Knowledge

Peano curve

Source 📝

234: 27: 51: 40: 177:
is replaced by a contiguous subsequence of the centers of these nine smaller squares. This subsequence is formed by grouping the nine smaller squares into three columns, ordering the centers contiguously within each column, and then ordering the columns from one side of the square to the other, in
244:
In the definition of the Peano curve, it is possible to perform some or all of the steps by making the centers of each row of three squares be contiguous, rather than the centers of each column of squares. These choices lead to many different variants of the Peano curve.
949: 178:
such a way that the distance between each consecutive pair of points in the subsequence equals the side length of the small squares. There are four such orderings possible:
248:
A "multiple radix" variant of this curve with different numbers of subdivisions in different directions can be used to fill rectangles of arbitrary shapes.
255:
is a simpler variant of the same idea, based on subdividing squares into four equal smaller squares instead of into nine equal smaller squares.
1022: 967: 112:. Because of this example, some authors use the phrase "Peano curve" to refer more generally to any space-filling curve. 210:
was the first point in its ordering, then the first of these four orderings is chosen for the nine centers that replace
413: 446: 353: 315: 19:
This article is about a particular curve defined by Giuseppe Peano. For other curves with similar properties, see
973: 829: 786: 702: 191:
Right three centers top to bottom, middle three centers bottom to top, and left three centers top to bottom
188:
Left three centers top to bottom, middle three centers bottom to top, and right three centers top to bottom
185:
Right three centers bottom to top, middle three centers top to bottom, and left three centers bottom to top
182:
Left three centers bottom to top, middle three centers top to bottom, and right three centers bottom to top
138:
of the centers of the squares, from the set and sequence constructed in the previous step. As a base case,
907: 989: 473: 199:
is chosen in such a way that the distance between the first point of the ordering and its predecessor in
639: 495: 1027: 981: 932: 540: 406: 766: 458: 335: 277: 927: 922: 712: 644: 305: 8: 685: 662: 545: 530: 463: 340:, Texts in Computational Science and Engineering, vol. 9, Springer, pp. 25–27, 218: 86: 82: 74: 20: 597: 912: 892: 856: 851: 614: 101: 955: 917: 841: 749: 654: 560: 535: 525: 468: 451: 441: 436: 399: 349: 311: 238: 30:
Three iterations of a Peano curve construction, whose limit is a space-filling curve.
872: 739: 722: 550: 378: 341: 286: 887: 824: 485: 582: 345: 902: 834: 805: 761: 744: 727: 680: 624: 609: 577: 515: 369:
Cole, A. J. (September 1991), "Halftoning without dither or edge enhancement",
272: 78: 846: 1016: 756: 732: 602: 572: 555: 520: 505: 252: 90: 233: 1001: 996: 897: 877: 634: 567: 105: 962: 882: 587: 109: 97: 815: 800: 795: 776: 510: 382: 290: 771: 717: 629: 480: 173:
is partitioned into nine smaller equal squares, and its center point
672: 120:
Peano's curve may be constructed by a sequence of steps, where the
66: 619: 422: 690: 26: 275:(1890), "Sur une courbe, qui remplit toute une aire plane", 152:
is the one-element sequence consisting of its center point.
391: 93: 221:
of the curves through the sequences of square centers, as
50: 39: 206:
also equals the side length of the small squares. If
237:Peano curve with the middle line erased creates a 1014: 104:. Peano was motivated by an earlier result of 407: 303: 414: 400: 334:Bader, Michael (2013), "2.4 Peano curve", 310:, Courier Dover Publications, p. 3, 232: 195:Among these four orderings, the one for 145:consists of the single unit square, and 25: 968:List of fractals by Hausdorff dimension 329: 327: 1015: 395: 333: 304:Gugenheimer, Heinrich Walter (1963), 271: 368: 324: 13: 108:that these two sets have the same 14: 1039: 950:How Long Is the Coast of Britain? 49: 38: 115: 59:Two iterations of a Peano curve 1023:Theory of continuous functions 974:The Fractal Geometry of Nature 362: 297: 265: 217:The Peano curve itself is the 1: 258: 421: 81:in 1890. Peano's curve is a 7: 990:Chaos: Making a New Science 346:10.1007/978-3-642-31046-1_2 228: 131:of squares, and a sequence 10: 1044: 73:is the first example of a 18: 941: 865: 814: 785: 701: 671: 653: 494: 429: 124:th step constructs a set 982:The Beauty of Fractals 241: 31: 307:Differential Geometry 278:Mathematische Annalen 236: 77:to be discovered, by 29: 928:Lewis Fry Richardson 923:Hamid Naderi Yeganeh 713:Burning Ship fractal 645:Weierstrass function 337:Space-Filling Curves 171: − 1 100:, however it is not 686:Space-filling curve 663:Multifractal system 546:Space-filling curve 531:Sierpinski triangle 371:The Visual Computer 87:continuous function 75:space-filling curve 21:space-filling curve 16:Space-filling curve 913:Aleksandr Lyapunov 893:Desmond Paul Henry 857:Self-avoiding walk 852:Percolation theory 496:Iterated function 437:Fractal dimensions 383:10.1007/BF01905689 291:10.1007/BF01199438 242: 225:goes to infinity. 32: 1010: 1009: 956:Coastline paradox 933:Wacław Sierpiński 918:Benoit Mandelbrot 842:Fractal landscape 750:Misiurewicz point 655:Strange attractor 536:Apollonian gasket 526:Sierpinski carpet 239:Sierpinski carpet 1035: 873:Michael Barnsley 740:Lyapunov fractal 598:Sierpiński curve 551:Blancmange curve 416: 409: 402: 393: 392: 386: 385: 366: 360: 358: 331: 322: 320: 301: 295: 293: 269: 53: 42: 1043: 1042: 1038: 1037: 1036: 1034: 1033: 1032: 1013: 1012: 1011: 1006: 937: 888:Felix Hausdorff 861: 825:Brownian motion 810: 781: 704: 697: 667: 649: 640:Pythagoras tree 497: 490: 486:Self-similarity 430:Characteristics 425: 420: 390: 389: 367: 363: 356: 332: 325: 318: 302: 298: 270: 266: 261: 231: 204: 172: 151: 144: 136: 129: 118: 63: 62: 61: 60: 56: 55: 54: 45: 44: 43: 24: 17: 12: 11: 5: 1041: 1031: 1030: 1028:Fractal curves 1025: 1008: 1007: 1005: 1004: 999: 994: 986: 978: 970: 965: 960: 959: 958: 945: 943: 939: 938: 936: 935: 930: 925: 920: 915: 910: 905: 903:Helge von Koch 900: 895: 890: 885: 880: 875: 869: 867: 863: 862: 860: 859: 854: 849: 844: 839: 838: 837: 835:Brownian motor 832: 821: 819: 812: 811: 809: 808: 806:Pickover stalk 803: 798: 792: 790: 783: 782: 780: 779: 774: 769: 764: 762:Newton fractal 759: 754: 753: 752: 745:Mandelbrot set 742: 737: 736: 735: 730: 728:Newton fractal 725: 715: 709: 707: 699: 698: 696: 695: 694: 693: 683: 681:Fractal canopy 677: 675: 669: 668: 666: 665: 659: 657: 651: 650: 648: 647: 642: 637: 632: 627: 625:Vicsek fractal 622: 617: 612: 607: 606: 605: 600: 595: 590: 585: 580: 575: 570: 565: 564: 563: 553: 543: 541:Fibonacci word 538: 533: 528: 523: 518: 516:Koch snowflake 513: 508: 502: 500: 492: 491: 489: 488: 483: 478: 477: 476: 471: 466: 461: 456: 455: 454: 444: 433: 431: 427: 426: 419: 418: 411: 404: 396: 388: 387: 377:(5): 235–238, 361: 354: 323: 316: 296: 285:(1): 157–160, 263: 262: 260: 257: 230: 227: 202: 193: 192: 189: 186: 183: 167: 159:, each square 149: 142: 134: 127: 117: 114: 79:Giuseppe Peano 58: 57: 48: 47: 46: 37: 36: 35: 34: 33: 15: 9: 6: 4: 3: 2: 1040: 1029: 1026: 1024: 1021: 1020: 1018: 1003: 1000: 998: 995: 992: 991: 987: 984: 983: 979: 976: 975: 971: 969: 966: 964: 961: 957: 954: 953: 951: 947: 946: 944: 940: 934: 931: 929: 926: 924: 921: 919: 916: 914: 911: 909: 906: 904: 901: 899: 896: 894: 891: 889: 886: 884: 881: 879: 876: 874: 871: 870: 868: 864: 858: 855: 853: 850: 848: 845: 843: 840: 836: 833: 831: 830:Brownian tree 828: 827: 826: 823: 822: 820: 817: 813: 807: 804: 802: 799: 797: 794: 793: 791: 788: 784: 778: 775: 773: 770: 768: 765: 763: 760: 758: 757:Multibrot set 755: 751: 748: 747: 746: 743: 741: 738: 734: 733:Douady rabbit 731: 729: 726: 724: 721: 720: 719: 716: 714: 711: 710: 708: 706: 700: 692: 689: 688: 687: 684: 682: 679: 678: 676: 674: 670: 664: 661: 660: 658: 656: 652: 646: 643: 641: 638: 636: 633: 631: 628: 626: 623: 621: 618: 616: 613: 611: 608: 604: 603:Z-order curve 601: 599: 596: 594: 591: 589: 586: 584: 581: 579: 576: 574: 573:Hilbert curve 571: 569: 566: 562: 559: 558: 557: 556:De Rham curve 554: 552: 549: 548: 547: 544: 542: 539: 537: 534: 532: 529: 527: 524: 522: 521:Menger sponge 519: 517: 514: 512: 509: 507: 506:Barnsley fern 504: 503: 501: 499: 493: 487: 484: 482: 479: 475: 472: 470: 467: 465: 462: 460: 457: 453: 450: 449: 448: 445: 443: 440: 439: 438: 435: 434: 432: 428: 424: 417: 412: 410: 405: 403: 398: 397: 394: 384: 380: 376: 372: 365: 357: 355:9783642310461 351: 347: 343: 339: 338: 330: 328: 319: 317:9780486157207 313: 309: 308: 300: 292: 288: 284: 280: 279: 274: 268: 264: 256: 254: 253:Hilbert curve 249: 246: 240: 235: 226: 224: 220: 215: 213: 209: 205: 198: 190: 187: 184: 181: 180: 179: 176: 170: 166: 162: 158: 153: 148: 141: 137: 130: 123: 113: 111: 107: 103: 99: 95: 92: 91:unit interval 88: 84: 80: 76: 72: 68: 52: 41: 28: 22: 1002:Chaos theory 997:Kaleidoscope 988: 980: 972: 898:Gaston Julia 878:Georg Cantor 703:Escape-time 635:Gosper curve 592: 583:Lévy C curve 568:Dragon curve 447:Box-counting 374: 370: 364: 336: 306: 299: 282: 276: 267: 250: 247: 243: 222: 216: 211: 207: 200: 196: 194: 174: 168: 164: 160: 156: 154: 146: 139: 132: 125: 121: 119: 116:Construction 106:Georg Cantor 70: 64: 993:(1987 book) 985:(1986 book) 977:(1982 book) 963:Fractal art 883:Bill Gosper 847:Lévy flight 593:Peano curve 588:Moore curve 474:Topological 459:Correlation 110:cardinality 98:unit square 71:Peano curve 1017:Categories 801:Orbit trap 796:Buddhabrot 789:techniques 777:Mandelbulb 578:Koch curve 511:Cantor set 259:References 83:surjective 908:Paul Lévy 787:Rendering 772:Mandelbox 718:Julia set 630:Hexaflake 561:Minkowski 481:Recursion 464:Hausdorff 273:Peano, G. 102:injective 89:from the 818:fractals 705:fractals 673:L-system 615:T-square 423:Fractals 229:Variants 155:In step 67:geometry 767:Tricorn 620:n-flake 469:Packing 452:Higuchi 442:Assouad 866:People 816:Random 723:Filled 691:H tree 610:String 498:system 352:  314:  69:, the 942:Other 219:limit 350:ISBN 312:ISBN 251:The 96:the 94:onto 379:doi 342:doi 287:doi 163:of 65:In 1019:: 952:" 373:, 348:, 326:^ 283:36 281:, 214:. 85:, 948:" 415:e 408:t 401:v 381:: 375:7 359:. 344:: 321:. 294:. 289:: 223:i 212:c 208:c 203:i 201:P 197:s 175:c 169:i 165:S 161:s 157:i 150:0 147:P 143:0 140:S 135:i 133:P 128:i 126:S 122:i 23:.

Index

space-filling curve



geometry
space-filling curve
Giuseppe Peano
surjective
continuous function
unit interval
onto
unit square
injective
Georg Cantor
cardinality
limit

Sierpinski carpet
Hilbert curve
Peano, G.
Mathematische Annalen
doi
10.1007/BF01199438
Differential Geometry
ISBN
9780486157207


Space-Filling Curves
doi

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.