Knowledge

Pathwidth

Source 📝

1787:, together with a bounded number of apexes and vortices for each component of the clique-sum. An apex is a vertex that may be adjacent to any other vertex in its component, while a vortex is a graph of bounded pathwidth that is glued into one of the faces of the bounded-genus embedding of a component. The cyclic ordering of the vertices around the face into which a vortex is embedded must be compatible with the path decomposition of the vortex, in the sense that breaking the cycle to form a linear ordering must lead to an ordering with bounded vertex separation number. This theory, in which pathwidth is intimately connected to arbitrary minor-closed graph families, has important algorithmic applications. 2040:. In this application, sentences are modeled as graphs, in which the vertices represent words and the edges represent relationships between words; for instance if an adjective modifies a noun in the sentence then the graph would have an edge between those two words. Due to the limited capacity of human short-term memory, Kornai and Tuza argue that this graph must have bounded pathwidth (more specifically, they argue, pathwidth at most six), for otherwise humans would not be able to parse speech correctly. 1620: 732: 718:
move (arbitrarily, not necessarily along edges) from one vertex to another, and then the fugitive may move along any path in the graph that does not pass through a searcher-occupied vertex. The fugitive is caught when both endpoints of his edge are occupied by searchers. The node searching number of a graph is the minimum number of searchers needed to ensure that the fugitive can be guaranteed to be caught, no matter how he moves. As
473: 885:, the minimum number of edges that cross any cut between lower-numbered and higher-numbered vertices in an optimal linear arrangement of the vertices of a graph; this follows because the vertex separation number, the number of lower-numbered vertices with higher-numbered neighbors, can at most equal the number of cut edges. For similar reasons, the cutwidth is at most the pathwidth times the 183: 1844:, a layout of this type that minimizes the number of vertical tracks on which the lines are to be arranged can be found by computing the pathwidth of a graph that has the lines as its vertices and pairs of lines sharing a gate as its edges. The same algorithmic approach can also be used to model folding problems in 1839:
circuits. In gate matrix layouts, signals are propagated along "lines" (vertical line segments) while each gate of the circuit is formed by a sequence of device features that lie along a horizontal line segment. Thus, the horizontal line segment for each gate must cross the vertical segments for each
1019:
share an endpoint. Any family of graphs has bounded pathwidth if and only if its line graphs have bounded linear clique-width, where linear clique-width replaces the disjoint union operation from clique-width with the operation of adjoining a single new vertex. If a connected graph with three or more
717:
in which a set of searchers collaborate to track down a fugitive hiding in a graph. The searchers are placed on vertices of the graph while the fugitive may be in any edge of the graph, and the fugitive's location and moves are hidden from the searchers. In each turn, some or all of the searchers may
1810:
use interval thickness to model the number of tracks needed in a one-dimensional layout of a VLSI circuit, formed by a set of modules that need to be interconnected by a system of nets. In their model, one forms a graph in which the vertices represent nets, and in which two vertices are connected by
1099:
must be within a constant factor of each other: bounds of this form are known for biconnected outerplanar graphs and for polyhedral graphs. For 2-connected planar graphs, the pathwidth of the dual graph is less than the pathwidth of the line graph. It remains open whether the pathwidth of a planar
1062:
vertices each, and concatenate recursively-constructed path decompositions for each of these two subgraphs. The same technique applies to any class of graphs for which a similar separator theorem holds. Since, like planar graphs, the graphs in any fixed minor-closed graph family have separators of
2076:
On graphs of bounded pathwidth, this approach leads to fixed-parameter tractable algorithms, parametrized by the pathwidth. Such results are not frequently found in the literature because they are subsumed by similar algorithms parametrized by the treewidth; however, pathwidth arises even in
926:
vertices each. A linear arrangement formed by recursively partitioning each of these two subforests, placing the separating vertices between them, has logarithmic vertex searching number. The same technique, applied to a tree-decomposition of a graph, shows that, if the treewidth of an
1647:
and from its path-decomposition without increasing the width. Contraction of an edge, also, can be accomplished without increasing the width of the decomposition, by merging the sub-paths representing the two endpoints of the contracted edge. Therefore, the graphs of pathwidth at most
325:
The second of these two properties is equivalent to requiring that the subsets containing any particular vertex form a contiguous subsequence of the whole sequence. In the language of the later papers in Robertson and Seymour's graph minor series, a path-decomposition is a
616:
of which the given graph is a subgraph. Interval graphs are a special case of chordal graphs, and chordal graphs can be represented as intersection graphs of subtrees of a common tree generalizing the way that interval graphs are intersection graphs of subpaths of a path.
1823:
of the supergraph, describes an arrangement of the nets along a system of horizontal tracks (one track per color) in such a way that the modules can be placed along the tracks in a linear order and connect to the appropriate nets. The fact that interval graphs are
1871:
The number of parallel lines on which the vertices of a tree can be drawn with no edge crossings (under various natural restrictions on the ways that adjacent vertices can be placed with respect to the sequence of lines) is proportional to the pathwidth of the
68:
such that the endpoints of each edge appear in one of the subsets and such that each vertex appears in a contiguous subsequence of the subsets, and the pathwidth is one less than the size of the largest set in such a decomposition. Pathwidth is also known as
722:
show, the node searching number of a graph equals its interval thickness. The optimal strategy for the searchers is to move the searchers so that in successive turns they form the separating sets of a linear ordering with minimal vertex separation number.
1027:, the pathwidth is at most proportional to the square root of the number of vertices. One way to find a path-decomposition with this width is (similarly to the logarithmic-width path-decomposition of forests described above) to use the 2017:. It is possible to test whether this is the case, using the known fixed-parameter-tractable algorithms for pathwidth, and if so to find a path-decomposition for the undirected graph, in linear time given the assumption that 2779:
credits this result to the 1993 Ph.D. thesis of Ton Kloks; Garbe's polynomial time algorithm for comparability graphs of interval orders generalizes this result, since any chordal graph must be a comparability graph of this
1344:. It follows immediately that it is also NP-complete for the graph families that contain the bipartite distance-hereditary graphs, including the bipartite graphs, chordal bipartite graphs, distance-hereditary graphs, and 190:
with pathwidth 2 and its path-decomposition of width 2. The bottom portion of the image is the same graph and path-decomposition with color added for emphasis. (This example is an adaptation of the graph presented in
4891:
Peng, Sheng-Lung; Ho, Chin-Wen; Hsu, Tsan-sheng; Ko, Ming-Tat; Tang, Chuan Yi (1998), "A linear-time algorithm for constructing an optimal node-search strategy of a tree", in Hsu, Wen-Lian; Kao, Ming-Yang (eds.),
1997:
of the vertices of this DAG represents a valid reordering of the code, and the number of registers needed to evaluate the code in a given ordering is given by the vertex separation number of the ordering.
2096:) shows that, in a cubic graph, the maximum independent set can be constructed in time O(2), faster than previous known methods. A similar approach leads to improved exponential-time algorithms for the 1948:
in such a way that no two edges (represented as straight line segments between grid points) intersect each other. Thus, graphs of bounded pathwidth have embeddings of this type with linear volume.
589:
of the interval graph. For instance, the interval graph shown with its interval representation in the figure has a path decomposition with five nodes, corresponding to its five maximal cliques
1804:
design, the vertex separation problem was originally studied as a way to partition circuits into smaller subsystems, with a small number of components on the boundary between the subsystems.
320: 2013:, the minimum vertex separation among all orderings can be no larger, so the undirected graph formed by ignoring the orientations of the DAG described above must have pathwidth at most 1241:. Nevertheless, several algorithms are known to compute path-decompositions more efficiently when the pathwidth is small, when the class of input graphs is limited, or approximately. 5145: 834:-clique, each maximal clique either separates the graph into two or more components, or it contains a single leaf vertex, a vertex that belongs to only a single maximal clique. A 3509: 2005:
of machine registers, it is possible to determine in linear time whether a piece of straight-line code can be reordered in such a way that it can be evaluated with at most
911:. For, in a forest, one can always find a constant number of vertices the removal of which leaves a forest that can be partitioned into two smaller subforests with at most 1277:
algorithm is applied to this decomposition in order to find the optimal decomposition. However, the time bounds for known algorithms of this type are exponential in
559:
as a subgraph. Its maximal cliques are given by the sets of intervals containing the representative points, and its maximum clique size is one plus the pathwidth of
1351:
However, the pathwidth may be computed in linear time for trees and forests,. It may also be computed in polynomial time for graphs of bounded treewidth including
612:
This equivalence between pathwidth and interval thickness is closely analogous to the equivalence between treewidth and the minimum clique number (minus one) of a
439:
in the first definition of path decompositions, with two vertices in successive induced subgraphs being glued together when they are induced by the same vertex in
1383:
themselves, since in that case the pathwidth is just one less than the maximum number of intervals covering any point in an interval representation of the graph.
4412:
Kashiwabara, T.; Fujisawa, T. (1979), "NP-completeness of the problem of finding a minimum-clique-number interval graph containing a given graph as a subgraph",
1828:
implies that the number of colors needed, in an optimal arrangement of this type, is the same as the clique number of the interval completion of the net graph.
2084:
The same dynamic programming method also can be applied to graphs with unbounded pathwidth, leading to algorithms that solve unparametrized graph problems in
4870:
Ohtsuki, Tatsuo; Mori, Hajimu; Kuh, Ernest S.; Kashiwabara, Toshinobu; Fujisawa, Toshio (1979), "One-dimensional logic gate assignment and interval graphs",
417:
that are glued together by identifying pairs of vertices from consecutive graphs in the sequence, such that the result of performing all of these gluings is
5137: 4826:
Möhring, Rolf H. (1990), "Graph problems related to gate matrix layout and PLA folding", in Tinhofer, G.; Mayr, E.; Noltemeier, H.; et al. (eds.),
1713:
by connecting a new root vertex by an edge to an arbitrarily chosen vertex in each of the three smaller trees. For instance, the seven-vertex tree in
685:, represented (as in the figure) in such a way that all interval endpoints are distinct, then the ordering of the left endpoints of the intervals of 1438:
by contracting edges, removing edges, and removing vertices. Graph minors have a deep theory in which several important results involve pathwidth.
4413: 4062: 1811:
an edge if their nets both connect to the same module; that is, if the modules and nets are interpreted as forming the nodes and hyperedges of a
5174:
Takahashi, Atsushi; Ueno, Shuichi; Kajitani, Yoji (1994), "Minimal acyclic forbidden minors for the family of graphs with bounded path-width",
4270: 3758: 3296:
Developments in Theoretical Computer Science (Proc. 7th International Meeting of Young Computer Scientists, Smolenice, 16–20 November 1992)
3412:; Gilbert, John R.; Hafsteinsson, Hjálmtýr; Kloks, Ton (1992), "Approximating treewidth, pathwidth, and minimum elimination tree height", 5088:
Skodinis, Konstantin (2003), "Construction of linear tree-layouts which are optimal with respect to vertex separation in linear time",
4024:
Ferreira, Afonso G.; Song, Siang W. (1992), "Achieving optimality for gate matrix layout and PLA folding: a graph theoretic approach",
1977:
in which the nodes represent the input values to the code and the values computed by the operations within the code. An edge from node
778:
graphs (graphs to which no more edges can be added without increasing the pathwidth) have exactly this many edges. A maximal pathwidth-
1265:, in linear time. In general, these algorithms operate in two phases. In the first phase, the assumption that the graph has pathwidth 4894:
Computing and Combinatorics, 4th Annual International Conference, COCOON '98, Taipei, Taiwan, R.o.C., August 12–14, 1998, Proceedings
1309:
surveys the complexity of computing the pathwidth on various special classes of graphs. Determining whether the pathwidth of a graph
1895:
distinct horizontal lines, with edges routed as monotonic polygonal paths between these lines, in such a way that there are at most
3885: 3696: 1144: 4625:
Kneis, Joachim; Mölle, Daniel; Richter, Stefan; Rossmanith, Peter (2005), "Algorithms based on the treewidth of sparse graphs",
4157:
Fomin, Fedor V.; Kratsch, Dieter; Todinca, Ioan; Villanger, Yngve (2008), "Exact algorithms for treewidth and minimum fill-in",
1269:
is used to find a path-decomposition or tree-decomposition that is not optimal, but whose width can be bounded as a function of
1103:
In some classes of graphs, it has been proven that the pathwidth and treewidth are always equal to each other: this is true for
877:
Since path-decompositions are a special case of tree-decompositions, the pathwidth of any graph is greater than or equal to its
4847: 3362: 535:
is given. Then one may represent the nodes of the decomposition as points on a line (in path order) and represent each vertex
5126: 5078: 4909: 4642: 4615: 4588: 4555: 4230: 3579: 3537: 3443: 3117:
Arnborg, Stefan (1985), "Efficient algorithms for combinatorial problems on graphs with bounded decomposability – A survey",
3096: 3260:
Björklund, Andreas; Husfeldt, Thore (2008), "Exact algorithms for exact satisfiability and number of perfect matchings",
1222:
is a variable given as part of the input. The best known worst-case time bounds for computing the pathwidth of arbitrary
4569:; Müller, H.; Kratsch, D. (1993), "Computing treewidth and minimum fill-in: all you need are the minimal separators", 3175:
Aspvall, Bengt; Proskurowski, Andrzej; Telle, Jan Arne (2000), "Memory requirements for table computations in partial
4835: 4288: 4079: 4051: 3810: 3776: 3417: 386:
in this definition makes little difference in most applications of pathwidth, but is used to make the pathwidth of a
269: 4677:
Kornai, András; Tuza, Zsolt (1992), "Narrowness, path-width, and their application in natural language processing",
5060: 4570: 4356:
Habib, Michel; Möhring, Rolf H. (1994), "Treewidth of cocomparability graphs and a new order-theoretic parameter",
3986: 3942: 1973:
instead of having to be spilled into main memory. In this application, one represents the code to be compiled as a
1474: 5012: 4980: 4948: 4389: 3237: 1962: 150:
can be solved in an amount of time that depends linearly on the size of the graph but superexponentially on 
457:. The width of the path decomposition is then one less than the maximum number of vertices in one of the graphs 5176: 5003: 4971: 4939: 4501: 4443: 4308: 4190:
Fomin, Fedor V.; Thilikos, Dimitrios M. (2007), "On self duality of pathwidth in polyhedral graph embeddings",
4136: 4006: 3960: 3595: 3224: 3076: 1865: 204: 5162: 5219: 5035:
Scheffler, Petra (1990), "A linear algorithm for the pathwidth of trees", in Bodendiek, R.; Henn, R. (eds.),
4919: 1459: 81: 3909:
Ellis, J. A.; Sudborough, I. H.; Turner, J. S. (1994), "The vertex separation and search number of a tree",
3456:; Gustedt, Jens; Telle, Jan Arne (1998), "Linear-time register allocation for a fixed number of registers", 1020:
vertices has maximum degree three, then its cutwidth equals the vertex separation number of its line graph.
539:
as a closed interval having these points as endpoints. In this way, the path decomposition nodes containing
5007: 4975: 4943: 4679: 4654: 4472: 4333: 3723: 3232: 3228: 3054: 3050: 2088:. For instance, combining this dynamic programming approach with the fact that cubic graphs have pathwidth 208: 30: 5209: 3911: 2037: 1701:
may be precisely characterized: these trees are exactly the trees that can be formed from three trees in
142:
to find the pathwidth of arbitrary graphs, or even to approximate it accurately. However, the problem is
3474:; Kloks, Ton (1996), "Efficient and constructive algorithms for the pathwidth and treewidth of graphs", 1294:
an explicit linear-time algorithm based on a structural decomposition of pathwidth-2 graphs is given by
3874: 3832: 1965:, pathwidth arises in the problem of reordering sequences of straight-line code (that is, code with no 1816: 162:. Many problems in graph algorithms may be solved efficiently on graphs of bounded pathwidth, by using 4240:
Golovach, P. A. (1993), "The cutwidth of a graph and the vertex separation number of the line graph",
4085: 5214: 4159: 3551: 3322: 2131: 1391:
It is NP-hard to approximate the pathwidth of a graph to within an additive constant. The best known
1352: 1341: 1250: 963: 528:, such that the width of the decomposition is one less than the clique number of the interval graph. 143: 132: 2128:, a number that is bounded for a minor-closed graph family if and only if the family excludes a path 4105: 2736:. A chordal domino is a chordal graph in which every vertex belongs to at most two maximal cliques. 1845: 1498: 1028: 3941:; Lee, James R. (2005), "Improved approximation algorithms for minimum-weight vertex separators", 697:
one may derive an interval representation in which the left endpoint of the interval for a vertex
5045:
Scheffler, Petra (1992), "Optimal embedding of a tree into an interval graph in linear time", in
4192: 3673: 2048:
Many problems in graph algorithms may be solved efficiently on graphs of low pathwidth, by using
1764: 120: 4733:
Lopez, Alexander D.; Law, Hung-Fai S. (1980), "A dense gate matrix layout method for MOS VLSI",
1755:
of forbidden minors for pathwidth-2 graphs has been computed; it contains 110 different graphs.
5046: 4778: 4496: 3754: 2116:, a different way of measuring the complexity of an arbitrary graph in terms of interval graphs 2101: 2052:
on a path-decomposition of the graph. For instance, if a linear ordering of the vertices of an
1974: 4441:
Kinnersley, Nancy G. (1992), "The vertex separation number of a graph equals its path-width",
4213:
Garbe, Renate (1995), "Tree-width and path-width of comparability graphs of interval orders",
3635: 2146:, a measure of the complexity of rooted trees defined similarly to pathwidth of unrooted trees 123:
have bounded pathwidth. Pathwidth, and graphs of bounded pathwidth, also have applications in
119:
may be characterized as having bounded pathwidth, and the "vortices" appearing in the general
4429: 3896:
Ellis, J. A.; Sudborough, I. H.; Turner, J. S. (1983), "Graph separation and search number",
1100:
graph and its dual are always within a constant factor of each other in the remaining cases.
886: 61: 3094:
Amini, Omid; Huc, Florian; Pérennes, Stéphane (2009), "On the path-width of planar graphs",
352:
The width of a path-decomposition is defined in the same way as for tree-decompositions, as
5111:
Proc. 33rd International Workshop on Graph-Theoretic Concepts in Computer Science (WG 2007)
4787: 4742: 4627:
Proc. 31st International Workshop on Graph-Theoretic Concepts in Computer Science (WG 2005)
3878: 1994: 4809: 3294:(1994), "A tourist guide through treewidth", in Dassow, Jürgen; Kelemenová, Alisa (eds.), 701:
is its position in the ordering and the right endpoint is the position of the neighbor of
8: 5059:
Skodinis, Konstantin (2000), "Computing optimal linear layouts of trees in linear time",
4134:
Fomin, Fedor V.; Høie, Kjartan (2006), "Pathwidth of cubic graphs and exact algorithms",
3938: 3750: 3593:(1996), "A simple linear-time algorithm for finding path-decompositions of small width", 2049: 2021:
is a constant. Once a path decomposition has been found, a topological ordering of width
1970: 1899:
crossings. The graphs with such drawings have pathwidth that is bounded by a function of
1784: 1573: 1522: 1478: 1392: 1334: 1274: 1154:, or more generally any graph with maximum vertex degree three, the pathwidth is at most 1116: 1095:. For some classes of planar graphs, the pathwidth of the graph and the pathwidth of its 897: 714: 166:
on a path-decomposition of the graph. Path decomposition may also be used to measure the
163: 155: 116: 5113:, Lecture Notes in Computer Science, vol. 4769, Springer-Verlag, pp. 258–269, 5065:, Lecture Notes in Computer Science, vol. 1879, Springer-Verlag, pp. 403–414, 4845:
Monien, B.; Sudborough, I. H. (1988), "Min cut is NP-complete for edge weighted trees",
4746: 4629:, Lecture Notes in Computer Science, vol. 3787, Springer-Verlag, pp. 385–396, 1079:, it follows that the pathwidth of the graphs in any fixed minor-closed family is again 4758: 4721: 4602:, Lecture Notes in Computer Science, vol. 903, Springer-Verlag, pp. 106–120, 4572:
Proc. 1st European Symposium on Algorithms (ESA'93) (Lecture Notes in Computer Science)
4566: 4532:, Lecture Notes in Computer Science, vol. 650, Springer-Verlag, pp. 116–125, 4525: 4375: 4294: 4257: 4122: 4071: 4028:, Lecture Notes in Computer Science, vol. 583, Springer-Verlag, pp. 139–153, 4012: 3966: 3854: 3782: 3665: 3622: 3604: 3556:, Lecture Notes in Computer Science, vol. 447, Springer-Verlag, pp. 301–309, 3547: 3514:, Lecture Notes in Computer Science, vol. 700, Springer-Verlag, pp. 114–125, 3511:
Proc. 20th International Colloquium on Automata, Languages and Programming (ICALP 1993)
3508:; Kloks, Ton; Kratsch, Dieter (1993), "Treewidth and pathwidth of permutation graphs", 3505: 3471: 3453: 3409: 3385: 3353: 3317: 3291: 3279: 3198: 3134: 3082: 1376: 548: 327: 104: 5101: 4994: 4600:
Proc. 20th International Workshop Graph-Theoretic Concepts in Computer Science (WG'94)
4403: 4215:
Proc. 20th International Workshop Graph-Theoretic Concepts in Computer Science (WG'94)
3757:(2005), "Algorithmic graph minor theory: decomposition, approximation, and coloring", 3401: 3376: 3320:(1996), "A linear-time algorithm for finding tree-decompositions of small treewidth", 3057:(1990), "A separator theorem for graphs with an excluded minor and its applications", 5190: 5122: 5074: 4962: 4905: 4861: 4831: 4814: 4693: 4668: 4638: 4611: 4584: 4551: 4515: 4486: 4457: 4347: 4284: 4261: 4226: 4217:, Lecture Notes in Computer Science, vol. 903, Springer-Verlag, pp. 26–37, 4075: 4047: 4002: 3956: 3806: 3772: 3694:
Diestel, Reinhard (1995), "Graph Minors I: a short proof of the path-width theorem",
3618: 3575: 3533: 3439: 3251: 3138: 3072: 2009:
registers. For, if the vertex separation number of a topological ordering is at most
1368: 1356: 1108: 959: 4762: 4725: 4126: 3970: 3890:, Lecture Notes in Computer Science, vol. 2528, Springer-Verlag, pp. 42–53 3786: 3283: 3086: 1915:
are both constant, it is possible in linear time to determine whether a graph has a
609:; the maximum clique size is three and the width of this path decomposition is two. 5185: 5154: 5114: 5097: 5066: 5021: 4989: 4957: 4897: 4879: 4856: 4804: 4796: 4750: 4713: 4704: 4688: 4663: 4630: 4603: 4576: 4541: 4533: 4528:(1992), "Approximating treewidth and pathwidth of some classes of perfect graphs", 4510: 4481: 4467: 4452: 4398: 4379: 4367: 4342: 4317: 4298: 4276: 4249: 4218: 4201: 4176: 4168: 4145: 4114: 4037: 4029: 4016: 3992: 3982: 3948: 3920: 3858: 3846: 3764: 3732: 3705: 3682: 3652: 3626: 3614: 3565: 3557: 3523: 3515: 3491: 3483: 3429: 3421: 3397: 3371: 3339: 3331: 3271: 3246: 3202: 3190: 3163: 3126: 3105: 3062: 2085: 2078: 1330: 1112: 871: 736: 677:. This follows from the earlier equivalence with interval graph clique numbers: if 429: 167: 3866: 3827:; Kitching, M.; Liotta, G.; McCartin, C.; Nishimura, N.; Ragde, P.; Rosamond, F.; 3820: 5118: 4896:, Lecture Notes in Computer Science, vol. 1449, Springer, pp. 279–288, 4387:
Hliněny, Petr (2003), "Crossing-number critical graphs have bounded path-width",
4358: 3978: 3824: 3798: 3590: 2143: 2140:, a different NP-complete optimization problem involving linear layouts of graphs 2137: 1969:
branches or loops) in such a way that all the values computed in the code can be
1819:. An interval representation of a supergraph of this line graph, together with a 1780: 1338: 771: 4433: 3718: 1177:
is the number of vertices in the graph. There exist cubic graphs with pathwidth
1047:
vertices the removal of which separates the graph into two subgraphs of at most
5026: 4322: 3985:(1989), "On search decision and the efficiency of polynomial-time algorithms", 3828: 3298:, Topics in Computer Mathematics, vol. 6, Gordon and Breach, pp. 1–20 2104:
problems in cubic graphs, and for several other NP-hard optimization problems.
1820: 1486: 1380: 1120: 812: 586: 505: 477: 78: 74: 5158: 4269:
Guha, Sudipto (2000), "Nested graph dissection and approximation algorithms",
4149: 4118: 3850: 3737: 3709: 3656: 3388:; Fomin, Fedor V. (2002), "Approximation of pathwidth of outerplanar graphs", 3335: 3275: 2134:, a measure of the sparsity of a graph that is at most equal to its path width 2025:(if one exists) can be found using dynamic programming, again in linear time. 970:
all have bounded treewidth, they all also have at most logarithmic pathwidth.
480:
with pathwidth two, one less than the cardinality of its four maximum cliques
158:, the pathwidth may be computed in polynomial time without dependence on  5203: 5070: 4901: 4883: 4607: 4580: 4537: 4280: 4253: 4222: 3561: 3519: 3147: 1857: 1836: 1825: 1639:, then the same path-decomposition remains valid if any edge is removed from 1326: 799: 613: 128: 4754: 4652:
Korach, Ephraim; Solel, Nir (1993), "Tree-width, path-width, and cutwidth",
3952: 3425: 2122:, the minimum possible width of a linear ordering of the vertices of a graph 1669:
necessarily includes at least one forest, it is not true that all graphs in
4818: 3925: 3837: 3746: 3643: 3487: 3262: 3210: 3181: 1966: 1840:
of the lines that form inputs or outputs of the gate. As in the layouts of
1619: 1572:-minor-free graphs include all forests, and in particular they include the 1482: 1345: 1322: 1024: 974: 630: 22: 4530:
Proc. 3rd International Symposium on Algorithms and Computation (ISAAC'92)
4306:
Gurski, Frank; Wanke, Egon (2007), "Line graphs of bounded clique-width",
3457: 3194: 3067: 5109:
Suchan, Karol; Todinca, Ioan (2007), "Pathwidth of circular-arc graphs",
4026:
Proc. 1st Latin American Symposium on Theoretical Informatics (LATIN '92)
3934: 3768: 2097: 1568:-minor-free graphs do not have bounded pathwidth. For, in this case, the 1427: 1364: 1360: 1211: 1185: 1151: 1138: 967: 870:-path. In particular the maximal graphs of pathwidth one are exactly the 200: 112: 108: 5051:
Fourth Czechoslovakian Symposium on Combinatorics, Graphs and Complexity
4830:, Computing Supplementum, vol. 7, Springer-Verlag, pp. 17–51, 4634: 4470:(1994), "Obstruction set isolation for the gate matrix layout problem", 4272:
Proc. 41st IEEE Symposium on Foundations of Computer Science (FOCS 2000)
3997: 3879:"Path-width and three-dimensional straight-line grid drawings of graphs" 3760:
Proc. 46th IEEE Symposium on Foundations of Computer Science (FOCS 2005)
1592:-minor-free-graphs have unbounded pathwidth. In the other direction, if 4717: 4371: 4042: 4033: 3794: 3636:"A Distributed Algorithm for Computing the Node Search Number in Trees" 3150:; Proskurowski, Andrzej (1987), "Complexity of finding embeddings in a 3130: 2125: 1812: 1776: 1125: 1096: 982: 387: 346: 52:
is a number that measures how much the path was thickened to form 
41: 4546: 4205: 4172: 3686: 3570: 3550:; Möhring, Rolf H. (1990), "The pathwidth and treewidth of cographs", 3528: 3496: 3434: 3344: 3109: 1868:
have pathwidth that is bounded by a function of their crossing number.
4800: 4782: 4702:
Lengauer, Thomas (1981), "Black-white pebbles and graph separation",
4181: 3870: 3609: 3046: 1379:, for the comparability graphs of interval orders, and of course for 878: 171: 100: 3835:(2008), "On the parameterized complexity of layered graph drawing", 3167: 1450:
of graphs is closed under taking minors (every minor of a member of
973:
As well as its relations to treewidth, pathwidth is also related to
16:
Representation of a graph as a path graph "thickened" by some amount
2119: 2113: 1958: 1517:
are closely related, and the first such result of this type was by
978: 882: 731: 402:
describes, pathwidth can be characterized in many equivalent ways.
3898:
Proc. 1983 Allerton Conf. on Communication, Control, and Computing
3408: 3304:
Bodlaender, Hans L. (1994a), "A tourist guide through treewidth",
2254: 1722:
is formed in this way from the two-vertex tree (a single edge) in
1407: 1767:
for minor-closed graph families states that, for any such family
1525:
in the family of forbidden minors. Specifically, define a family
1465:
can be characterized as the graphs that do not have any minor in
1372: 1104: 657:
or a later vertex as a neighbor. The vertex separation number of
472: 139: 5146:
International Journal of Computational Geometry and Applications
2077:
treewidth-based dynamic programming algorithms in measuring the
1731:. Based on this construction, the number of forbidden minors in 689:
has vertex separation number one less than the clique number of
4103:
Fomin, Fedor V. (2003), "Pathwidth of planar and line graphs",
3222: 2828: 1214:
to determine whether the pathwidth of a given graph is at most
154:. Additionally, for several special classes of graphs, such as 57: 3745: 3459:
Proc. 9th ACM–SIAM Symposium on Discrete Algorithms (SODA '98)
2883: 1560:
In one direction, this result is straightforward to prove: if
1395:
of a polynomial time approximation algorithm for pathwidth is
410:
A path decomposition can be described as a sequence of graphs
3887:
Proc. 10th International Symposium on Graph Drawing (GD 2002)
3819: 3664:
Coudert, David; Huc, Florian; Sereni, Jean-Sébastien (2007),
2974: 2064:, then it is possible to find the maximum independent set of 1685:
consists of two graphs, a seven-vertex tree and the triangle
4598:
Kloks, Ton; Kratsch, Dieter; Müller, H. (1995), "Dominoes",
4564: 4331:
Gustedt, Jens (1993), "On the pathwidth of chordal graphs",
4156: 2748: 2678: 543:
correspond to the representative points in the interval for
182: 4978:(2003), "Graph minors. XVI. Excluding a non-planar graph", 4624: 3944:
Proc. 37th ACM Symposium on Theory of Computing (STOC 2005)
3025: 1832: 1801: 504:
is equal to one less than the smallest clique number of an
124: 99:
Pathwidth and path-decompositions are closely analogous to
3145: 2239: 1414:. For approximations on restricted classes of graphs, see 1406:. For earlier approximation algorithms for pathwidth, see 1257:, it is possible to test whether the pathwidth is at most 1184:, but it is not known how to reduce this gap between this 4869: 4426:
Obstruction set isolation for layout permutation problems
2231: 1841: 1807: 3174: 2355: 1521:, and relates bounded pathwidth with the existence of a 693:. And in the other direction, from a linear ordering of 512:
as a subgraph. That is, for every path decomposition of
3634:
Coudert, David; Huc, Florian; Mazauric, Dorian (2012),
3059:
Proc. 22nd ACM Symp. on Theory of Computing (STOC 1990)
375:
is the minimum width of any path-decomposition of 
170:
of dynamic programming algorithms on graphs of bounded
56:. More formally, a path-decomposition is a sequence of 3504: 3452: 3001: 2617: 1934:
can be embedded into a three-dimensional grid of size
570:
is a subgraph of an interval graph with clique number
443:, and in the other direction one may recover the sets 242:
such that both endpoints of the edge belong to subset
5173: 5062:
Proc. 8th European Symposium on Algorithms (ESA 2000)
4927:
Discrete Mathematics and Theoretical Computer Science
4494: 4415:
Proc. International Symposium on Circuits and Systems
3908: 3895: 3588: 2855: 2836: 2309: 2280: 719: 670: 272: 4575:, vol. 726, Springer-Verlag, pp. 260–271, 1623:
The forbidden minors for graphs of pathwidth 1.
1614: 4920:"Classes of graphs with restricted interval models" 4411: 3553:
Proc. 2nd Scandinavian Workshop on Algorithm Theory
2227: 4597: 4465: 3933: 3633: 2871: 2801: 2733: 2325: 1261:, and if so to find a path-decomposition of width 881:. The pathwidth is also less than or equal to the 531:In one direction, suppose a path decomposition of 314: 5010:(2004), "Graph Minors. XX. Wagner's conjecture", 4917: 3865: 3546: 3259: 3045: 3029: 2986: 2602: 2543: 2399: 2267: 2265: 2263: 1015:are adjacent when the corresponding two edges of 199:In the first of their famous series of papers on 5201: 5002: 4970: 4938: 4844: 3902: 3663: 3093: 2816: 2709: 2575: 2559: 2212: 2208: 2206: 2181: 1518: 1283:, impractical except for the smallest values of 1205: 713:The node searching game on a graph is a form of 393: 212: 121:structure theory for minor-closed graph families 4946:(1983), "Graph minors. I. Excluding a forest", 4918:Proskurowski, Andrzej; Telle, Jan Arne (1999), 4523: 3988:Proc. 21st ACM Symposium on Theory of Computing 3977: 3470: 3384: 2922: 2847: 2845: 2760: 2555: 2336: 2334: 2275: 1564:does not include at least one forest, then the 1415: 1244: 1127: 315:{\displaystyle X_{i}\cap X_{k}\subseteq X_{j}.} 111:: the families of graphs that are closed under 3360:-arboretum of graphs with bounded treewidth", 3156:SIAM Journal on Algebraic and Discrete Methods 2884:Demaine, Hajiaghayi & Kawarabayashi (2005) 2260: 669:. The vertex separation number was defined by 5108: 4783:"The Magical Number Seven, Plus or Minus Two" 4428:(Ph.D. thesis), Washington State University, 4189: 3793: 2789: 2690: 2571: 2203: 1549:has bounded pathwidth if and only if the set 1367:, for the complements of chordal graphs, for 1133:What is the largest possible pathwidth of an 551:of the intervals formed from the vertices of 4355: 4023: 3414:Graph-Theoretic Concepts in Computer Science 3217:, New York: Academic Press, pp. 155–165 2938: 2842: 2632: 2331: 1635:has a path-decomposition with width at most 1509:as minors. In many cases, the properties of 1301: 661:is the smallest vertex separation number of 4890: 4651: 4305: 3716: 3303: 2495: 2479: 2443: 2427: 2411: 2313: 2297: 2295: 2162: 1985:in this DAG represents the fact that value 1631:is, itself, closed under taking minors: if 1386: 620: 192: 4676: 4440: 4423: 4060: 3352: 3316: 3290: 3213:(1967), "Some classes of perfect graphs", 2859: 2851: 2531: 2519: 2483: 2447: 2431: 2415: 2387: 2383: 2379: 2367: 2286: 2271: 2240:Arnborg, Corneil & Proskurowski (1987) 2197: 2193: 2033: 1831:Gate matrix layout is a specific style of 1604:-minor-free graphs have pathwidth at most 1306: 1295: 399: 379:. The subtraction of one from the size of 5189: 5138:"Pathwidth and layered drawings of trees" 5044: 5034: 5025: 5013:Journal of Combinatorial Theory, Series B 4993: 4981:Journal of Combinatorial Theory, Series B 4961: 4949:Journal of Combinatorial Theory, Series B 4872:IEEE Transactions on Circuits and Systems 4860: 4808: 4692: 4667: 4545: 4514: 4499:(1985), "Interval graphs and searching", 4485: 4456: 4402: 4390:Journal of Combinatorial Theory, Series B 4346: 4321: 4180: 4133: 4041: 3996: 3924: 3736: 3608: 3569: 3527: 3495: 3433: 3375: 3343: 3250: 3238:Journal of Combinatorial Theory, Series B 3066: 2666: 2451: 2305: 2043: 2036:describe an application of path-width in 1627:The property of having pathwidth at most 215:) define a path-decomposition of a graph 5135: 5087: 5058: 5037:Topics in Combinatorics and Graph Theory 4732: 4701: 4239: 4064:Algorithms for Graphs of Small Treewidth 3697:Combinatorics, Probability and Computing 2997: 2995: 2962: 2907: 2613: 2611: 2507: 2356:Aspvall, Proskurowski & Telle (2000) 2351: 2349: 2321: 2317: 2292: 2250: 2248: 2235: 2060:is given, with vertex separation number 1618: 1321:is restricted to bounded-degree graphs, 730: 708: 471: 181: 146:: testing whether a graph has pathwidth 107:. They play a key role in the theory of 4825: 4386: 4330: 3693: 3116: 2950: 2934: 2918: 2916: 2832: 2812: 2810: 2764: 2744: 2742: 2721: 2705: 2703: 2701: 2699: 2662: 2660: 2658: 2656: 2628: 2626: 2598: 2596: 2340: 2301: 1815:then the graph formed from them is its 1145:(more unsolved problems in mathematics) 665:with respect to any linear ordering of 520:, and for every interval supergraph of 516:one can find an interval supergraph of 5202: 4777: 3235:(1991), "Quickly excluding a forest", 3013: 3002:Bodlaender, Gustedt & Telle (1998) 2968: 2643: 2641: 2618:Bodlaender, Kloks & Kratsch (1993) 2177: 2175: 2173: 2171: 1856:Pathwidth has several applications to 4735:IEEE Transactions on Electron Devices 4242:Discrete Mathematics and Applications 4212: 4102: 3589:Cattell, Kevin; Dinneen, Michael J.; 3209: 2992: 2895: 2856:Takahashi, Ueno & Kajitani (1994) 2837:Cattell, Dinneen & Fellows (1996) 2776: 2647: 2608: 2587: 2346: 2310:Ellis, Sudborough & Turner (1994) 2245: 2223: 2221: 1864:The minimal graphs that have a given 1643:, and any vertex can be removed from 1485:are the graphs that have neither the 1441: 862:-leaves each adjacent to a separator 854:-tree that can be partitioned into a 739:, a maximal graph with pathwidth one. 671:Ellis, Sudborough & Turner (1983) 524:one can find a path decomposition of 467: 4767:IEEE Journal of Solid-State Circuits 4268: 3215:Graph Theory and Theoretical Physics 3097:SIAM Journal on Discrete Mathematics 2913: 2807: 2739: 2696: 2653: 2623: 2593: 1411: 36:is, informally, a representation of 3721:(2005), "Graph minor hierarchies", 2944: 2638: 2168: 1758: 1325:, planar graphs of bounded degree, 790:-caterpillar, two special kinds of 720:Kirousis & Papadimitriou (1985) 681:is a subgraph of an interval graph 673:, and is equal to the pathwidth of 555:is an interval graph that contains 405: 13: 5039:, Physica-Verlag, pp. 613–620 2802:Feige, Hajiaghayi & Lee (2005) 2734:Kloks, Kratsch & Müller (1995) 2326:Coudert, Huc & Mazauric (2012) 2218: 1989:is one of the inputs to operation 1952: 1887:is a placement of the vertices of 1119:, and the comparability graphs of 889:of the vertices in a given graph. 581:has a path decomposition of width 14: 5231: 3666:"Pathwidth of outerplanar graphs" 3418:Lecture Notes in Computer Science 2987:Dujmović, Morin & Wood (2003) 2544:Alon, Seymour & Thomas (1990) 2228:Kashiwabara & Fujisawa (1979) 1615:Obstructions to bounded pathwidth 1576:. But a perfect binary tree with 705:that comes last in the ordering. 450:as the vertex sets of the graphs 3420:, vol. 570, pp. 1–12, 2872:Kinnersley & Langston (1994) 2576:Amini, Huc & Pérennes (2009) 2560:Coudert, Huc & Sereni (2007) 1963:high-level programming languages 1851: 625:The vertex separation number of 3030:Björklund & Husfeldt (2008) 3019: 3007: 2980: 2956: 2928: 2901: 2889: 2877: 2865: 2822: 2795: 2783: 2770: 2754: 2727: 2715: 2684: 2672: 2603:Bodlaender & Möhring (1990) 2581: 2565: 2549: 2537: 2525: 2513: 2501: 2489: 2473: 2454:gives a tighter upper bound of 2437: 2421: 2405: 2400:Proskurowski & Telle (1999) 2393: 2373: 2361: 1790: 1694:. However, the set of trees in 1421: 1226:-vertex graphs are of the form 1128:Unsolved problem in mathematics 4810:11858/00-001M-0000-002C-4646-B 4444:Information Processing Letters 4137:Information Processing Letters 3903:Monien & Sudborough (1988) 3596:Information Processing Letters 2817:Robertson & Seymour (2004) 2710:Monien & Sudborough (1988) 2213:Robertson & Seymour (2003) 2187: 2182:Robertson & Seymour (1983) 2156: 2028: 1652:can be characterized by a set 1557:includes at least one forest. 1545:. Then, a minor-closed family 1519:Robertson & Seymour (1983) 1000:has a vertex for each edge of 653:in the ordering but that have 1: 5102:10.1016/S0196-6774(02)00225-0 4995:10.1016/S0095-8956(03)00042-X 4424:Kinnersley, Nancy G. (1989), 4404:10.1016/S0095-8956(03)00037-6 3402:10.1016/S0196-6774(02)00001-9 3377:10.1016/S0304-3975(97)00228-4 3038: 2923:Fellows & Langston (1989) 2761:Kloks & Bodlaender (1992) 2556:Bodlaender & Fomin (2002) 2276:Bodlaender & Kloks (1996) 1434:is another graph formed from 1416:Kloks & Bodlaender (1992) 1206:Computing path-decompositions 747:-vertex graph with pathwidth 585:whose nodes are given by the 394:Alternative characterizations 341:in which the underlying tree 177: 5191:10.1016/0012-365X(94)90092-2 5119:10.1007/978-3-540-74839-7_25 5049:; Fiedler, Miroslav (eds.), 4963:10.1016/0095-8956(83)90079-5 4862:10.1016/0304-3975(88)90028-X 4848:Theoretical Computer Science 4694:10.1016/0166-218X(92)90208-R 4680:Discrete Applied Mathematics 4669:10.1016/0166-218X(93)90171-J 4655:Discrete Applied Mathematics 4516:10.1016/0012-365X(85)90046-9 4487:10.1016/0166-218X(94)90021-3 4473:Discrete Applied Mathematics 4458:10.1016/0020-0190(92)90234-M 4348:10.1016/0166-218X(93)90012-D 4334:Discrete Applied Mathematics 4061:de Fluiter, Babette (1997), 3724:Discrete Applied Mathematics 3619:10.1016/0020-0190(95)00190-5 3363:Theoretical Computer Science 3252:10.1016/0095-8956(91)90068-U 1738:can be shown to be at least 1245:Fixed-parameter tractability 219:to be a sequence of subsets 7: 4765:, Also in the joint issue, 3912:Information and Computation 2790:Suchan & Todinca (2007) 2691:Downey & Fellows (1999) 2572:Fomin & Thilikos (2007) 2107: 2038:natural language processing 1971:placed in machine registers 1676:are forests: for instance, 1533:if there exists a constant 826:-tree that is not itself a 641:such that, for each vertex 566:In the other direction, if 500:The pathwidth of any graph 10: 5236: 5136:Suderman, Matthew (2004), 5027:10.1016/j.jctb.2004.08.001 4828:Computational Graph Theory 4497:Papadimitriou, Christos H. 4323:10.1016/j.disc.2007.01.020 2939:Ferreira & Song (1992) 2633:Habib & Möhring (1994) 1883:-layer drawing of a graph 1342:distance-hereditary graphs 649:vertices are earlier than 345:of the decomposition is a 5159:10.1142/S0218195904001433 4437:; see Theorem 6.A, p. 44. 4160:SIAM Journal on Computing 4150:10.1016/j.ipl.2005.10.012 4119:10.1007/s00373-002-0490-z 3939:Hajiaghayi, Mohammadtaghi 3851:10.1007/s00453-007-9151-1 3751:Hajiaghayi, MohammadTaghi 3738:10.1016/j.dam.2004.01.010 3710:10.1017/S0963548300001450 3657:10.1007/s00453-011-9524-3 3336:10.1137/S0097539793251219 3323:SIAM Journal on Computing 3276:10.1007/s00453-007-9149-8 2496:Gurski & Wanke (2007) 2480:Korach & Solel (1993) 2444:Korach & Solel (1993) 2428:Korach & Solel (1993) 2412:Korach & Solel (1993) 2163:Diestel & Kühn (2005) 1846:programmable logic arrays 1783:onto surfaces of bounded 1600:-vertex forest, then the 1537:such that every graph in 1460:Robertson–Seymour theorem 1317:remains NP-complete when 1302:Special classes of graphs 1273:. In the second phase, a 1251:fixed-parameter tractable 726: 144:fixed-parameter tractable 133:computational linguistics 5071:10.1007/3-540-45253-2_37 4902:10.1007/3-540-68535-9_32 4884:10.1109/TCS.1979.1084695 4608:10.1007/3-540-59071-4_41 4581:10.1007/3-540-57273-2_61 4538:10.1007/3-540-56279-6_64 4281:10.1109/SFCS.2000.892072 4254:10.1515/dma.1993.3.5.517 4223:10.1007/3-540-59071-4_35 4106:Graphs and Combinatorics 3803:Parameterized Complexity 3562:10.1007/3-540-52846-6_99 3520:10.1007/3-540-56939-1_66 2255:Bodlaender et al. (1992) 2150: 2034:Kornai & Tuza (1992) 1553:of forbidden minors for 1499:complete bipartite graph 1408:Bodlaender et al. (1992) 1387:Approximation algorithms 1329:, chordal dominoes, the 1029:planar separator theorem 939:, then the pathwidth of 621:Vertex separation number 252:For every three indices 90:vertex separation number 4755:10.1109/T-ED.1980.20086 4495:Kirousis, Lefteris M.; 4193:Journal of Graph Theory 3953:10.1145/1060590.1060674 3755:Kawarabayashi, Ken-ichi 3674:Journal of Graph Theory 3426:10.1007/3-540-55121-2_1 2829:Bienstock et al. (1991) 2667:Fomin & Høie (2006) 2466:on the pathwidth of an 1930:vertices and pathwidth 1795: 1775:can be decomposed into 1765:graph structure theorem 1237:for some constant  842:-tree with at most two 782:graph must be either a 637:is the smallest number 371:, and the pathwidth of 230:, with two properties: 115:and do not include all 4466:Kinnersley, Nancy G.; 3926:10.1006/inco.1994.1064 3488:10.1006/jagm.1996.0049 2975:Dujmović et al. (2008) 2908:Lopez & Law (1980) 2522:, Corollary 23, p. 10. 2102:minimum dominating set 2044:Exponential algorithms 1975:directed acyclic graph 1779:of graphs that can be 1624: 1588:, so in this case the 1541:has pathwidth at most 1513:and the properties of 1353:series–parallel graphs 964:series–parallel graphs 740: 497: 316: 196: 5090:Journal of Algorithms 3476:Journal of Algorithms 3390:Journal of Algorithms 3195:10.1007/s004530010025 3068:10.1145/100216.100254 2486:, Corollary 24, p.10. 2482:, Theorem 6, p. 100; 2450:, Theorem 66, p. 30. 2232:Ohtsuki et al. (1979) 2081:of these algorithms. 2001:For any fixed number 1842:Ohtsuki et al. (1979) 1808:Ohtsuki et al. (1979) 1622: 1584:levels has pathwidth 734: 709:Node searching number 475: 317: 185: 94:node searching number 5220:NP-complete problems 5177:Discrete Mathematics 4788:Psychological Review 4502:Discrete Mathematics 4468:Langston, Michael A. 4309:Discrete Mathematics 3991:, pp. 501–512, 3983:Langston, Michael A. 3947:, pp. 563–572, 3769:10.1109/SFCS.2005.14 3763:, pp. 637–646, 3061:, pp. 293–299, 2446:, Theorem 5, p. 99; 2434:, Theorem 49, p. 24. 2418:, Theorem 47, p. 24. 2370:, Theorem 29, p. 13. 1995:topological ordering 1659:of excluded minors. 1574:perfect binary trees 1335:comparability graphs 1117:comparability graphs 1004:and two vertices in 428:may be taken as the 270: 4747:1980ITED...27.1671L 4635:10.1007/11604686_34 4526:Bodlaender, Hans L. 3998:10.1145/73007.73055 3979:Fellows, Michael R. 3805:, Springer-Verlag, 3799:Fellows, Michael R. 3717:Diestel, Reinhard; 3591:Fellows, Michael R. 3548:Bodlaender, Hans L. 3506:Bodlaender, Hans L. 3472:Bodlaender, Hans L. 3454:Bodlaender, Hans L. 3410:Bodlaender, Hans L. 3386:Bodlaender, Hans L. 3356:(1998), "A partial 3354:Bodlaender, Hans L. 3318:Bodlaender, Hans L. 3292:Bodlaender, Hans L. 3179:-tree algorithms", 3026:Kneis et al. (2005) 2749:Kloks et al. (1993) 2679:Fomin et al. (2008) 2534:, Theorem 20, p. 9. 2050:dynamic programming 1746:. The complete set 1473:is a finite set of 1393:approximation ratio 1377:circular-arc graphs 1275:dynamic programming 1253:: for any constant 858:-path and a set of 633:of the vertices of 164:dynamic programming 105:tree decompositions 73:(one less than the 5210:Graph minor theory 5047:Nešetřil, Jaroslav 4772:(4): 736–740, 1980 4718:10.1007/BF00264496 4418:, pp. 657–660 4372:10.1007/BF01462229 4072:Utrecht University 4034:10.1007/BFb0023825 3465:, pp. 574–583 3131:10.1007/BF01934985 2430:, Lemma 1, p. 99; 2314:Peng et al. (1998) 1907:. Therefore, when 1625: 1529:of graphs to have 1442:Excluding a forest 1369:permutation graphs 1357:outerplanar graphs 1109:permutation graphs 960:outerplanar graphs 850:-caterpillar is a 815:, each containing 741: 629:with respect to a 549:intersection graph 498: 468:Interval thickness 328:tree decomposition 312: 238:, there exists an 205:Neil Robertson 197: 193:Bodlaender (1994a) 71:interval thickness 27:path decomposition 5128:978-3-540-74838-0 5080:978-3-540-41004-1 4911:978-3-540-64824-6 4779:Miller, George A. 4644:978-3-540-31000-6 4617:978-3-540-59071-2 4590:978-3-540-57273-2 4557:978-3-540-56279-5 4316:(22): 2734–2754, 4232:978-3-540-59071-2 4206:10.1002/jgt.20219 4173:10.1137/050643350 3687:10.1002/jgt.20218 3581:978-3-540-52846-3 3539:978-3-540-56939-8 3445:978-3-540-55121-8 3148:Corneil, Derek G. 3146:Arnborg, Stefan; 3110:10.1137/060670146 2860:Bodlaender (1998) 2852:Kinnersley (1992) 2532:Bodlaender (1998) 2520:Bodlaender (1998) 2484:Bodlaender (1998) 2448:Bodlaender (1998) 2432:Bodlaender (1998) 2416:Bodlaender (1998) 2388:Bodlaender (1998) 2384:Kinnersley (1992) 2380:Kinnersley (1989) 2368:Bodlaender (1998) 2287:Bodlaender (1994) 2272:Bodlaender (1996) 2198:Bodlaender (1998) 2194:Kinnersley (1989) 2092:/6 + o( 1531:bounded pathwidth 1363:, as well as for 1307:Bodlaender (1994) 1296:de Fluiter (1997) 1031:to find a set of 985:; the line graph 872:caterpillar trees 430:induced subgraphs 400:Bodlaender (1998) 390:be equal to one. 234:For each edge of 195:, emphasis added) 186:An example graph 40:as a "thickened" 5227: 5215:Graph invariants 5194: 5193: 5184:(1–3): 293–304, 5169: 5167: 5161:, archived from 5142: 5131: 5104: 5083: 5054: 5040: 5030: 5029: 5008:Seymour, Paul D. 4998: 4997: 4966: 4965: 4934: 4924: 4914: 4886: 4865: 4864: 4855:(1–3): 209–229, 4840: 4821: 4812: 4801:10.1037/h0043158 4773: 4741:(8): 1671–1675, 4728: 4705:Acta Informatica 4697: 4696: 4672: 4671: 4647: 4620: 4593: 4560: 4549: 4519: 4518: 4490: 4489: 4480:(2–3): 169–213, 4461: 4460: 4436: 4419: 4407: 4406: 4382: 4351: 4350: 4326: 4325: 4301: 4264: 4235: 4208: 4185: 4184: 4167:(3): 1058–1079, 4152: 4129: 4098: 4097: 4096: 4090: 4084:, archived from 4070:, Ph.D. thesis, 4069: 4056: 4045: 4019: 4000: 3973: 3929: 3928: 3900: 3891: 3883: 3861: 3815: 3789: 3747:Demaine, Erik D. 3741: 3740: 3712: 3689: 3670: 3659: 3640: 3629: 3612: 3584: 3573: 3542: 3531: 3500: 3499: 3466: 3464: 3448: 3437: 3404: 3380: 3379: 3348: 3347: 3330:(6): 1305–1317, 3313: 3306:Acta Cybernetica 3299: 3286: 3255: 3254: 3223:Bienstock, Dan; 3218: 3205: 3170: 3153: 3141: 3112: 3104:(3): 1311–1316, 3089: 3070: 3033: 3023: 3017: 3011: 3005: 2999: 2990: 2984: 2978: 2972: 2966: 2960: 2954: 2948: 2942: 2932: 2926: 2920: 2911: 2905: 2899: 2893: 2887: 2881: 2875: 2869: 2863: 2849: 2840: 2826: 2820: 2814: 2805: 2799: 2793: 2787: 2781: 2774: 2768: 2758: 2752: 2746: 2737: 2731: 2725: 2719: 2713: 2707: 2694: 2688: 2682: 2676: 2670: 2664: 2651: 2645: 2636: 2630: 2621: 2615: 2606: 2600: 2591: 2585: 2579: 2569: 2563: 2553: 2547: 2541: 2535: 2529: 2523: 2517: 2511: 2505: 2499: 2493: 2487: 2477: 2471: 2469: 2465: 2452:Scheffler (1992) 2441: 2435: 2425: 2419: 2414:, Lemma 3 p.99; 2409: 2403: 2397: 2391: 2377: 2371: 2365: 2359: 2353: 2344: 2338: 2329: 2306:Scheffler (1990) 2299: 2290: 2284: 2278: 2269: 2258: 2252: 2243: 2225: 2216: 2210: 2201: 2191: 2185: 2179: 2166: 2160: 2086:exponential time 2079:space complexity 2075: 1947: 1835:VLSI layout for 1774: 1771:, the graphs in 1770: 1759:Structure theory 1754: 1745: 1737: 1730: 1721: 1712: 1700: 1693: 1684: 1675: 1668: 1658: 1651: 1646: 1642: 1638: 1634: 1630: 1610: 1603: 1599: 1595: 1591: 1587: 1583: 1571: 1567: 1563: 1556: 1552: 1548: 1544: 1540: 1536: 1528: 1516: 1512: 1508: 1496: 1481:states that the 1479:Wagner's theorem 1477:. For instance, 1475:forbidden minors 1472: 1468: 1464: 1457: 1453: 1449: 1437: 1433: 1405: 1320: 1316: 1312: 1293: 1286: 1282: 1272: 1268: 1264: 1260: 1256: 1240: 1236: 1225: 1221: 1217: 1201: 1200: 1199: 1195: 1183: 1176: 1172: 1166: 1165: 1161: 1136: 1129: 1094: 1092: 1091: 1078: 1076: 1075: 1061: 1060: 1059: 1055: 1046: 1044: 1043: 1018: 1014: 1003: 999: 995: 957: 942: 938: 934: 930: 925: 924: 923: 919: 910: 895: 869: 865: 861: 857: 853: 849: 845: 841: 837: 833: 825: 821: 811: 797: 793: 789: 785: 781: 777: 769: 750: 746: 737:caterpillar tree 704: 700: 696: 692: 688: 684: 680: 676: 668: 664: 660: 656: 652: 648: 644: 640: 636: 628: 608: 604: 600: 596: 592: 584: 580: 576: 569: 562: 558: 554: 546: 542: 538: 534: 527: 523: 519: 515: 511: 503: 495: 491: 487: 483: 463: 456: 449: 442: 438: 427: 420: 416: 406:Gluing sequences 385: 378: 374: 370: 368: 344: 340: 321: 319: 318: 313: 308: 307: 295: 294: 282: 281: 265: 248: 241: 237: 229: 225: 218: 189: 168:space complexity 161: 153: 149: 87: 67: 55: 51: 39: 35: 5235: 5234: 5230: 5229: 5228: 5226: 5225: 5224: 5200: 5199: 5198: 5165: 5140: 5129: 5081: 5004:Robertson, Neil 4972:Robertson, Neil 4940:Robertson, Neil 4922: 4912: 4838: 4645: 4618: 4591: 4558: 4291: 4275:, p. 126, 4233: 4094: 4092: 4088: 4082: 4067: 4054: 4009: 3963: 3881: 3813: 3779: 3668: 3638: 3582: 3540: 3462: 3446: 3225:Robertson, Neil 3168:10.1137/0608024 3151: 3079: 3041: 3036: 3024: 3020: 3012: 3008: 3000: 2993: 2985: 2981: 2973: 2969: 2963:Suderman (2004) 2961: 2957: 2949: 2945: 2933: 2929: 2921: 2914: 2906: 2902: 2894: 2890: 2882: 2878: 2870: 2866: 2850: 2843: 2827: 2823: 2815: 2808: 2800: 2796: 2788: 2784: 2775: 2771: 2759: 2755: 2747: 2740: 2732: 2728: 2720: 2716: 2708: 2697: 2689: 2685: 2677: 2673: 2665: 2654: 2646: 2639: 2631: 2624: 2616: 2609: 2601: 2594: 2586: 2582: 2570: 2566: 2554: 2550: 2542: 2538: 2530: 2526: 2518: 2514: 2508:Golovach (1993) 2506: 2502: 2494: 2490: 2478: 2474: 2470:-vertex forest. 2467: 2459: 2455: 2442: 2438: 2426: 2422: 2410: 2406: 2398: 2394: 2378: 2374: 2366: 2362: 2354: 2347: 2339: 2332: 2322:Skodinis (2003) 2318:Skodinis (2000) 2300: 2293: 2285: 2281: 2270: 2261: 2253: 2246: 2236:Lengauer (1981) 2226: 2219: 2211: 2204: 2192: 2188: 2180: 2169: 2161: 2157: 2153: 2144:Strahler number 2138:Graph bandwidth 2110: 2069: 2046: 2031: 1955: 1953:Compiler design 1935: 1923:-layer drawing. 1866:crossing number 1854: 1798: 1793: 1772: 1768: 1761: 1753: 1747: 1739: 1736: 1732: 1729: 1723: 1720: 1714: 1711: 1702: 1699: 1695: 1692: 1686: 1683: 1677: 1674: 1670: 1667: 1663: 1657: 1653: 1649: 1644: 1640: 1636: 1632: 1628: 1617: 1605: 1601: 1597: 1593: 1589: 1585: 1577: 1569: 1565: 1561: 1554: 1550: 1546: 1542: 1538: 1534: 1526: 1514: 1510: 1507: 1501: 1495: 1489: 1470: 1466: 1462: 1458:), then by the 1455: 1451: 1447: 1444: 1435: 1431: 1424: 1396: 1389: 1381:interval graphs 1318: 1314: 1310: 1304: 1288: 1287:. For the case 1284: 1278: 1270: 1266: 1262: 1258: 1254: 1247: 1238: 1227: 1223: 1219: 1215: 1208: 1197: 1191: 1190: 1189: 1178: 1174: 1163: 1157: 1156: 1155: 1148: 1147: 1142: 1134: 1131: 1121:interval orders 1087: 1085: 1080: 1071: 1069: 1064: 1057: 1050: 1049: 1048: 1039: 1037: 1032: 1016: 1005: 1001: 997: 986: 944: 940: 936: 932: 928: 921: 914: 913: 912: 901: 893: 867: 866:-clique of the 863: 859: 855: 851: 847: 846:-leaves, and a 843: 839: 835: 827: 823: 822:vertices; in a 816: 813:maximal cliques 803: 795: 791: 787: 783: 779: 775: 770:edges, and the 752: 748: 744: 729: 715:pursuit–evasion 711: 702: 698: 694: 690: 686: 682: 678: 674: 666: 662: 658: 654: 650: 646: 642: 638: 634: 631:linear ordering 626: 623: 606: 602: 598: 594: 590: 587:maximal cliques 582: 578: 571: 567: 560: 556: 552: 544: 540: 536: 532: 525: 521: 517: 513: 509: 501: 493: 489: 485: 481: 470: 462: 458: 455: 451: 448: 444: 440: 437: 433: 426: 422: 418: 415: 411: 408: 396: 384: 380: 376: 372: 366: 361: 359: 353: 342: 330: 303: 299: 290: 286: 277: 273: 271: 268: 267: 253: 247: 243: 239: 235: 227: 226:of vertices of 224: 220: 216: 187: 180: 159: 151: 147: 85: 65: 53: 49: 37: 33: 17: 12: 11: 5: 5233: 5223: 5222: 5217: 5212: 5197: 5196: 5171: 5153:(3): 203–225, 5133: 5127: 5106: 5085: 5079: 5056: 5042: 5032: 5020:(2): 325–357, 5000: 4968: 4936: 4915: 4910: 4888: 4878:(9): 675–684, 4867: 4842: 4836: 4823: 4775: 4730: 4712:(4): 465–475, 4699: 4674: 4649: 4643: 4622: 4616: 4595: 4589: 4567:Bodlaender, H. 4562: 4556: 4521: 4509:(2): 181–184, 4492: 4463: 4451:(6): 345–350, 4438: 4421: 4409: 4397:(2): 347–367, 4384: 4353: 4341:(3): 233–248, 4328: 4303: 4289: 4266: 4248:(5): 517–522, 4237: 4231: 4210: 4187: 4154: 4144:(5): 191–196, 4131: 4100: 4080: 4058: 4052: 4021: 4007: 3975: 3961: 3931: 3906: 3901:. As cited by 3893: 3875:Wood, David R. 3867:Dujmović, Vida 3863: 3845:(2): 267–292, 3833:Wood, David R. 3829:Whitesides, S. 3817: 3811: 3795:Downey, Rod G. 3791: 3777: 3743: 3731:(2): 167–182, 3714: 3691: 3661: 3651:(1): 158–190, 3631: 3603:(4): 197–203, 3586: 3580: 3544: 3538: 3502: 3482:(2): 358–402, 3468: 3450: 3444: 3406: 3396:(2): 190–200, 3382: 3350: 3314: 3301: 3288: 3270:(2): 226–249, 3257: 3245:(2): 274–283, 3220: 3207: 3189:(3): 382–394, 3172: 3162:(2): 277–284, 3143: 3114: 3091: 3077: 3042: 3040: 3037: 3035: 3034: 3018: 3006: 2991: 2979: 2967: 2955: 2951:Hliněny (2003) 2943: 2935:Möhring (1990) 2927: 2912: 2900: 2888: 2876: 2864: 2841: 2833:Diestel (1995) 2821: 2806: 2794: 2782: 2769: 2765:Gustedt (1993) 2753: 2738: 2726: 2722:Gustedt (1993) 2714: 2695: 2683: 2671: 2652: 2637: 2622: 2607: 2592: 2580: 2564: 2548: 2536: 2524: 2512: 2500: 2488: 2472: 2457: 2436: 2420: 2404: 2392: 2372: 2360: 2345: 2341:Arnborg (1985) 2330: 2302:Möhring (1990) 2291: 2279: 2259: 2244: 2217: 2202: 2186: 2167: 2154: 2152: 2149: 2148: 2147: 2141: 2135: 2129: 2123: 2117: 2109: 2106: 2056:-vertex graph 2045: 2042: 2030: 2027: 1954: 1951: 1950: 1949: 1924: 1873: 1869: 1853: 1850: 1826:perfect graphs 1797: 1794: 1792: 1789: 1760: 1757: 1751: 1734: 1727: 1718: 1706: 1697: 1690: 1681: 1672: 1665: 1655: 1616: 1613: 1505: 1493: 1487:complete graph 1443: 1440: 1423: 1420: 1388: 1385: 1327:chordal graphs 1303: 1300: 1246: 1243: 1207: 1204: 1143: 1132: 1126: 931:-vertex graph 900:has pathwidth 887:maximum degree 728: 725: 710: 707: 622: 619: 508:that contains 506:interval graph 478:interval graph 469: 466: 460: 453: 446: 435: 424: 413: 407: 404: 395: 392: 382: 364: 355: 323: 322: 311: 306: 302: 298: 293: 289: 285: 280: 276: 250: 245: 222: 179: 176: 75:maximum clique 15: 9: 6: 4: 3: 2: 5232: 5221: 5218: 5216: 5213: 5211: 5208: 5207: 5205: 5192: 5187: 5183: 5179: 5178: 5172: 5168:on 2003-05-03 5164: 5160: 5156: 5152: 5148: 5147: 5139: 5134: 5130: 5124: 5120: 5116: 5112: 5107: 5103: 5099: 5095: 5091: 5086: 5082: 5076: 5072: 5068: 5064: 5063: 5057: 5052: 5048: 5043: 5038: 5033: 5028: 5023: 5019: 5015: 5014: 5009: 5005: 5001: 4996: 4991: 4987: 4983: 4982: 4977: 4976:Seymour, Paul 4973: 4969: 4964: 4959: 4955: 4951: 4950: 4945: 4944:Seymour, Paul 4941: 4937: 4932: 4928: 4921: 4916: 4913: 4907: 4903: 4899: 4895: 4889: 4885: 4881: 4877: 4873: 4868: 4863: 4858: 4854: 4850: 4849: 4843: 4839: 4837:3-211-82177-5 4833: 4829: 4824: 4820: 4816: 4811: 4806: 4802: 4798: 4794: 4790: 4789: 4784: 4780: 4776: 4771: 4768: 4764: 4760: 4756: 4752: 4748: 4744: 4740: 4736: 4731: 4727: 4723: 4719: 4715: 4711: 4707: 4706: 4700: 4695: 4690: 4686: 4682: 4681: 4675: 4670: 4665: 4662:(1): 97–101, 4661: 4657: 4656: 4650: 4646: 4640: 4636: 4632: 4628: 4623: 4619: 4613: 4609: 4605: 4601: 4596: 4592: 4586: 4582: 4578: 4574: 4573: 4568: 4563: 4559: 4553: 4548: 4543: 4539: 4535: 4531: 4527: 4522: 4517: 4512: 4508: 4504: 4503: 4498: 4493: 4488: 4483: 4479: 4475: 4474: 4469: 4464: 4459: 4454: 4450: 4446: 4445: 4439: 4435: 4431: 4427: 4422: 4417: 4416: 4410: 4405: 4400: 4396: 4392: 4391: 4385: 4381: 4377: 4373: 4369: 4365: 4361: 4360: 4354: 4349: 4344: 4340: 4336: 4335: 4329: 4324: 4319: 4315: 4311: 4310: 4304: 4300: 4296: 4292: 4290:0-7695-0850-2 4286: 4282: 4278: 4274: 4273: 4267: 4263: 4259: 4255: 4251: 4247: 4243: 4238: 4234: 4228: 4224: 4220: 4216: 4211: 4207: 4203: 4199: 4195: 4194: 4188: 4183: 4178: 4174: 4170: 4166: 4162: 4161: 4155: 4151: 4147: 4143: 4139: 4138: 4132: 4128: 4124: 4120: 4116: 4112: 4108: 4107: 4101: 4091:on 2011-07-24 4087: 4083: 4081:90-393-1528-0 4077: 4073: 4066: 4065: 4059: 4055: 4053:3-540-55284-7 4049: 4044: 4039: 4035: 4031: 4027: 4022: 4018: 4014: 4010: 4004: 3999: 3994: 3990: 3989: 3984: 3980: 3976: 3972: 3968: 3964: 3958: 3954: 3950: 3946: 3945: 3940: 3936: 3932: 3927: 3922: 3918: 3914: 3913: 3907: 3904: 3899: 3894: 3889: 3888: 3880: 3876: 3872: 3868: 3864: 3860: 3856: 3852: 3848: 3844: 3840: 3839: 3834: 3830: 3826: 3825:Fellows, M.R. 3822: 3818: 3814: 3812:0-387-94883-X 3808: 3804: 3800: 3796: 3792: 3788: 3784: 3780: 3778:0-7695-2468-0 3774: 3770: 3766: 3762: 3761: 3756: 3752: 3748: 3744: 3739: 3734: 3730: 3726: 3725: 3720: 3719:Kühn, Daniela 3715: 3711: 3707: 3703: 3699: 3698: 3692: 3688: 3684: 3680: 3676: 3675: 3667: 3662: 3658: 3654: 3650: 3646: 3645: 3637: 3632: 3628: 3624: 3620: 3616: 3611: 3606: 3602: 3598: 3597: 3592: 3587: 3583: 3577: 3572: 3567: 3563: 3559: 3555: 3554: 3549: 3545: 3541: 3535: 3530: 3525: 3521: 3517: 3513: 3512: 3507: 3503: 3498: 3493: 3489: 3485: 3481: 3477: 3473: 3469: 3461: 3460: 3455: 3451: 3447: 3441: 3436: 3431: 3427: 3423: 3419: 3415: 3411: 3407: 3403: 3399: 3395: 3391: 3387: 3383: 3378: 3373: 3370:(1–2): 1–45, 3369: 3365: 3364: 3359: 3355: 3351: 3346: 3341: 3337: 3333: 3329: 3325: 3324: 3319: 3315: 3311: 3307: 3302: 3297: 3293: 3289: 3285: 3281: 3277: 3273: 3269: 3265: 3264: 3258: 3253: 3248: 3244: 3240: 3239: 3234: 3233:Thomas, Robin 3230: 3229:Seymour, Paul 3226: 3221: 3216: 3212: 3211:Berge, Claude 3208: 3204: 3200: 3196: 3192: 3188: 3184: 3183: 3178: 3173: 3169: 3165: 3161: 3157: 3149: 3144: 3140: 3136: 3132: 3128: 3124: 3120: 3115: 3111: 3107: 3103: 3099: 3098: 3092: 3088: 3084: 3080: 3074: 3069: 3064: 3060: 3056: 3055:Thomas, Robin 3052: 3051:Seymour, Paul 3048: 3044: 3043: 3031: 3027: 3022: 3015: 3014:Miller (1956) 3010: 3003: 2998: 2996: 2988: 2983: 2976: 2971: 2964: 2959: 2952: 2947: 2940: 2936: 2931: 2924: 2919: 2917: 2909: 2904: 2897: 2892: 2885: 2880: 2873: 2868: 2861: 2857: 2853: 2848: 2846: 2838: 2834: 2830: 2825: 2818: 2813: 2811: 2803: 2798: 2791: 2786: 2778: 2773: 2766: 2762: 2757: 2750: 2745: 2743: 2735: 2730: 2723: 2718: 2711: 2706: 2704: 2702: 2700: 2692: 2687: 2680: 2675: 2668: 2663: 2661: 2659: 2657: 2649: 2644: 2642: 2634: 2629: 2627: 2619: 2614: 2612: 2604: 2599: 2597: 2589: 2584: 2577: 2573: 2568: 2561: 2557: 2552: 2545: 2540: 2533: 2528: 2521: 2516: 2509: 2504: 2497: 2492: 2485: 2481: 2476: 2463: 2453: 2449: 2445: 2440: 2433: 2429: 2424: 2417: 2413: 2408: 2401: 2396: 2390:, Theorem 51. 2389: 2385: 2381: 2376: 2369: 2364: 2357: 2352: 2350: 2342: 2337: 2335: 2327: 2323: 2319: 2315: 2311: 2307: 2303: 2298: 2296: 2288: 2283: 2277: 2273: 2268: 2266: 2264: 2256: 2251: 2249: 2241: 2237: 2233: 2229: 2224: 2222: 2214: 2209: 2207: 2199: 2195: 2190: 2183: 2178: 2176: 2174: 2172: 2164: 2159: 2155: 2145: 2142: 2139: 2136: 2133: 2130: 2127: 2124: 2121: 2118: 2115: 2112: 2111: 2105: 2103: 2099: 2095: 2091: 2087: 2082: 2080: 2073: 2067: 2063: 2059: 2055: 2051: 2041: 2039: 2035: 2026: 2024: 2020: 2016: 2012: 2008: 2004: 1999: 1996: 1992: 1988: 1984: 1980: 1976: 1972: 1968: 1964: 1960: 1946: 1942: 1938: 1933: 1929: 1926:A graph with 1925: 1922: 1918: 1914: 1910: 1906: 1902: 1898: 1894: 1890: 1886: 1882: 1878: 1874: 1870: 1867: 1863: 1862: 1861: 1859: 1858:graph drawing 1852:Graph drawing 1849: 1847: 1843: 1838: 1837:Boolean logic 1834: 1829: 1827: 1822: 1818: 1814: 1809: 1805: 1803: 1788: 1786: 1782: 1778: 1766: 1756: 1750: 1743: 1726: 1717: 1709: 1705: 1689: 1680: 1660: 1621: 1612: 1608: 1581: 1575: 1558: 1532: 1524: 1520: 1504: 1500: 1492: 1488: 1484: 1483:planar graphs 1480: 1476: 1461: 1439: 1429: 1419: 1417: 1413: 1409: 1403: 1399: 1394: 1384: 1382: 1378: 1374: 1370: 1366: 1362: 1358: 1354: 1349: 1347: 1346:circle graphs 1343: 1340: 1336: 1332: 1328: 1324: 1323:planar graphs 1308: 1299: 1297: 1291: 1281: 1276: 1252: 1249:Pathwidth is 1242: 1234: 1230: 1213: 1203: 1202:upper bound. 1194: 1187: 1182: 1170: 1160: 1153: 1146: 1140: 1124: 1122: 1118: 1114: 1110: 1106: 1101: 1098: 1090: 1083: 1074: 1067: 1054: 1042: 1035: 1030: 1026: 1021: 1012: 1008: 993: 989: 984: 980: 976: 971: 969: 965: 961: 955: 951: 947: 918: 908: 904: 899: 890: 888: 884: 880: 875: 873: 831: 819: 814: 810: 806: 802:with exactly 801: 800:chordal graph 773: 767: 763: 759: 755: 738: 733: 724: 721: 716: 706: 672: 632: 618: 615: 614:chordal graph 610: 588: 574: 564: 550: 529: 507: 479: 474: 465: 431: 421:. The graphs 403: 401: 391: 389: 367: 358: 350: 348: 338: 334: 329: 309: 304: 300: 296: 291: 287: 283: 278: 274: 264: 260: 256: 251: 233: 232: 231: 214: 210: 207: and 206: 202: 194: 184: 175: 173: 169: 165: 157: 145: 141: 136: 134: 130: 129:graph drawing 126: 122: 118: 114: 110: 106: 102: 97: 95: 91: 83: 80: 76: 72: 63: 59: 47: 43: 32: 28: 24: 19: 5181: 5175: 5163:the original 5150: 5144: 5110: 5096:(1): 40–59, 5093: 5089: 5061: 5050: 5036: 5017: 5011: 4988:(1): 43–76, 4985: 4979: 4956:(1): 39–61, 4953: 4947: 4930: 4926: 4893: 4875: 4871: 4852: 4846: 4827: 4795:(2): 81–97, 4792: 4786: 4769: 4766: 4738: 4734: 4709: 4703: 4687:(1): 87–92, 4684: 4678: 4659: 4653: 4626: 4599: 4571: 4529: 4524:Kloks, Ton; 4506: 4500: 4477: 4471: 4448: 4442: 4425: 4414: 4394: 4388: 4366:(1): 47–60, 4363: 4357: 4338: 4332: 4313: 4307: 4271: 4245: 4241: 4214: 4200:(1): 42–54, 4197: 4191: 4164: 4158: 4141: 4135: 4113:(1): 91–99, 4110: 4104: 4093:, retrieved 4086:the original 4063: 4025: 3987: 3943: 3935:Feige, Uriel 3919:(1): 50–79, 3916: 3910: 3897: 3886: 3842: 3838:Algorithmica 3836: 3821:Dujmović, V. 3802: 3759: 3728: 3722: 3704:(1): 27–30, 3701: 3695: 3681:(1): 27–41, 3678: 3672: 3648: 3644:Algorithmica 3642: 3610:math/9410211 3600: 3594: 3552: 3510: 3479: 3475: 3458: 3413: 3393: 3389: 3367: 3361: 3357: 3327: 3321: 3309: 3305: 3295: 3267: 3263:Algorithmica 3261: 3242: 3236: 3214: 3186: 3182:Algorithmica 3180: 3176: 3159: 3155: 3122: 3118: 3101: 3095: 3058: 3021: 3009: 2982: 2970: 2958: 2946: 2930: 2903: 2896:Berge (1967) 2891: 2879: 2867: 2824: 2797: 2785: 2777:Garbe (1995) 2772: 2756: 2729: 2717: 2686: 2674: 2648:Garbe (1995) 2588:Fomin (2003) 2583: 2567: 2551: 2539: 2527: 2515: 2503: 2491: 2475: 2461: 2439: 2423: 2407: 2395: 2375: 2363: 2282: 2189: 2158: 2093: 2089: 2083: 2071: 2065: 2061: 2057: 2053: 2047: 2032: 2022: 2018: 2014: 2010: 2006: 2002: 2000: 1990: 1986: 1982: 1978: 1967:control flow 1956: 1944: 1940: 1936: 1931: 1927: 1920: 1916: 1912: 1908: 1904: 1900: 1896: 1892: 1888: 1884: 1880: 1876: 1855: 1830: 1806: 1799: 1791:Applications 1762: 1748: 1741: 1724: 1715: 1707: 1703: 1687: 1678: 1661: 1626: 1606: 1596:contains an 1579: 1559: 1530: 1502: 1490: 1446:If a family 1445: 1425: 1422:Graph minors 1401: 1397: 1390: 1365:split graphs 1361:Halin graphs 1350: 1305: 1289: 1279: 1248: 1232: 1228: 1209: 1192: 1180: 1168: 1158: 1149: 1102: 1088: 1081: 1072: 1065: 1052: 1040: 1033: 1025:planar graph 1022: 1010: 1006: 991: 987: 975:clique-width 972: 968:Halin graphs 953: 949: 945: 916: 906: 902: 891: 876: 829: 817: 808: 804: 765: 761: 757: 753: 751:has at most 742: 712: 624: 611: 572: 565: 530: 499: 432:of the sets 409: 397: 362: 356: 351: 336: 332: 324: 262: 258: 254: 209:Paul Seymour 201:graph minors 198: 137: 113:graph minors 109:graph minors 98: 93: 89: 70: 45: 26: 23:graph theory 20: 18: 4565:Kloks, T.; 4043:10068/43314 3125:(1): 2–23, 2098:maximum cut 2029:Linguistics 1959:compilation 1777:clique-sums 1454:is also in 1430:of a graph 1412:Guha (2000) 1331:complements 1313:is at most 1212:NP-complete 1186:lower bound 1152:cubic graph 1139:cubic graph 1113:complements 996:of a graph 983:line graphs 838:-path is a 798:-tree is a 786:-path or a 77:size in an 5204:Categories 5053:, Elsevier 4547:1874/16672 4095:2010-05-06 4008:0897913078 3962:1581139608 3871:Morin, Pat 3571:1874/16625 3529:1874/16657 3497:1874/16538 3435:1874/17927 3345:1874/16670 3078:0897913612 3047:Alon, Noga 3039:References 2132:Degeneracy 2126:Tree-depth 1919:-crossing 1879:-crossing 1817:line graph 1813:hypergraph 1097:dual graph 774:pathwidth- 645:, at most 388:path graph 369:| − 1 347:path graph 178:Definition 82:supergraph 44:, and the 42:path graph 4933:: 167–176 4434:303738168 4262:120745961 4182:1956/1151 3139:122263659 1662:Although 1339:bipartite 879:treewidth 794:-tree. A 297:⊆ 284:∩ 172:treewidth 101:treewidth 46:pathwidth 4819:13310704 4781:(1956), 4763:64469353 4726:19415148 4430:ProQuest 4127:43123449 3971:14097859 3877:(2003), 3801:(1999), 3787:13238254 3284:37693881 3154:-tree", 3087:17521329 2120:Cutwidth 2114:Boxicity 2108:See also 2068:in time 1981:to node 1821:coloring 1781:embedded 1497:nor the 1469:, where 1373:cographs 1188:and the 1173:, where 1137:-vertex 1105:cographs 979:cutwidth 958:. Since 896:-vertex 883:cutwidth 127:design, 79:interval 62:vertices 4743:Bibcode 4380:2648030 4299:9854056 4017:1854173 3859:2298634 3627:2442557 3203:9690525 2862:, p. 8. 2693:, p.12. 1957:In the 1218:, when 1196:⁄ 1162:⁄ 1150:In any 1086:√ 1070:√ 1056:⁄ 1038:√ 1023:In any 920:⁄ 772:maximal 768:− 1)/2) 577:, then 211: ( 140:NP-hard 117:forests 58:subsets 5125:  5077:  4908:  4834:  4817:  4761:  4724:  4641:  4614:  4587:  4554:  4432:  4378:  4297:  4287:  4260:  4229:  4125:  4078:  4050:  4015:  4005:  3969:  3959:  3857:  3809:  3785:  3775:  3625:  3578:  3536:  3442:  3282:  3201:  3137:  3085:  3075:  1523:forest 1400:((log 1375:, for 1371:, for 1359:, and 1337:, and 1210:It is 1111:, the 981:, via 966:, and 898:forest 743:Every 727:Bounds 605:, and 547:. The 492:, and 360:| 138:It is 131:, and 5166:(PDF) 5141:(PDF) 4923:(PDF) 4759:S2CID 4722:S2CID 4376:S2CID 4359:Order 4295:S2CID 4258:S2CID 4123:S2CID 4089:(PDF) 4068:(PDF) 4013:S2CID 3967:S2CID 3882:(PDF) 3855:S2CID 3783:S2CID 3669:(PDF) 3639:(PDF) 3623:S2CID 3605:arXiv 3463:(PDF) 3312:: 1–2 3280:S2CID 3199:S2CID 3135:S2CID 3083:S2CID 2780:type. 2151:Notes 1891:onto 1872:tree. 1785:genus 1428:minor 1179:0.082 1063:size 905:(log 249:, and 156:trees 92:, or 31:graph 29:of a 5123:ISBN 5075:ISBN 4906:ISBN 4832:ISBN 4815:PMID 4639:ISBN 4612:ISBN 4585:ISBN 4552:ISBN 4285:ISBN 4227:ISBN 4076:ISBN 4048:ISBN 4003:ISBN 3957:ISBN 3807:ISBN 3773:ISBN 3576:ISBN 3534:ISBN 3440:ISBN 3073:ISBN 2464:+ 1) 2100:and 2070:O(2 1993:. A 1911:and 1903:and 1833:CMOS 1802:VLSI 1796:VLSI 1763:The 1410:and 1167:+ o( 977:and 952:log 892:Any 832:+ 1) 213:1983 125:VLSI 103:and 25:, a 5186:doi 5182:127 5155:doi 5115:doi 5098:doi 5067:doi 5022:doi 4990:doi 4958:doi 4898:doi 4880:doi 4857:doi 4805:hdl 4797:doi 4751:doi 4714:doi 4689:doi 4664:doi 4631:doi 4604:doi 4577:doi 4542:hdl 4534:doi 4511:doi 4482:doi 4453:doi 4399:doi 4368:doi 4343:doi 4318:doi 4314:307 4277:doi 4250:doi 4219:doi 4202:doi 4177:hdl 4169:doi 4146:doi 4115:doi 4038:hdl 4030:doi 3993:doi 3949:doi 3921:doi 3917:113 3847:doi 3765:doi 3733:doi 3729:145 3706:doi 3683:doi 3653:doi 3615:doi 3566:hdl 3558:doi 3524:hdl 3516:doi 3492:hdl 3484:doi 3430:hdl 3422:doi 3398:doi 3372:doi 3368:209 3340:hdl 3332:doi 3272:doi 3247:doi 3191:doi 3164:doi 3127:doi 3119:BIT 3106:doi 3063:doi 2456:log 1961:of 1800:In 1710:− 1 1609:− 2 1582:+ 1 1506:3,3 1333:of 1292:= 2 1115:of 943:is 935:is 820:+ 1 764:+ ( 603:CDF 599:CDE 595:ACD 591:ABC 575:+ 1 494:CDF 490:CDE 486:ACD 482:ABC 476:An 398:As 354:max 88:), 84:of 64:of 60:of 48:of 21:In 5206:: 5180:, 5151:14 5149:, 5143:, 5121:, 5094:47 5092:, 5073:, 5018:92 5016:, 5006:; 4986:89 4984:, 4974:; 4954:35 4952:, 4942:; 4929:, 4925:, 4904:, 4876:26 4874:, 4853:58 4851:, 4813:, 4803:, 4793:63 4791:, 4785:, 4770:15 4757:, 4749:, 4739:27 4737:, 4720:, 4710:16 4708:, 4685:36 4683:, 4660:43 4658:, 4637:, 4610:, 4583:, 4550:, 4540:, 4507:55 4505:, 4478:54 4476:, 4449:42 4447:, 4395:88 4393:, 4374:, 4364:11 4362:, 4339:45 4337:, 4312:, 4293:, 4283:, 4256:, 4244:, 4225:, 4198:55 4196:, 4175:, 4165:38 4163:, 4142:97 4140:, 4121:, 4111:19 4109:, 4074:, 4046:, 4036:, 4011:, 4001:, 3981:; 3965:, 3955:, 3937:; 3915:, 3884:, 3873:; 3869:; 3853:, 3843:52 3841:, 3831:; 3823:; 3797:; 3781:, 3771:, 3753:; 3749:; 3727:, 3700:, 3679:55 3677:, 3671:, 3649:63 3647:, 3641:, 3621:, 3613:, 3601:57 3599:, 3574:, 3564:, 3532:, 3522:, 3490:, 3480:21 3478:, 3438:, 3428:, 3416:, 3394:43 3392:, 3366:, 3338:, 3328:25 3326:, 3310:11 3308:, 3278:, 3268:52 3266:, 3243:52 3241:, 3231:; 3227:; 3197:, 3187:27 3185:, 3158:, 3133:, 3123:25 3121:, 3102:23 3100:, 3081:, 3071:, 3053:; 3049:; 3028:; 2994:^ 2937:; 2915:^ 2858:; 2854:; 2844:^ 2835:; 2831:; 2809:^ 2763:; 2741:^ 2698:^ 2655:^ 2640:^ 2625:^ 2610:^ 2595:^ 2574:; 2558:; 2460:(2 2386:; 2382:; 2348:^ 2333:^ 2324:; 2320:; 2316:; 2312:; 2308:; 2304:; 2294:^ 2274:; 2262:^ 2247:^ 2238:; 2234:; 2230:; 2220:^ 2205:^ 2196:; 2170:^ 2074:). 1943:× 1939:× 1875:A 1860:: 1848:. 1744:!) 1611:. 1426:A 1418:. 1404:)) 1355:, 1348:. 1298:. 1231:(2 1123:. 1107:, 962:, 874:. 807:− 760:− 735:A 607:FG 601:, 597:, 593:, 563:. 488:, 484:, 464:. 349:. 266:, 261:≤ 257:≤ 203:, 174:. 135:. 96:. 5195:. 5188:: 5170:. 5157:: 5132:. 5117:: 5105:. 5100:: 5084:. 5069:: 5055:. 5041:. 5031:. 5024:: 4999:. 4992:: 4967:. 4960:: 4935:. 4931:3 4900:: 4887:. 4882:: 4866:. 4859:: 4841:. 4822:. 4807:: 4799:: 4774:. 4753:: 4745:: 4729:. 4716:: 4698:. 4691:: 4673:. 4666:: 4648:. 4633:: 4621:. 4606:: 4594:. 4579:: 4561:. 4544:: 4536:: 4520:. 4513:: 4491:. 4484:: 4462:. 4455:: 4420:. 4408:. 4401:: 4383:. 4370:: 4352:. 4345:: 4327:. 4320:: 4302:. 4279:: 4265:. 4252:: 4246:3 4236:. 4221:: 4209:. 4204:: 4186:. 4179:: 4171:: 4153:. 4148:: 4130:. 4117:: 4099:. 4057:. 4040:: 4032:: 4020:. 3995:: 3974:. 3951:: 3930:. 3923:: 3905:. 3892:. 3862:. 3849:: 3816:. 3790:. 3767:: 3742:. 3735:: 3713:. 3708:: 3702:4 3690:. 3685:: 3660:. 3655:: 3630:. 3617:: 3607:: 3585:. 3568:: 3560:: 3543:. 3526:: 3518:: 3501:. 3494:: 3486:: 3467:. 3449:. 3432:: 3424:: 3405:. 3400:: 3381:. 3374:: 3358:k 3349:. 3342:: 3334:: 3300:. 3287:. 3274:: 3256:. 3249:: 3219:. 3206:. 3193:: 3177:k 3171:. 3166:: 3160:8 3152:k 3142:. 3129:: 3113:. 3108:: 3090:. 3065:: 3032:. 3016:. 3004:. 2989:. 2977:. 2965:. 2953:. 2941:. 2925:. 2910:. 2898:. 2886:. 2874:. 2839:. 2819:. 2804:. 2792:. 2767:. 2751:. 2724:. 2712:. 2681:. 2669:. 2650:. 2635:. 2620:. 2605:. 2590:. 2578:. 2562:. 2546:. 2510:. 2498:. 2468:n 2462:n 2458:3 2402:. 2358:. 2343:. 2328:. 2289:. 2257:. 2242:. 2215:. 2200:. 2184:. 2165:. 2094:n 2090:n 2072:n 2066:G 2062:w 2058:G 2054:n 2023:w 2019:w 2015:w 2011:w 2007:w 2003:w 1991:y 1987:x 1983:y 1979:x 1945:n 1941:p 1937:p 1932:p 1928:n 1921:h 1917:k 1913:k 1909:h 1905:k 1901:h 1897:k 1893:h 1889:G 1885:G 1881:h 1877:k 1773:F 1769:F 1752:2 1749:X 1742:p 1740:( 1735:p 1733:X 1728:0 1725:X 1719:1 1716:X 1708:p 1704:X 1698:p 1696:X 1691:3 1688:K 1682:1 1679:X 1673:p 1671:X 1666:p 1664:X 1656:p 1654:X 1650:p 1645:G 1641:G 1637:p 1633:G 1629:p 1607:n 1602:X 1598:n 1594:X 1590:X 1586:k 1580:k 1578:2 1570:X 1566:X 1562:X 1555:F 1551:X 1547:F 1543:p 1539:F 1535:p 1527:F 1515:X 1511:F 1503:K 1494:5 1491:K 1471:X 1467:X 1463:F 1456:F 1452:F 1448:F 1436:G 1432:G 1402:n 1398:O 1319:G 1315:k 1311:G 1290:k 1285:k 1280:k 1271:k 1267:k 1263:k 1259:k 1255:k 1239:c 1235:) 1233:n 1229:O 1224:n 1220:k 1216:k 1198:6 1193:n 1181:n 1175:n 1171:) 1169:n 1164:6 1159:n 1141:? 1135:n 1130:: 1093:) 1089:n 1084:( 1082:O 1077:) 1073:n 1068:( 1066:O 1058:3 1053:n 1051:2 1045:) 1041:n 1036:( 1034:O 1017:G 1013:) 1011:G 1009:( 1007:L 1002:G 998:G 994:) 992:G 990:( 988:L 956:) 954:n 950:t 948:( 946:O 941:G 937:t 933:G 929:n 922:3 917:n 915:2 909:) 907:n 903:O 894:n 868:k 864:k 860:k 856:k 852:k 848:k 844:k 840:k 836:k 830:k 828:( 824:k 818:k 809:k 805:n 796:k 792:k 788:k 784:k 780:k 776:k 766:k 762:k 758:n 756:( 754:k 749:k 745:n 703:v 699:v 695:G 691:I 687:I 683:I 679:G 675:G 667:G 663:G 659:G 655:v 651:v 647:s 643:v 639:s 635:G 627:G 583:p 579:G 573:p 568:G 561:G 557:G 553:G 545:v 541:v 537:v 533:G 526:G 522:G 518:G 514:G 510:G 502:G 496:. 461:i 459:G 454:i 452:G 447:i 445:X 441:G 436:i 434:X 425:i 423:G 419:G 414:i 412:G 383:i 381:X 377:G 373:G 365:i 363:X 357:i 343:T 339:) 337:T 335:, 333:X 331:( 310:. 305:j 301:X 292:k 288:X 279:i 275:X 263:k 259:j 255:i 246:i 244:X 240:i 236:G 228:G 223:i 221:X 217:G 188:G 160:k 152:k 148:k 86:G 66:G 54:G 50:G 38:G 34:G

Index

graph theory
graph
path graph
subsets
vertices
maximum clique
interval
supergraph
treewidth
tree decompositions
graph minors
graph minors
forests
structure theory for minor-closed graph families
VLSI
graph drawing
computational linguistics
NP-hard
fixed-parameter tractable
trees
dynamic programming
space complexity
treewidth

Bodlaender (1994a)
graph minors
Neil Robertson
Paul Seymour
1983
tree decomposition

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.