Knowledge

Pitch space

Source πŸ“

32: 178:. 440 Hz is the standard frequency of 'concert A', which is the note 9 semitones above 'middle C'. Distance in this space corresponds to physical distance on keyboard instruments, orthographical distance in Western musical notation, and psychological distance as measured in psychological experiments and conceived by musicians. The system is flexible enough to include "microtones" not found on standard piano keyboards. For example, the pitch halfway between C (60) and C# (61) can be labeled 60.5. 20: 193:(1982) to model pitch relations using a helix. In these models, linear pitch space is wrapped around a cylinder so that all octave-related pitches lie along a single line. Care must be taken when interpreting these models, as it is not clear how to interpret "distance" in the three-dimensional space containing the helix; nor is it clear how to interpret points in the three-dimensional space not contained on the helix itself. 307: 293: 279: 708: 694: 1145: 233:. In these models, one dimension typically corresponds to acoustically pure perfect fifths while the other corresponds to major thirds. (Variations are possible in which one axis corresponds to acoustically pure minor thirds.) Additional dimensions can be used to represent additional intervals includingβ€”most typicallyβ€”the octave. 775:
The idea of pitch space goes back at least as far as the ancient Greek music theorists known as the Harmonists. To quote one of them, Bacchius: "And what is a diagram? A representation of a musical system. And we use a diagram so that, for students of the subject, matters which are hard to grasp with
766:
All these models attempt to capture the fact that intervals separated by acoustically pure intervals such as octaves, perfect fifths, and major thirds are thought to be perceptually closely related. But proximity in these spaces need not represent physical proximity on musical instruments: by moving
47:
model relationships between pitches. These models typically use distance to model the degree of relatedness, with closely related pitches placed near one another, and less closely related pitches farther apart. Depending on the complexity of the relationships under consideration, the models may be
767:
one's hands a very short distance on a violin string, one can move arbitrarily far in these multiple-dimensional models. For this reason, it is hard to assess the psychological relevance of distance as measured by these lattices.
174:
This creates a linear space in which octaves have size 12, semitones (the distance between adjacent keys on the piano keyboard) have size 1, and middle C is assigned the number 60, as it is in
169: 791:
of perfect fifths and another of major thirds. Similar models were the subject of intense investigation in the 19th century, chiefly by theorists such as Oettingen and
817:(1982) regularizes Drobish's helix, and extends it to a double helix of two wholetone scales over a circle of fifths which he calls the "melodic map" (Lerdahl, 2001). 780:). The Harmonists drew geometrical pictures so that the intervals of various scales could be compared visually; they thereby located the intervals in a pitch space. 181:
One problem with linear pitch space is that it does not model the special relationship between octave-related pitches, or pitches sharing the same
813:(i.e. the spiral of fifths) to represent octave equivalence and recurrence (Lerdahl, 2001), and hence to give a model of pitch space. 1069: 106: 1005: 983: 962: 947: 829:
are not 2:1 and thus there is even less octave equivalence than in western tonal music (Tenzer, 2000). See also
924:
Cohn, Richard. (1997). Neo Riemannian Operations, Parsimonious Trichords, and Their "Tonnetz" representations.
873: 222: 80:, though readers should be advised that the term "modulatory space" is not a standard music-theoretical term.) 53: 788: 1062: 1104: 931:
Franklin, John Curtis, (2002). Diatonic Music in Ancient Greece: A Reassessment of its Antiquity,
806: 186: 206: 1164: 1055: 210: 8: 868: 842: 57: 1124: 863: 225:(1978) have modeled pitch relationships using two-dimensional (or higher-dimensional) 1114: 1001: 979: 958: 943: 69: 68:-related pitches. When octave-related pitches are not distinguished, we have instead 1013: 955:
Harmonic Experience: Tonal Harmony from Its Natural Origins to Its Modern Expression
911: 1129: 1119: 1099: 1094: 830: 306: 292: 278: 218: 77: 1042: 1109: 1043:Über die mathematische Bestimmung der musikalischen Intervalle, von M.W. Drobisch 784: 707: 693: 226: 61: 31: 818: 783:
Higher-dimensional pitch spaces have also long been investigated. The use of a
202: 1158: 1089: 878: 826: 814: 190: 81: 800: 796: 792: 214: 40: 845:
based on pitch spaces. The only ones to have caught on so far are several
1027: 901: 888: 883: 182: 92:
The simplest pitch space model is the real line. A fundamental frequency
73: 24: 1037: 1032: 846: 49: 19: 64:, or geometrical figures such as helixes. Pitch spaces distinguish 776:
the hearing may appear before their eyes" (Bacchius, in Franklin,
1144: 1134: 858: 822: 230: 976:
Gamelan Gong Kebyar: The Art of Twentieth-Century Balinese Music
841:
Since the 19th century there have been many attempts to design
787:
was proposed by Euler (1739) to model just intonation using an
65: 1047: 810: 1014:
The Music of James Tenney, Volume 1: Contexts and Paradigms
912:
The Music of James Tenney, Volume 1: Contexts and Paradigms
175: 35:
The circle of fifths is another example of pitch space.
76:. (Some of these models are discussed in the entry on 109: 942:, pp. 42–43. Oxford: Oxford University Press. 196: 163: 164:{\displaystyle p=69+12\cdot \log _{2}{(f/440)}\,} 87: 1156: 1063: 915:(University of Illinois Press, 2021), 81-84. 795:(Cohn 1997). Contemporary theorists such as 1070: 1056: 770: 160: 978:. Chicago: University of Chicago Press. 72:, which represent relationships between 30: 18: 217:(not to be confused with mathematician 16:Model for relationships between pitches 1157: 1051: 1017:(University of Illinois Press, 2021). 27:space is an example of a pitch space. 970:John Cage and the Theory of Harmony. 836: 84:model relationships between chords. 13: 998:Introduction to Post Tonal Theory. 990: 809:(1846) was the first to suggest a 52:. Models of pitch space are often 14: 1176: 1021: 185:. This has led theorists such as 1143: 803:(1997) carry on this tradition. 778:Diatonic Music in Ancient Greece 706: 692: 305: 291: 277: 1077: 197:Higher-dimensional pitch spaces 874:Emancipation of the dissonance 821:suggests its use for Balinese 156: 142: 88:Linear and helical pitch space 1: 957:. Inner Traditions Intl Ltd. 894: 7: 852: 223:Christopher Longuet-Higgins 96:is mapped to a real number 10: 1181: 100:according to the equation 1141: 1105:Fokker periodicity blocks 1085: 909:" in Wannamaker, Robert, 201:Other theorists, such as 974:Tenzer, Michael (2000). 996:Straus, Joseph. (2004) 953:Mathieu, W. A. (1997). 935:, 56.1 (2002), 669-702. 926:Journal of Music Theory 807:Moritz Wilhelm Drobisch 187:Moritz Wilhelm Drobisch 968:Tenney, James (1983). 938:Lerdahl, Fred (2001). 771:History of pitch space 165: 36: 28: 207:Hermann von Helmholtz 166: 34: 22: 1028:Seven limit lattices 1011:Wannamaker, Robert. 843:isomorphic keyboards 229:, under the name of 211:Arthur von Oettingen 107: 1120:Pitch constellation 869:Diatonic set theory 1125:Spiral array model 864:Spiral array model 161: 70:pitch class spaces 37: 29: 1152: 1151: 1115:Pitch class space 940:Tonal Pitch Space 837:Instrument design 764: 763: 1172: 1147: 1130:Tonality diamond 1100:Circle of fifths 1095:Chromatic circle 1072: 1065: 1058: 1049: 1048: 917: 905: 831:chromatic circle 825:music since the 759: 758: 747: 746: 735: 734: 723: 722: 711: 710: 697: 696: 648: 647: 636: 635: 624: 623: 612: 611: 600: 599: 529: 528: 488: 487: 476: 475: 411: 410: 399: 398: 387: 386: 375: 374: 363: 362: 351: 350: 310: 309: 296: 295: 282: 281: 268: 267: 256: 255: 244: 243: 236: 235: 219:Bernhard Riemann 170: 168: 167: 162: 159: 152: 137: 136: 78:modulatory space 50:multidimensional 1180: 1179: 1175: 1174: 1173: 1171: 1170: 1169: 1155: 1154: 1153: 1148: 1139: 1110:Lattice (music) 1081: 1076: 1024: 1000:Prentice Hall. 993: 991:Further reading 921: 920: 906: 902: 897: 855: 839: 773: 756: 755: 744: 743: 732: 731: 720: 719: 705: 691: 645: 644: 633: 632: 621: 620: 609: 608: 597: 596: 526: 525: 485: 484: 473: 472: 408: 407: 396: 395: 384: 383: 372: 371: 360: 359: 348: 347: 304: 290: 276: 265: 264: 253: 252: 241: 240: 199: 148: 141: 132: 128: 108: 105: 104: 90: 17: 12: 11: 5: 1178: 1168: 1167: 1150: 1149: 1142: 1140: 1138: 1137: 1132: 1127: 1122: 1117: 1112: 1107: 1102: 1097: 1092: 1086: 1083: 1082: 1075: 1074: 1067: 1060: 1052: 1046: 1045: 1040: 1035: 1030: 1023: 1022:External links 1020: 1019: 1018: 1009: 992: 989: 988: 987: 972: 966: 951: 936: 929: 919: 918: 899: 898: 896: 893: 892: 891: 886: 881: 876: 871: 866: 861: 854: 851: 838: 835: 819:Michael Tenzer 772: 769: 762: 761: 752: 749: 740: 737: 728: 725: 716: 713: 702: 699: 687: 686: 683: 681: 678: 676: 673: 671: 668: 666: 663: 661: 657: 656: 653: 650: 641: 638: 629: 626: 617: 614: 605: 602: 592: 591: 588: 586: 583: 581: 578: 576: 573: 571: 568: 566: 562: 561: 558: 555: 552: 549: 546: 543: 540: 537: 534: 531: 521: 520: 517: 515: 512: 510: 507: 505: 502: 500: 497: 495: 491: 490: 481: 478: 469: 466: 463: 460: 457: 454: 451: 448: 444: 443: 440: 438: 435: 433: 430: 428: 425: 423: 420: 418: 414: 413: 404: 401: 392: 389: 380: 377: 368: 365: 356: 353: 343: 342: 339: 337: 334: 332: 329: 327: 324: 322: 319: 317: 313: 312: 301: 298: 287: 284: 273: 270: 261: 258: 249: 246: 203:Leonhard Euler 198: 195: 172: 171: 158: 155: 151: 147: 144: 140: 135: 131: 127: 124: 121: 118: 115: 112: 89: 86: 82:Chordal spaces 15: 9: 6: 4: 3: 2: 1177: 1166: 1163: 1162: 1160: 1146: 1136: 1133: 1131: 1128: 1126: 1123: 1121: 1118: 1116: 1113: 1111: 1108: 1106: 1103: 1101: 1098: 1096: 1093: 1091: 1090:Chordal space 1088: 1087: 1084: 1080: 1073: 1068: 1066: 1061: 1059: 1054: 1053: 1050: 1044: 1041: 1039: 1036: 1034: 1031: 1029: 1026: 1025: 1016: 1015: 1010: 1007: 1006:0-13-189890-6 1003: 999: 995: 994: 985: 984:0-226-79281-1 981: 977: 973: 971: 967: 964: 963:0-89281-560-4 960: 956: 952: 949: 948:0-19-505834-8 945: 941: 937: 934: 930: 928:, 41.1: 1-66. 927: 923: 922: 916: 914: 913: 904: 900: 890: 887: 885: 882: 880: 879:Unified field 877: 875: 872: 870: 867: 865: 862: 860: 857: 856: 850: 848: 844: 834: 832: 828: 824: 820: 816: 815:Roger Shepard 812: 808: 804: 802: 798: 794: 790: 786: 781: 779: 768: 753: 750: 741: 738: 729: 726: 717: 714: 709: 703: 700: 695: 689: 688: 684: 682: 679: 677: 674: 672: 669: 667: 664: 662: 659: 658: 654: 651: 642: 639: 630: 627: 618: 615: 606: 603: 594: 593: 589: 587: 584: 582: 579: 577: 574: 572: 569: 567: 564: 563: 559: 556: 553: 550: 547: 544: 541: 538: 535: 532: 523: 522: 518: 516: 513: 511: 508: 506: 503: 501: 498: 496: 493: 492: 482: 479: 470: 467: 464: 461: 458: 455: 452: 449: 446: 445: 441: 439: 436: 434: 431: 429: 426: 424: 421: 419: 416: 415: 405: 402: 393: 390: 381: 378: 369: 366: 357: 354: 345: 344: 340: 338: 335: 333: 330: 328: 325: 323: 320: 318: 315: 314: 308: 302: 299: 294: 288: 285: 280: 274: 271: 262: 259: 250: 247: 238: 237: 234: 232: 228: 224: 220: 216: 212: 209:(1863/1885), 208: 204: 194: 192: 191:Roger Shepard 188: 184: 179: 177: 153: 149: 145: 138: 133: 129: 125: 122: 119: 116: 113: 110: 103: 102: 101: 99: 95: 85: 83: 79: 75: 74:pitch classes 71: 67: 63: 59: 55: 51: 46: 42: 33: 26: 23:The circular 21: 1078: 1033:Tenney space 1012: 997: 975: 969: 954: 939: 932: 925: 910: 908: 903: 840: 805: 801:W.A. Mathieu 797:James Tenney 782: 777: 774: 765: 215:Hugo Riemann 200: 180: 173: 97: 93: 91: 45:pitch spaces 44: 41:music theory 38: 1165:Pitch space 1079:Pitch space 889:Color space 884:Vowel space 799:(1983) and 189:(1846) and 183:pitch class 25:pitch class 1038:Kees space 933:Memenosyne 895:References 849:layouts. 847:accordion 139:⁡ 126:⋅ 1159:Category 853:See also 757:♭ 745:♭ 733:♭ 721:♭ 646:♭ 634:♭ 622:♭ 610:♭ 598:♭ 527:♭ 486:♯ 474:♯ 409:♯ 397:♯ 385:♯ 373:♯ 361:♯ 349:♯ 266:♯ 254:♯ 242:♯ 227:lattices 213:(1866), 205:(1739), 62:lattices 1135:Tonnetz 859:Tonnetz 827:octaves 823:gamelan 793:Riemann 785:lattice 231:Tonnetz 221:), and 1004:  982:  961:  946:  66:octave 58:groups 54:graphs 811:helix 1002:ISBN 980:ISBN 959:ISBN 944:ISBN 789:axis 176:MIDI 655:F5 560:A5 554:D5 548:G4 542:C4 536:F3 465:B4 459:E4 453:A3 447:D3 154:440 130:log 39:In 1161:: 907:"' 833:. 760:5 751:β€” 748:4 739:β€” 736:4 727:β€” 724:3 715:β€” 712:2 701:β€” 698:2 685:| 680:| 675:| 670:| 665:| 660:| 652:β€” 649:4 640:β€” 637:4 628:β€” 625:3 616:β€” 613:3 604:β€” 601:2 590:| 585:| 580:| 575:| 570:| 565:| 557:β€” 551:β€” 545:β€” 539:β€” 533:β€” 530:2 519:| 514:| 509:| 504:| 499:| 494:| 489:6 480:β€” 477:5 468:β€” 462:β€” 456:β€” 450:β€” 442:| 437:| 432:| 427:| 422:| 417:| 412:6 403:β€” 400:5 391:β€” 388:5 379:β€” 376:4 367:β€” 364:4 355:β€” 352:3 341:| 336:| 331:| 326:| 321:| 316:| 311:6 300:β€” 297:6 286:β€” 283:5 272:β€” 269:4 260:β€” 257:4 248:β€” 245:3 123:12 117:69 60:, 56:, 43:, 1071:e 1064:t 1057:v 1008:. 986:. 965:. 950:. 754:D 742:G 730:C 718:F 704:B 690:E 643:B 631:E 619:A 607:D 595:G 524:B 483:C 471:F 406:E 394:A 382:D 370:G 358:C 346:F 303:G 289:C 275:F 263:B 251:E 239:A 157:) 150:/ 146:f 143:( 134:2 120:+ 114:= 111:p 98:p 94:f

Index


pitch class

music theory
multidimensional
graphs
groups
lattices
octave
pitch class spaces
pitch classes
modulatory space
Chordal spaces
MIDI
pitch class
Moritz Wilhelm Drobisch
Roger Shepard
Leonhard Euler
Hermann von Helmholtz
Arthur von Oettingen
Hugo Riemann
Bernhard Riemann
Christopher Longuet-Higgins
lattices
Tonnetz
double sharp
double sharp
double sharp
double flat
double flat

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑