763: 761: 758: 754: 751: 750: 749: 746: 744: 741: 739: 738:Antisymmetric 736: 735: 733: 729: 723: 717: 714: 712: 709: 707: 704: 702: 699: 697: 694: 692: 689: 687: 684: 682: 679: 677: 674: 672: 669: 667: 664: 662: 659: 658: 656: 652: 646: 645:Weak ordering 643: 641: 638: 636: 633: 631: 630:Partial order 628: 626: 623: 621: 618: 616: 613: 611: 608: 607: 605: 601: 595: 592: 590: 587: 585: 582: 581: 578: 574: 567: 562: 560: 555: 553: 548: 547: 544: 536: 530: 525: 520: 516: 511: 506: 501: 496: 491: 487: 483: 479: 474: 470: 463: 458: 457: 451: 449: 445: 441: 437: 433: 429: 425: 415: 413: 409: 405: 401: 397: 387: 385: 381: 377: 373: 369: 368:prefix closed 365: 361: 360:prefix closed 357: 352: 350: 346: 342: 338: 332: 330: 326: 322: 318: 314: 310: 306: 302: 298: 294: 290: 286: 282: 278: 274: 270: 266: 262: 258: 254: 250: 246: 242: 238: 234: 230: 226: 222: 218: 214: 210: 206: 202: 198: 194: 190: 177: 173: 169: 165: 161: 158: 154: 150: 146: 143: 139: 135: 131: 127: 124: 121: 120: 119: 117: 113: 109: 105: 101: 97: 93: 89: 88:antisymmetric 85: 82: 78: 74: 64: 62: 58: 53: 51: 47: 43: 39: 35: 31: 27: 23: 20:, especially 19: 1253:Order theory 1019:& Orders 997:Star product 926:Well-founded 879:Prefix order 878: 835:Distributive 825:Complemented 795:Foundational 760:Completeness 716:Zorn's lemma 620:Cyclic order 603:Key concepts 573:Order theory 514: 485: 481: 468: 447: 443: 439: 435: 431: 427: 421: 407: 403: 395: 393: 383: 379: 375: 371: 367: 363: 353: 348: 345:bisimulation 336: 333: 328: 324: 320: 316: 312: 308: 304: 300: 296: 292: 288: 284: 280: 276: 272: 268: 264: 260: 256: 252: 248: 244: 240: 236: 232: 228: 224: 220: 216: 212: 208: 204: 200: 196: 192: 186: 175: 171: 167: 163: 156: 152: 148: 141: 137: 133: 129: 122: 115: 111: 107: 103: 99: 83: 79:"≤" over a 73:prefix order 72: 70: 57:prefix order 56: 54: 49: 37: 25: 22:order theory 15: 1203:Riesz space 1164:Isomorphism 1040:Normal cone 962:Composition 896:Semilattice 805:Homogeneous 790:Equivalence 640:Total order 448:max(p-) ≜ p 436:max: P- → P 418:Isomorphism 370:if for all 341:surjections 279:of a point 267:−) = 215:− = { 203:of a point 46:phase space 18:mathematics 1242:Categories 1171:Order type 1105:Cofinality 946:Well-order 921:Transitive 810:Idempotent 743:Asymmetric 454:References 337:refinement 92:transitive 50:executions 44:) to some 1222:Upper set 1159:Embedding 1095:Antichain 916:Tolerance 906:Symmetric 901:Semiorder 847:Reflexive 765:Connected 495:1307.7445 488:: 78–92. 396:morphisms 96:reflexive 86:which is 61:substring 55:The name 1017:Topology 884:Preorder 867:Eulerian 830:Complete 780:Directed 770:Covering 635:Preorder 594:Category 589:Glossary 400:category 382:we find 315:we find 259:we find 247:is then 1122:Duality 1100:Cofinal 1088:Related 1067:Fréchet 944:)  820:Bounded 815:Lattice 788:)  786:Partial 654:Results 625:Lattice 398:in the 372:s,t ∈ P 349:correct 201:history 1147:Subnet 1127:Filter 1077:Normed 1062:Banach 1028:& 935:Better 872:Strict 862:Graded 753:topics 584:Topics 531:  440:max(S) 303:} and 277:future 110:, and 98:, and 1137:Ideal 1115:Graph 911:Total 889:Total 775:Dense 490:arXiv 465:(PDF) 374:with 364:S ⊆ P 356:range 323:+) = 291:+ = { 176:b ≤ a 172:a ≤ b 170:then 168:b ≤ c 164:a ≤ c 157:a ≤ c 155:then 153:b ≤ c 149:a ≤ b 136:then 134:b ≤ a 130:a ≤ b 123:a ≤ a 75:is a 728:list 529:ISBN 444:S∈P- 378:and 354:The 331:)+. 243:and 199:, a 166:and 151:and 132:and 38:time 30:tree 24:, a 1142:Net 942:Pre 519:doi 500:doi 486:120 450:). 404:not 384:s∈S 380:s≤t 376:t∈S 366:is 174:or 162:if 147:if 128:if 114:in 81:set 40:(a 16:In 1244:: 527:. 498:. 484:. 480:. 467:. 386:. 299:≤ 295:| 235:→ 231:: 223:≤ 219:| 140:= 106:, 94:, 90:, 71:A 940:( 937:) 933:( 784:( 731:) 565:e 558:t 551:v 537:. 521:: 508:. 502:: 492:: 428:P 329:p 327:( 325:f 321:p 319:( 317:f 313:P 311:∈ 309:p 305:f 301:q 297:p 293:q 289:p 285:P 283:∈ 281:p 273:p 271:( 269:f 265:p 263:( 261:f 257:P 255:∈ 253:p 245:Q 241:P 237:Q 233:P 229:f 225:p 221:q 217:q 213:p 209:P 207:∈ 205:p 197:P 142:b 138:a 116:P 112:c 108:b 104:a 84:P

Index

mathematics
order theory
tree
dynamical systems
totally-ordered set
phase space
substring
binary relation
set
antisymmetric
transitive
reflexive
order-preserving functions
surjections
bisimulation
range
prefix closed
category
disjoint union
order isomorphism
"Prefix Orders as a General Model of Dynamics"
"The Categorical Limit of a Sequence of Dynamical Systems"
arXiv
1307.7445
doi
10.4204/EPTCS.120.7
doi
10.1007/978-3-642-54830-7_20
ISBN
978-3-642-54829-1

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.