Knowledge

Poincaré–Hopf theorem

Source 📝

85: 1052:
It is still possible to define the index for a vector field with nonisolated zeroes. A construction of this index and the extension of Poincaré–Hopf theorem for vector fields with nonisolated zeroes is outlined in Section 1.1.2 of
799: 983:. Extend the vector field to this neighborhood so that it still has the same zeroes and the zeroes have the same indices. In addition, make sure that the extended vector field at the boundary of 924:
without boundary, this amounts to saying that the integral is 0. But by examining vector fields in a sufficiently small neighborhood of a source or sink, we see that sources and sinks contribute
480: 426: 904:. Thus, this theorem establishes a deep link between two seemingly unrelated areas of mathematics. It is perhaps as interesting that the proof of this theorem relies heavily on 603: 1016:. Technique: cut away all zeroes of the vector field with small neighborhoods. Then use the fact that the degree of a map from the boundary of an n-dimensional manifold to an 851: 88:
According to the Poincare-Hopf theorem, closed trajectories can encircle two centres and one saddle or one centre, but never just the saddle. (Here for in case of a
536: 1066: 875: 822: 724: 700: 680: 656: 629: 504: 387: 367: 343: 323: 303: 283: 263: 243: 219: 199: 179: 159: 139: 119: 928:
amounts (known as the index) to the total, and they must all sum to 0. This result may be considered one of the earliest of a whole series of theorems (e.g.
17: 732: 1158: 937: 429: 1139: 435: 392: 1012:
sphere. Thus, the sum of the indices is independent of the actual vector field, and depends only on the manifold
929: 877:. A particularly useful corollary is when there is a non-vanishing vector field implying Euler characteristic 0. 1163: 1122: 1112: 1117: 541: 966: 1036: 346: 993:
The sum of indices of the zeroes of the old (and new) vector field is equal to the degree of the
635: 945: 921: 901: 703: 827: 51: 933: 854: 509: 726:
be pointing in the outward normal direction along the boundary. Then we have the formula
8: 913: 483: 909: 860: 807: 709: 685: 665: 641: 614: 489: 372: 352: 328: 308: 288: 268: 248: 228: 204: 184: 164: 144: 124: 104: 89: 70: 27:
Counts 0s of a vector field on a differentiable manifold using its Euler characteristic
1135: 917: 222: 881: 55: 1043:
for which it is clear that the sum of indices is equal to the Euler characteristic.
920:
is equal to the integral of that form over the boundary. In the special case of a
1152: 1090:
Henri Poincaré, On curves defined by differential equations (1881–1882)
632: 1071: 659: 74: 1024:
sphere, that can be extended to the whole n-dimensional manifold, is zero.
952:
concepts. They play an important role in the modern study of both fields.
31: 1099:
H. Hopf, Vektorfelder in n-dimensionalen Mannigfaltigkeiten, Math. Ann.
885: 59: 1027:
Finally, identify this sum of indices as the Euler characteristic of
994: 794:{\displaystyle \sum _{i}\operatorname {index} _{x_{i}}(v)=\chi (M)\,} 941: 905: 897: 78: 949: 925: 804:
where the sum of the indices is over all the isolated zeroes of
84: 896:
The Euler characteristic of a closed surface is a purely
69:
theorem is often illustrated by the special case of the
1130:
Brasselet, Jean-Paul; Seade, José; Suwa, Tatsuo (2009).
1031:. To do that, construct a very specific vector field on 900:
concept, whereas the index of a vector field is purely
863: 830: 810: 735: 712: 688: 668: 644: 617: 544: 512: 492: 438: 395: 375: 355: 331: 311: 291: 271: 251: 231: 207: 187: 167: 147: 127: 107: 965:in some high-dimensional Euclidean space. (Use the 1129: 1054: 869: 845: 816: 793: 718: 694: 674: 650: 623: 597: 530: 498: 475:{\displaystyle u:\partial D\to \mathbb {S} ^{n-1}} 474: 420: 381: 361: 337: 317: 297: 277: 257: 237: 213: 193: 173: 153: 133: 113: 1150: 1067:Eisenbud–Levine–Khimshiashvili signature formula 884:and later generalized to higher dimensions by 73:, which simply states that there is no smooth 880:The theorem was proven for two dimensions by 421:{\displaystyle \operatorname {index} _{x}(v)} 592: 577: 121:be a differentiable manifold, of dimension 940:) establishing deep relationships between 50:) is an important theorem that is used in 790: 456: 912:, which states that the integral of the 83: 14: 1151: 1132:Vector fields on singular varieties 96: 24: 955: 598:{\displaystyle u(z)=v(z)/\|v(z)\|} 445: 25: 1175: 1159:Theorems in differential topology 1047: 938:Grothendieck–Riemann–Roch theorem 1055:Brasselet, Seade & Suwa 2009 891: 1093: 1084: 840: 834: 787: 781: 772: 766: 589: 583: 569: 563: 554: 548: 525: 513: 451: 415: 409: 13: 1: 1077: 972:Take a small neighborhood of 81:having no sources or sinks. 7: 1118:Encyclopedia of Mathematics 1060: 930:Atiyah–Singer index theorem 44:Poincaré–Hopf index theorem 40:Poincaré–Hopf index formula 18:Poincaré–Hopf index theorem 10: 1180: 1103:(1926), pp. 209–221. 976:in that Euclidean space, 967:Whitney embedding theorem 682:with isolated zeroes. If 1134:. Heidelberg: Springer. 846:{\displaystyle \chi (M)} 428:, can be defined as the 1113:"Poincaré–Hopf theorem" 636:differentiable manifold 201:is an isolated zero of 77:on an even-dimensional 908:, and, in particular, 871: 847: 818: 795: 720: 706:, then we insist that 696: 676: 652: 625: 599: 532: 500: 476: 422: 383: 363: 339: 319: 299: 279: 259: 239: 215: 195: 175: 155: 135: 115: 93: 1164:Differential topology 997:from the boundary of 990:is directed outwards. 872: 848: 819: 796: 721: 697: 677: 653: 626: 600: 533: 531:{\displaystyle (n-1)} 501: 477: 423: 384: 364: 340: 320: 300: 280: 260: 245:. Pick a closed ball 240: 216: 196: 176: 156: 136: 116: 87: 52:differential topology 36:Poincaré–Hopf theorem 861: 855:Euler characteristic 828: 808: 733: 710: 686: 666: 642: 615: 542: 510: 490: 436: 393: 373: 353: 329: 309: 305:is the only zero of 289: 269: 249: 229: 205: 185: 165: 145: 125: 105: 54:. It is named after 914:exterior derivative 38:(also known as the 867: 843: 814: 791: 745: 716: 692: 672: 648: 621: 595: 538:-sphere given by 528: 496: 472: 418: 379: 359: 335: 315: 295: 275: 255: 235: 211: 191: 171: 161:a vector field on 151: 131: 111: 94: 90:Hamiltonian system 71:hairy ball theorem 48:Hopf index theorem 1141:978-3-642-05205-7 934:De Rham's theorem 918:differential form 870:{\displaystyle M} 817:{\displaystyle v} 736: 719:{\displaystyle v} 695:{\displaystyle M} 675:{\displaystyle M} 651:{\displaystyle v} 624:{\displaystyle M} 499:{\displaystyle D} 382:{\displaystyle x} 362:{\displaystyle v} 338:{\displaystyle D} 318:{\displaystyle v} 298:{\displaystyle x} 278:{\displaystyle x} 258:{\displaystyle D} 238:{\displaystyle x} 223:local coordinates 214:{\displaystyle v} 194:{\displaystyle x} 174:{\displaystyle M} 154:{\displaystyle v} 134:{\displaystyle n} 114:{\displaystyle M} 16:(Redirected from 1171: 1145: 1126: 1104: 1097: 1091: 1088: 1023: 1011: 876: 874: 873: 868: 852: 850: 849: 844: 823: 821: 820: 815: 800: 798: 797: 792: 762: 761: 760: 759: 744: 725: 723: 722: 717: 701: 699: 698: 693: 681: 679: 678: 673: 657: 655: 654: 649: 630: 628: 627: 622: 604: 602: 601: 596: 576: 537: 535: 534: 529: 505: 503: 502: 497: 481: 479: 478: 473: 471: 470: 459: 427: 425: 424: 419: 405: 404: 388: 386: 385: 380: 368: 366: 365: 360: 344: 342: 341: 336: 324: 322: 321: 316: 304: 302: 301: 296: 284: 282: 281: 276: 264: 262: 261: 256: 244: 242: 241: 236: 220: 218: 217: 212: 200: 198: 197: 192: 180: 178: 177: 172: 160: 158: 157: 152: 140: 138: 137: 132: 120: 118: 117: 112: 97:Formal statement 21: 1179: 1178: 1174: 1173: 1172: 1170: 1169: 1168: 1149: 1148: 1142: 1111: 1108: 1107: 1098: 1094: 1089: 1085: 1080: 1063: 1050: 1022:–1)-dimensional 1017: 1010:–1)-dimensional 1005: 1003: 989: 982: 958: 956:Sketch of proof 910:Stokes' theorem 894: 862: 859: 858: 829: 826: 825: 809: 806: 805: 755: 751: 750: 746: 740: 734: 731: 730: 711: 708: 707: 687: 684: 683: 667: 664: 663: 643: 640: 639: 616: 613: 612: 572: 543: 540: 539: 511: 508: 507: 491: 488: 487: 460: 455: 454: 437: 434: 433: 400: 396: 394: 391: 390: 374: 371: 370: 354: 351: 350: 330: 327: 326: 310: 307: 306: 290: 287: 286: 270: 267: 266: 250: 247: 246: 230: 227: 226: 221:, and fix some 206: 203: 202: 186: 183: 182: 181:. Suppose that 166: 163: 162: 146: 143: 142: 126: 123: 122: 106: 103: 102: 99: 28: 23: 22: 15: 12: 11: 5: 1177: 1167: 1166: 1161: 1147: 1146: 1140: 1127: 1106: 1105: 1092: 1082: 1081: 1079: 1076: 1075: 1074: 1069: 1062: 1059: 1049: 1048:Generalization 1046: 1045: 1044: 1025: 1001: 991: 987: 980: 970: 957: 954: 893: 890: 882:Henri Poincaré 866: 842: 839: 836: 833: 813: 802: 801: 789: 786: 783: 780: 777: 774: 771: 768: 765: 758: 754: 749: 743: 739: 715: 691: 671: 647: 620: 594: 591: 588: 585: 582: 579: 575: 571: 568: 565: 562: 559: 556: 553: 550: 547: 527: 524: 521: 518: 515: 495: 469: 466: 463: 458: 453: 450: 447: 444: 441: 417: 414: 411: 408: 403: 399: 378: 358: 334: 314: 294: 274: 254: 234: 210: 190: 170: 150: 130: 110: 98: 95: 56:Henri Poincaré 26: 9: 6: 4: 3: 2: 1176: 1165: 1162: 1160: 1157: 1156: 1154: 1143: 1137: 1133: 1128: 1124: 1120: 1119: 1114: 1110: 1109: 1102: 1096: 1087: 1083: 1073: 1070: 1068: 1065: 1064: 1058: 1056: 1042: 1038: 1037:triangulation 1034: 1030: 1026: 1021: 1015: 1009: 1000: 996: 992: 986: 979: 975: 971: 968: 964: 960: 959: 953: 951: 947: 943: 939: 935: 931: 927: 923: 919: 915: 911: 907: 903: 899: 889: 887: 883: 878: 864: 856: 837: 831: 811: 784: 778: 775: 769: 763: 756: 752: 747: 741: 737: 729: 728: 727: 713: 705: 689: 669: 661: 645: 637: 634: 618: 610: 606: 586: 580: 573: 566: 560: 557: 551: 545: 522: 519: 516: 493: 485: 467: 464: 461: 448: 442: 439: 431: 412: 406: 401: 397: 376: 356: 348: 332: 312: 292: 272: 252: 232: 224: 208: 188: 168: 148: 128: 108: 91: 86: 82: 80: 76: 72: 68: 67:Poincaré–Hopf 63: 61: 57: 53: 49: 45: 41: 37: 33: 19: 1131: 1116: 1100: 1095: 1086: 1072:Hopf theorem 1051: 1040: 1032: 1028: 1019: 1013: 1007: 998: 984: 977: 973: 962: 895: 892:Significance 879: 803: 660:vector field 608: 607: 265:centered at 100: 75:vector field 66: 64: 47: 43: 39: 35: 29: 906:integration 898:topological 432:of the map 345:. Then the 32:mathematics 1153:Categories 1078:References 946:analytical 886:Heinz Hopf 285:, so that 60:Heinz Hopf 1123:EMS Press 995:Gauss map 942:geometric 832:χ 779:χ 764:⁡ 738:∑ 593:‖ 578:‖ 520:− 482:from the 465:− 452:→ 446:∂ 407:⁡ 1061:See also 1035:using a 950:physical 922:manifold 902:analytic 704:boundary 609:Theorem. 484:boundary 79:n-sphere 1125:, 2001 1004:to the 926:integer 853:is the 638:. Let 633:compact 506:to the 1138:  961:Embed 430:degree 141:, and 34:, the 916:of a 748:index 658:be a 631:be a 398:index 347:index 225:near 46:, or 1136:ISBN 944:and 824:and 702:has 611:Let 101:Let 65:The 58:and 1057:). 1039:of 948:or 857:of 662:on 486:of 369:at 349:of 325:in 30:In 1155:: 1121:, 1115:, 1101:96 969:.) 936:, 932:, 888:. 605:. 389:, 62:. 42:, 1144:. 1053:( 1041:M 1033:M 1029:M 1020:n 1018:( 1014:M 1008:n 1006:( 1002:ε 999:N 988:ε 985:N 981:ε 978:N 974:M 963:M 865:M 841:) 838:M 835:( 812:v 788:) 785:M 782:( 776:= 773:) 770:v 767:( 757:i 753:x 742:i 714:v 690:M 670:M 646:v 619:M 590:) 587:z 584:( 581:v 574:/ 570:) 567:z 564:( 561:v 558:= 555:) 552:z 549:( 546:u 526:) 523:1 517:n 514:( 494:D 468:1 462:n 457:S 449:D 443:: 440:u 416:) 413:v 410:( 402:x 377:x 357:v 333:D 313:v 293:x 273:x 253:D 233:x 209:v 189:x 169:M 149:v 129:n 109:M 92:) 20:)

Index

Poincaré–Hopf index theorem
mathematics
differential topology
Henri Poincaré
Heinz Hopf
hairy ball theorem
vector field
n-sphere

Hamiltonian system
local coordinates
index
degree
boundary
compact
differentiable manifold
vector field
boundary
Euler characteristic
Henri Poincaré
Heinz Hopf
topological
analytic
integration
Stokes' theorem
exterior derivative
differential form
manifold
integer
Atiyah–Singer index theorem

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.