Knowledge

Pastos Grandes

Source 📝

28: 404:
4,400 metres (14,400 ft). It only covers a fraction of the area of Pastos Grandes caldera and is probably a remnant of a once-larger lake that filled the moat of the caldera. Earlier lacustrine episodes left a layer of beige mud behind. This mud freezes during the winter months to a certain depth and
601:
species. Similar but different animal species have been found in other local lakes, indicating that they are largely separate systems. The animal flora of such Altiplano lakes is not very diverse, probably due to their relative youth and the harsh and often highly variable climates of the past in the
411:
Surfaces of open water are concentrated on the eastern edge of the salt pan, in its very centre and isolated areas on the western side, these all form an intricated network of interconnected ponds especially in the western half of the salt pan. One of these open water surfaces on the western side of
335:
Three large ignimbrite-forming eruptions occurred at Pastos Grandes during its history. At first, it was assumed that large eruptions first occurred 8.1 million years ago, a second 5.6 million years and a third 2.3 million years ago. However, it is not clear which of any eruption formed the caldera.
403:
At an elevation of 4,430 metres (14,530 ft), Pastos Grandes contains a lake basin north of Cerro Pastos Grandes, which is 10 kilometres (6.2 mi) wide and covers a surface area of about 100 square kilometres (39 sq mi)-120 square kilometres (46 sq mi) at an elevation of
356:
The 6.1 million years old Carcote ignimbrite may also have originated here. The 5.22 ± 0.02 million years old Alota ignimbrite was also attributed to Pastos Grandes, although it originated in a centre northeast of the Pastos Grandes caldera known as Cerro Juvina. These ignimbrites crop out on the
419:
of Pastos Grandes and reach the salt pan; the longest flow through the southeastern parts of the catchment. The entire drainage basin of the lake has a surface area of 655 square kilometres (253 sq mi)-660 square kilometres (250 sq mi) and is delimited to the west and east by
267:
which underwent repeated collapse in the past, most likely along defined sectors of its rim. It has been subdivided into two calderas, a larger Chuhuila caldera and the 40 by 25 kilometres (25 mi × 16 mi) smaller Pastos Grandes caldera. The caldera is about 35 by 40 kilometres
432:
are active or were recently active on the western side of the salt pan and bear names such as La Salsa, La Rumba and El Ojo Verde, where temperatures of 20–75 °C (68–167 °F) have been measured. On the western shore, colder springs predominate. The heat appears to originate from a
373:. The former of which lies on a lineament that appears to coincide with the caldera rim of Pastos Grandes, and the latter seems to rise from the ring fault of Pastos Grandes. but is apparently unrelated to the caldera. Cerro Chascon-Runtu Jarita is less than 100,000 years old according to 364:
Pastos Grandes was volcanically active for a long time, more than many other Altiplano-Puna volcanic complex centres. Later more recent volcanic centres formed within the caldera, the youngest of these centres are relatively recent Such recent centres close to Pastos Grandes are
1818:
Salisbury, Morgan J.; Jicha, Brian R.; Silva, Shanaka L. de; Singer, Brad S.; Jiménez, Néstor C.; Ort, Michael H. (2010-12-21). "40Ar/39Ar chronostratigraphy of Altiplano-Puna volcanic complex ignimbrites reveals the development of a major magmatic province".
2004:
Watts, Robert B.; Silva, Shanaka L. de; Rios, Guillermina Jimenez de; Croudace, Ian (1999-09-01). "Effusive eruption of viscous silicic magma triggered and driven by recharge: a case study of the Cerro Chascon-Runtu Jarita Dome Complex in Southwest Bolivia".
412:
the lake basin is known as Laguna Caliente, while another square-shaped lake in the southern part of the caldera is known as Laguna Khara. Sometimes after heavy precipitation, these open water surfaces can join into a ring lake around the centre.
357:
outside of the Pastos Grandes caldera, where they extend to distances of 50 kilometres (31 mi), but also cover parts of the caldera. Given the volumes involved, at least some of the eruptions are classified as 8 on the
487:
platform with numerous fabrics of carbonate deposition. It is unclear what drives its formation as the climate at Pastos Grandes is similar to that of other salt lakes without such platforms but it may be a consequence of
1745:
Muller, E.; Gaucher, E.C.; Durlet, C.; Moquet, J.S.; Moreira, M.; Rouchon, V.; Louvat, P.; Bardoux, G.; Noirez, S.; Bougeault, C.; Vennin, E.; Gérard, E.; Chavez, M.; Virgone, A.; Ader, M. (June 2020).
1704:"Million-year melt–presence in monotonous intermediate magma for a volcanic–plutonic assemblage in the Central Andes: Contrasting histories of crystal-rich and crystal-poor super-sized silicic magmas" 92:
of the Andes. Pastos Grandes has erupted a number of ignimbrites through its history, some of which exceeded a volume of 1,000 cubic kilometres (240 cu mi). After the ignimbrite phase, the
545:
species. Different water surfaces are dominated by different diatom species, distinctions that are only partly mediated by different salinities. Animal species found within the lakes include
1135:
Landrum, J. T.; Bennett, P. C.; Engel, A. S.; Alsina, M. A.; Pastén, P. A.; Milliken, K. (2009-04-01). "Partitioning geochemistry of arsenic and antimony, El Tatio Geyser Field, Chile".
340:
The 8.33 ± 0.15 million years old Sifon ignimbrite has a volume of over 1,000 cubic kilometres (240 cu mi), but it is not certain that Pastos Grandes was actually the source.
897:
Kaiser, J. F.; de Silva, S. L.; Ort, M. H.; Sunagua, M. (2011-12-01). "The Pastos Grandes Caldera Complex of SW Bolivia: The building of a composite upper crustal batholith".
352:
The 2.89 ± 0.01 million years old Pastos Grandes ignimbrite that has a volume of 1,500 cubic kilometres (360 cu mi) and is part of the second caldera-forming cycle.
349:
The 5.45 ± 0.02 million years old Chuhuilla ignimbrite with a volume of 1,200 cubic kilometres (290 cu mi) and was responsible for the first caldera-forming cycle.
268:(22 mi × 25 mi) wide and had a maximum depth of 400 metres (1,300 ft). Cerro Pastos Grandes is 5,802 metres (19,035 ft) high and shows traces of a 1673:
de Silva, Shanaka L.; Gosnold, William D. (2007-11-01). "Episodic construction of batholiths: Insights from the spatiotemporal development of an ignimbrite flare-up".
468:
mining. Salt contents range 144–371 grams per litre (0.0052–0.0134 lb/cu in). The salt chemistry is strongly influenced by the climate; the precipitation of
1025:
Francis, P.W.; Silva, S.L. De (1989). "Application of the Landsat Thematic Mapper to the identification of potentially active volcanoes in the central Andes".
1789:
Risacher, Francois; Eugster, Hans P. (1979-04-01). "Holocene pisoliths and encrustations associated with spring-fed surface pools, Pastos Grandes, Bolivia".
346:
The 3.3 ± 0.4 million years old Pastos Grandes II/Juvina ignimbrite has a volume of 50–100 cubic kilometres (12–24 cu mi) from the Juvina centre.
204:
and that volcanic centres are well conserved. The surface covered by volcanic rocks amounts to about 300,000 square kilometres (120,000 sq mi).
511:
formations encountered at Pastos Grandes are caused by the precipitation of calcite from oversaturated waters at the surface. What drives the loss of
2050:
Williams, W. D.; Carrick, T. R.; Bayly, I. a. E.; Green, J.; Herbst, D. B. (1995-03-01). "Invertebrates in salt lakes of the Bolivian Altiplano".
343:
The 6.2 ± 0.7 million years old Pastos Grandes I or Chuhuhuilla ignimbrite has with a volume of over 1,000 cubic kilometres (240 cu mi).
280:
on the north-northwestern, southwestern and southeastern side. The activity of Pastos Grandes may be associated with the ongoing development of a
1638: 200:
with the former dominating in the Chilean stratovolcanoes and the latter in the ignimbrites. The dry regional climate means that there is little
637:
is high and the temperatures can vary by as much as 15 °C (27 °F). During winter, they can drop as far as −25 °C (−13 °F).
590: 541: 288:
running through the region have influenced the shape of the calderas, giving them an elliptic shape which is also evident at Pastos Grandes.
625:
in December–March. An estimate for the total precipitation is about 200 millimetres per year (7.9 in/year). That is, the climate is
2101: 672:
Francis, P. W.; Wells, G. L. (1988-07-01). "Landsat Thematic Mapper observations of debris avalanche deposits in the Central Andes".
1183:
Warren, John K. (2010-02-01). "Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits".
653:
interests, with the Bolivian government seeking businesses to exploit the lithium deposits at Pastos Grandes, Uyuni and Coipasa.
1748:"The origin of continental carbonates in Andean salars: A multi-tracer geochemical approach in Laguna Pastos Grandes (Bolivia)" 1639:"Effusive silicic volcanism in the Central Andes: The Chao dacite and other young lavas of the Altiplano-Puna Volcanic Complex" 17: 2136: 1889:
Servant-Vildary, S.; Roux, M. (1990-05-01). "Multivariate analysis of diatoms and water chemistry in Bolivian saline lakes".
336:
A number of ignimbrites has been attributed to Pastos Grandes, some of them may be different names for the same ignimbrite:
2087:
Understanding large resurgent calderas and associated magma systems: the Pastos Grandes Caldera Complex, southwest Bolivia
370: 97: 2131: 1955:
Silva, Shanaka De; Zandt, George; Trumbull, Robert; Viramonte, José G.; Salas, Guido; Jiménez, Néstor (2006-01-01).
235:. Pastos Grandes is part of the Central Volcanic Zone along with about 50 volcanoes with recent activity and other 1957:"Large ignimbrite eruptions and volcano-tectonic depressions in the Central Andes: a thermomechanical perspective" 244: 136: 81: 37: 1947: 2126: 2151: 2106: 381:
manifestations suggest that volcanic activity may still occur at Pastos Grandes. Finally, Pastos Grandes and
140: 1600:
Dejoux, Claude (1993-09-01). "Benthic invertebrates of some saline lakes of the Sud Lipez region, Bolivia".
2121: 327:
rocks linked to Pastos Grandes were erupted from the Chascon-Runtu Jarita vents 94,000 - 85,000 years ago.
27: 609:
lakes that cover the region. The neighbouring Altiplano was formerly covered by lakes as well during the
1702:
Kaiser, Jason F.; de Silva, Shanaka; Schmitt, Axel K.; Economos, Rita; Sunagua, Mayel (1 January 2017).
2146: 358: 2141: 621:
The area of Pastos Grandes has a summer wet climate, with most of the precipitation falling during a
1547: 2116: 565: 2111: 1637:
de Silva, S. L.; Self, S.; Francis, P. W.; Drake, R. E.; Carlos, Ramirez R. (10 September 1994).
232: 224: 2086: 1534: 228: 89: 1719: 155:. The specific area of Pastos Grandes is remote and poorly accessible, the existence of the 124: 2014: 1968: 1935: 1828: 1798: 1759: 1715: 1682: 1653: 1578: 1192: 1144: 1034: 906: 681: 216: 73: 8: 398: 378: 2018: 1972: 1939: 1832: 1802: 1763: 1686: 1657: 1582: 1196: 1148: 1038: 910: 685: 2038: 1992: 1914: 1810: 1625: 1567:"The nature and distribution of upper cenozoic ignimbrite centres in the Central Andes" 705: 425: 374: 144: 1926:
Silva, S. L. de (1989-12-01). "Altiplano-Puna volcanic complex of the central Andes".
1527:"La gobernanza de las empresas estatales en la industria minera de los países andinos" 323:. The magmas underwent slow evolution in the 1,000,000 years preceding each eruption. 2067: 2030: 1996: 1984: 1906: 1877: 1844: 1777: 1733: 1694: 1617: 1591: 1566: 1046: 709: 697: 504: 408:
has formed polygonal structures as well as large cracks in the crust on its surface.
220: 2042: 1918: 1629: 1204: 1156: 2059: 2022: 1976: 1943: 1898: 1869: 1836: 1806: 1767: 1723: 1690: 1661: 1609: 1586: 1526: 1200: 1160: 1152: 1042: 689: 152: 1980: 1956: 613:. After they dried up, the Salar de Uyuni and Salar de Coipasa were left behind. 461: 285: 269: 101: 1857: 529:
grow within the open waters in Pastos Grandes, the diatoms being represented by
1728: 1703: 516: 512: 499:
are found at Pastos Grandes, usually associated with active or former springs.
489: 273: 148: 1772: 1747: 922: 920: 867: 865: 863: 861: 859: 857: 2095: 2071: 2034: 1988: 1910: 1881: 1848: 1781: 1737: 1621: 701: 586: 405: 292: 181: 52: 39: 1873: 1858:"Les diatomées des sédiments superficiels de quelques lacs salés de Bolivie" 1239: 1237: 1235: 1233: 1231: 956: 917: 854: 570: 382: 2026: 1254: 1252: 988: 986: 239:
generating volcanic centres. This ignimbritic volcanism began in the late
1104: 1092: 1080: 944: 630: 610: 530: 473: 312: 212: 1398: 1386: 1350: 1338: 1228: 1165: 2063: 1902: 1613: 1506: 1470: 1374: 1249: 983: 693: 634: 622: 582: 578: 559: 535: 479:
Unique among most other salars of the Andes, Pastos Grandes features a
469: 429: 366: 236: 208: 197: 177: 108: 85: 1665: 1068: 223:. This process has formed three main volcanic zones at the Andes, the 1840: 1316: 1314: 1312: 1297: 1116: 770: 606: 598: 594: 574: 484: 465: 421: 416: 304: 300: 277: 252: 173: 132: 93: 633:
rates can reach about 1,400 millimetres per year (55 in/year).
464:, the salt pan has been considered a potential site for lithium and 1139:. 12th International Symposium on Water-Rock Interaction (WRI-12). 546: 500: 496: 386: 320: 248: 189: 1446: 1309: 1275: 1273: 1271: 1269: 1267: 1218: 1216: 1214: 1005: 1003: 1001: 646: 550: 493: 457: 445: 308: 264: 240: 201: 156: 128: 112: 107:
The caldera is the site of a few lakes, some of which are fed by
77: 69: 748: 746: 744: 742: 740: 738: 736: 650: 526: 441: 437: 324: 316: 296: 281: 193: 1434: 1422: 1410: 1362: 1326: 1264: 1211: 998: 932: 830: 1701: 962: 926: 871: 818: 758: 733: 554: 453: 449: 185: 272:. It might be a 500–1,200 metres (1,600–3,900 ft) high 1954: 1948:
10.1130/0091-7613(1989)017<1102:APVCOT>2.3.CO;2
1086: 950: 626: 522: 508: 507:
are also encountered close to inactive springs. All these
207:
Volcanic activity in the region is the consequence of the
2049: 1817: 1744: 1512: 1476: 1404: 1392: 1380: 1356: 1344: 1258: 1243: 1134: 1074: 992: 776: 515:
and thus the oversaturation is not clear but may involve
476:
of water cause changes in the composition of the waters.
1636: 1110: 1098: 973: 971: 896: 1058: 1056: 299:
suite. Eruption products of Pastos Grandes are rich in
2003: 1303: 1122: 723: 721: 719: 247:, a large volcanic province which clusters around the 1494: 1482: 1458: 1285: 968: 1053: 842: 806: 794: 1888: 1452: 1320: 1020: 1018: 782: 716: 1518: 892: 890: 888: 886: 884: 882: 880: 667: 665: 428:contribute to the water budget of Pastos Grandes. 433:200–250 °C (392–482 °F) hot reservoir. 2093: 1961:Geological Society, London, Special Publications 1015: 31:Satellite image of the Pastos Grandes lake basin 1855: 1788: 1672: 1440: 1428: 1416: 1368: 1332: 1279: 1222: 1009: 938: 877: 836: 824: 764: 752: 662: 492:degassing under the salar. At numerous points, 1675:Journal of Volcanology and Geothermal Research 1571:Journal of Volcanology and Geothermal Research 1524: 1178: 1176: 1646:Journal of Geophysical Research: Solid Earth 1024: 671: 159:was first established by satellite imagery. 100:were erupted close to the caldera and along 2052:International Journal of Salt Lake Research 1128: 303:. Minerals encountered in the rock include 1173: 483:40 square kilometres (15 sq mi) 1771: 1727: 1590: 1164: 389:geothermal field west of Pastos Grandes. 131:. Geographically the area is part of the 436:Salts found within the salt pan include 172:The region has been heavily affected by 26: 284:underneath the caldera. Major regional 14: 2094: 1821:Geological Society of America Bulletin 1599: 1525:Poveda Bonilla, Rafael (13 May 2022). 1500: 1488: 1464: 1291: 1182: 243:and formed a large field known as the 1925: 1564: 1062: 977: 848: 812: 800: 788: 727: 640: 563:in saltwater. Additional animals are 424:ridges. Apart from surface streams, 1708:Earth and Planetary Science Letters 330: 143:. The Altiplano contains two large 24: 1811:10.1111/j.1365-3091.1979.tb00353.x 371:Cerro Chascon-Runtu Jarita complex 111:. A number of minerals, including 98:Cerro Chascon-Runtu Jarita complex 25: 2163: 2080: 649:deposits have drawn attention of 135:, a high plateau bordered by the 1856:Servant-Vildary, Simone (1983). 1695:10.1016/j.jvolgeores.2007.07.015 1752:Geochimica et Cosmochimica Acta 1677:. Large Silicic Magma Systems. 1453:Servant-Vildary & Roux 1990 1321:Servant-Vildary & Roux 1990 1205:10.1016/j.earscirev.2009.11.004 1157:10.1016/j.apgeochem.2008.12.024 415:Intermittent streams drain the 385:may be the heat source for the 245:Altiplano-Puna volcanic complex 82:Altiplano-Puna volcanic complex 2102:Volcanoes of Potosí Department 605:Pastos Grandes is one of many 115:, are dissolved in the lakes. 13: 1: 1981:10.1144/GSL.SP.2006.269.01.04 1862:Sciences Géologiques Bulletin 1027:Remote Sensing of Environment 656: 480: 88:province that is part of the 80:. The caldera is part of the 1592:10.1016/0377-0273(81)90028-7 1047:10.1016/0034-4257(89)90117-x 7: 1441:Risacher & Eugster 1979 1429:Risacher & Eugster 1979 1417:Risacher & Eugster 1979 1333:Risacher & Eugster 1979 1280:Risacher & Eugster 1979 1010:de Silva & Gosnold 2007 939:de Silva & Gosnold 2007 837:de Silva & Gosnold 2007 825:de Silva & Gosnold 2007 765:Risacher & Eugster 1979 753:Risacher & Eugster 1979 291:Pastos Grandes has erupted 263:Pastos Grandes is a nested 167: 123:Pastos Grandes lies in the 118: 10: 2168: 2137:Lakes of Potosí Department 1729:10.1016/j.epsl.2016.09.048 1557: 899:AGU Fall Meeting Abstracts 616: 396: 359:volcanic explosivity index 162: 1773:10.1016/j.gca.2020.03.020 188:. Volcanic rocks include 2132:Quaternary South America 566:Euplanaria dorotocephala 258: 2007:Bulletin of Volcanology 1874:10.3406/sgeol.1983.1643 1720:2017E&PSL.457...73K 674:Bulletin of Volcanology 392: 1565:Baker, M.C.W. (1981). 1542:Cite journal requires 233:Southern Volcanic Zone 225:Northern Volcanic Zone 32: 18:Pastos Grandes caldera 2127:Neogene South America 2027:10.1007/s004450050274 1185:Earth-Science Reviews 1075:Salisbury et al. 2010 993:Salisbury et al. 2010 777:Salisbury et al. 2010 557:in freshwater and by 533:species such as some 295:rocks which define a 255:, Bolivia and Chile. 229:Central Volcanic Zone 137:Cordillera Occidental 90:Central Volcanic Zone 30: 2152:Pleistocene calderas 2107:Andean Volcanic Belt 1529:(in Spanish): 13–14. 1513:Williams et al. 1995 1477:Williams et al. 1995 1381:Williams et al. 1995 1369:Servant-Vildary 1983 1259:Williams et al. 1995 1223:Servant-Vildary 1983 1137:Applied Geochemistry 1111:de Silva et al. 1994 1099:de Silva et al. 1994 217:South American Plate 2122:Calderas of Bolivia 2019:1999BVol...61..241W 1973:2006GSLSP.269...47D 1940:1989Geo....17.1102D 1833:2011GSAB..123..821S 1803:1979Sedim..26..253R 1764:2020GeCoA.279..220M 1687:2007JVGR..167..320D 1658:1994JGR....9917805D 1652:(B9): 17805–17825. 1583:1981JVGR...11..293B 1197:2010ESRv...98..217W 1149:2009ApGC...24..664L 1039:1989RSEnv..28..245F 911:2011AGUFM.V21C2509K 686:1988BVol...50..258F 399:Pastos Grandes Lake 377:. This and ongoing 141:Cordillera Oriental 49: /  2064:10.1007/BF01992415 1903:10.1007/BF00026956 1614:10.1007/BF00018807 1405:Muller et al. 2020 1393:Muller et al. 2020 1357:Muller et al. 2020 1345:Muller et al. 2020 1244:Muller et al. 2020 963:Kaiser et al. 2017 927:Kaiser et al. 2017 872:Kaiser et al. 2017 694:10.1007/BF01047488 641:Human exploitation 375:argon-argon dating 276:and is flanked by 176:, including large 33: 2147:Pliocene calderas 1934:(12): 1102–1106. 1666:10.1029/94JB00652 1304:Watts et al. 1999 1123:Watts et al. 1999 1087:Silva et al. 2006 951:Silva et al. 2006 221:Peru-Chile Trench 68:is the name of a 53:21.750°S 67.833°W 16:(Redirected from 2159: 2142:Miocene calderas 2075: 2046: 2000: 1951: 1922: 1885: 1852: 1841:10.1130/B30280.1 1827:(5–6): 821–840. 1814: 1785: 1775: 1741: 1731: 1698: 1681:(1–4): 320–335. 1669: 1643: 1633: 1608:(1–3): 257–267. 1596: 1594: 1577:(2–4): 293–315. 1552: 1551: 1545: 1540: 1538: 1530: 1522: 1516: 1510: 1504: 1498: 1492: 1486: 1480: 1474: 1468: 1462: 1456: 1450: 1444: 1438: 1432: 1426: 1420: 1414: 1408: 1402: 1396: 1390: 1384: 1378: 1372: 1366: 1360: 1354: 1348: 1342: 1336: 1330: 1324: 1318: 1307: 1301: 1295: 1289: 1283: 1277: 1262: 1256: 1247: 1241: 1226: 1220: 1209: 1208: 1180: 1171: 1170: 1168: 1132: 1126: 1120: 1114: 1113:, p. 17821. 1108: 1102: 1101:, p. 17806. 1096: 1090: 1084: 1078: 1072: 1066: 1060: 1051: 1050: 1022: 1013: 1007: 996: 990: 981: 975: 966: 960: 954: 948: 942: 936: 930: 924: 915: 914: 894: 875: 869: 852: 846: 840: 834: 828: 822: 816: 810: 804: 798: 792: 786: 780: 774: 768: 762: 756: 750: 731: 725: 714: 713: 669: 482: 472:due to cold and 331:Eruption history 153:Salar de Coipasa 125:Sud Lipez Region 64: 63: 61: 60: 59: 58:-21.750; -67.833 54: 50: 47: 46: 45: 42: 21: 2167: 2166: 2162: 2161: 2160: 2158: 2157: 2156: 2117:VEI-8 volcanoes 2092: 2091: 2083: 2078: 1641: 1560: 1555: 1543: 1541: 1532: 1531: 1523: 1519: 1511: 1507: 1499: 1495: 1487: 1483: 1475: 1471: 1463: 1459: 1451: 1447: 1439: 1435: 1427: 1423: 1415: 1411: 1403: 1399: 1391: 1387: 1379: 1375: 1367: 1363: 1355: 1351: 1343: 1339: 1331: 1327: 1319: 1310: 1302: 1298: 1290: 1286: 1278: 1265: 1257: 1250: 1242: 1229: 1221: 1212: 1181: 1174: 1133: 1129: 1121: 1117: 1109: 1105: 1097: 1093: 1085: 1081: 1073: 1069: 1061: 1054: 1023: 1016: 1008: 999: 991: 984: 980:, p. 1104. 976: 969: 961: 957: 949: 945: 937: 933: 925: 918: 895: 878: 870: 855: 847: 843: 835: 831: 823: 819: 815:, p. 1103. 811: 807: 803:, p. 1102. 799: 795: 787: 783: 775: 771: 763: 759: 751: 734: 726: 717: 670: 663: 659: 643: 619: 505:sinter terraces 462:sodium chloride 401: 395: 333: 270:sector collapse 261: 184:extending into 182:stratovolcanoes 170: 165: 121: 57: 55: 51: 48: 43: 40: 38: 36: 35: 23: 22: 15: 12: 11: 5: 2165: 2155: 2154: 2149: 2144: 2139: 2134: 2129: 2124: 2119: 2114: 2112:Supervolcanoes 2109: 2104: 2090: 2089: 2082: 2081:External links 2079: 2077: 2076: 2047: 2013:(4): 241–264. 2001: 1952: 1923: 1897:(1): 267–290. 1886: 1868:(4): 249–253. 1853: 1815: 1797:(2): 253–270. 1786: 1742: 1699: 1670: 1634: 1597: 1561: 1559: 1556: 1554: 1553: 1544:|journal= 1517: 1505: 1503:, p. 266. 1493: 1491:, p. 261. 1481: 1469: 1467:, p. 262. 1457: 1455:, p. 281. 1445: 1443:, p. 267. 1433: 1431:, p. 261. 1421: 1419:, p. 258. 1409: 1407:, p. 234. 1397: 1395:, p. 221. 1385: 1373: 1371:, p. 252. 1361: 1359:, p. 228. 1349: 1347:, p. 223. 1337: 1335:, p. 256. 1325: 1323:, p. 268. 1308: 1306:, p. 246. 1296: 1294:, p. 258. 1284: 1282:, p. 257. 1263: 1248: 1246:, p. 222. 1227: 1225:, p. 249. 1210: 1172: 1127: 1125:, p. 244. 1115: 1103: 1091: 1079: 1067: 1065:, p. 307. 1052: 1014: 1012:, p. 323. 997: 982: 967: 955: 943: 941:, p. 332. 931: 916: 876: 853: 851:, p. 312. 841: 839:, p. 324. 829: 827:, p. 321. 817: 805: 793: 791:, p. 293. 781: 769: 767:, p. 268. 757: 755:, p. 255. 732: 730:, p. 306. 715: 660: 658: 655: 642: 639: 618: 615: 517:photosynthesis 513:carbon dioxide 490:carbon dioxide 397:Main article: 394: 391: 354: 353: 350: 347: 344: 341: 332: 329: 274:resurgent dome 260: 257: 169: 166: 164: 161: 149:Salar de Uyuni 120: 117: 66:Pastos Grandes 9: 6: 4: 3: 2: 2164: 2153: 2150: 2148: 2145: 2143: 2140: 2138: 2135: 2133: 2130: 2128: 2125: 2123: 2120: 2118: 2115: 2113: 2110: 2108: 2105: 2103: 2100: 2099: 2097: 2088: 2085: 2084: 2073: 2069: 2065: 2061: 2057: 2053: 2048: 2044: 2040: 2036: 2032: 2028: 2024: 2020: 2016: 2012: 2008: 2002: 1998: 1994: 1990: 1986: 1982: 1978: 1974: 1970: 1966: 1962: 1958: 1953: 1949: 1945: 1941: 1937: 1933: 1929: 1924: 1920: 1916: 1912: 1908: 1904: 1900: 1896: 1892: 1891:Hydrobiologia 1887: 1883: 1879: 1875: 1871: 1867: 1864:(in French). 1863: 1859: 1854: 1850: 1846: 1842: 1838: 1834: 1830: 1826: 1822: 1816: 1812: 1808: 1804: 1800: 1796: 1792: 1791:Sedimentology 1787: 1783: 1779: 1774: 1769: 1765: 1761: 1757: 1753: 1749: 1743: 1739: 1735: 1730: 1725: 1721: 1717: 1713: 1709: 1705: 1700: 1696: 1692: 1688: 1684: 1680: 1676: 1671: 1667: 1663: 1659: 1655: 1651: 1647: 1640: 1635: 1631: 1627: 1623: 1619: 1615: 1611: 1607: 1603: 1602:Hydrobiologia 1598: 1593: 1588: 1584: 1580: 1576: 1572: 1568: 1563: 1562: 1549: 1536: 1528: 1521: 1515:, p. 74. 1514: 1509: 1502: 1497: 1490: 1485: 1479:, p. 71. 1478: 1473: 1466: 1461: 1454: 1449: 1442: 1437: 1430: 1425: 1418: 1413: 1406: 1401: 1394: 1389: 1383:, p. 69. 1382: 1377: 1370: 1365: 1358: 1353: 1346: 1341: 1334: 1329: 1322: 1317: 1315: 1313: 1305: 1300: 1293: 1288: 1281: 1276: 1274: 1272: 1270: 1268: 1261:, p. 66. 1260: 1255: 1253: 1245: 1240: 1238: 1236: 1234: 1232: 1224: 1219: 1217: 1215: 1206: 1202: 1198: 1194: 1190: 1186: 1179: 1177: 1167: 1162: 1158: 1154: 1150: 1146: 1142: 1138: 1131: 1124: 1119: 1112: 1107: 1100: 1095: 1089:, p. 51. 1088: 1083: 1076: 1071: 1064: 1059: 1057: 1048: 1044: 1040: 1036: 1032: 1028: 1021: 1019: 1011: 1006: 1004: 1002: 995:, p. 12. 994: 989: 987: 979: 974: 972: 965:, p. 85. 964: 959: 953:, p. 53. 952: 947: 940: 935: 929:, p. 75. 928: 923: 921: 912: 908: 905:: V21C–2509. 904: 900: 893: 891: 889: 887: 885: 883: 881: 874:, p. 74. 873: 868: 866: 864: 862: 860: 858: 850: 845: 838: 833: 826: 821: 814: 809: 802: 797: 790: 785: 778: 773: 766: 761: 754: 749: 747: 745: 743: 741: 739: 737: 729: 724: 722: 720: 711: 707: 703: 699: 695: 691: 687: 683: 679: 675: 668: 666: 661: 654: 652: 648: 638: 636: 632: 628: 624: 614: 612: 608: 603: 600: 596: 592: 588: 587:Harpacticoida 584: 580: 576: 572: 568: 567: 562: 561: 556: 552: 548: 544: 543: 538: 537: 532: 528: 524: 520: 518: 514: 510: 506: 502: 501:Rimstone dams 498: 495: 491: 486: 477: 475: 471: 467: 463: 459: 455: 451: 447: 443: 439: 434: 431: 427: 423: 418: 413: 409: 407: 406:cryoturbation 400: 390: 388: 384: 380: 376: 372: 368: 362: 360: 351: 348: 345: 342: 339: 338: 337: 328: 326: 322: 318: 314: 310: 306: 302: 298: 294: 293:calc-alkaline 289: 287: 283: 279: 275: 271: 266: 256: 254: 250: 246: 242: 238: 234: 230: 226: 222: 218: 214: 210: 205: 203: 199: 195: 191: 187: 183: 179: 175: 160: 158: 154: 150: 146: 142: 138: 134: 130: 126: 116: 114: 110: 105: 103: 99: 95: 91: 87: 83: 79: 75: 71: 67: 62: 29: 19: 2058:(1): 65–77. 2055: 2051: 2010: 2006: 1967:(1): 47–63. 1964: 1960: 1931: 1927: 1894: 1890: 1865: 1861: 1824: 1820: 1794: 1790: 1755: 1751: 1711: 1707: 1678: 1674: 1649: 1645: 1605: 1601: 1574: 1570: 1535:cite journal 1520: 1508: 1496: 1484: 1472: 1460: 1448: 1436: 1424: 1412: 1400: 1388: 1376: 1364: 1352: 1340: 1328: 1299: 1287: 1191:(3–4): 227. 1188: 1184: 1166:10533/142624 1140: 1136: 1130: 1118: 1106: 1094: 1082: 1077:, p. 2. 1070: 1030: 1026: 958: 946: 934: 902: 898: 844: 832: 820: 808: 796: 784: 779:, p. 9. 772: 760: 677: 673: 644: 620: 604: 571:Chironomidae 564: 558: 540: 534: 521: 478: 452:are rich in 435: 414: 410: 402: 383:Cerro Guacha 363: 355: 334: 290: 262: 215:beneath the 206: 171: 122: 106: 65: 34: 1758:: 220–237. 1501:Dejoux 1993 1489:Dejoux 1993 1465:Dejoux 1993 1292:Dejoux 1993 1033:: 245–255. 631:evaporation 611:Pleistocene 591:Orchestidae 542:Navicularia 531:oligohaline 474:evaporation 430:Hot springs 313:plagioclase 213:Nazca Plate 178:ignimbrites 109:hot springs 74:crater lake 56: / 2096:Categories 1143:(4): 665. 1063:Baker 1981 978:Silva 1989 849:Baker 1981 813:Silva 1989 801:Silva 1989 789:Baker 1981 728:Baker 1981 680:(4): 261. 657:References 635:Insolation 623:wet season 583:Ephydridae 579:Cyclopoida 560:Cricotopus 536:Fragilaria 519:by algae. 470:mirabilite 379:geothermal 367:Cerro Chao 278:lava domes 237:ignimbrite 209:subduction 198:rhyodacite 94:lava domes 86:ignimbrite 84:, a large 2072:1037-0544 2035:0258-8900 1997:129924955 1989:0305-8719 1911:0018-8158 1882:0302-2692 1849:0016-7606 1782:0016-7037 1738:0012-821X 1714:: 73–86. 1622:0018-8158 710:128824938 702:0258-8900 607:endorheic 599:Tipulidae 595:Ostracoda 575:Corixidae 547:amphipods 497:pisoliths 485:carbonate 466:potassium 422:rhyolitic 417:catchment 305:amphibole 301:potassium 253:Argentina 174:volcanism 145:salt pans 133:Altiplano 2043:56303121 1919:12273039 1630:23979914 602:region. 387:El Tatio 325:Plutonic 321:sanidine 251:between 249:tripoint 231:and the 190:andesite 168:Regional 139:and the 119:Location 72:and its 2015:Bibcode 1969:Bibcode 1936:Bibcode 1928:Geology 1829:Bibcode 1799:Bibcode 1760:Bibcode 1716:Bibcode 1683:Bibcode 1654:Bibcode 1579:Bibcode 1558:Sources 1193:Bibcode 1145:Bibcode 1035:Bibcode 907:Bibcode 682:Bibcode 647:lithium 617:Climate 555:leeches 527:diatoms 494:calcite 458:lithium 446:ulexite 426:springs 309:biotite 265:caldera 241:Miocene 219:in the 211:of the 202:erosion 163:Geology 157:caldera 129:Bolivia 113:lithium 96:of the 78:Bolivia 70:caldera 44:67°50′W 41:21°45′S 2070:  2041:  2033:  1995:  1987:  1917:  1909:  1880:  1847:  1780:  1736:  1628:  1620:  708:  700:  651:mining 551:elmids 450:brines 448:. The 442:halite 438:gypsum 317:quartz 297:dacite 286:faults 282:pluton 227:, the 194:dacite 147:, the 102:faults 2039:S2CID 1993:S2CID 1915:S2CID 1642:(PDF) 1626:S2CID 706:S2CID 523:Algae 454:boron 259:Local 186:Chile 2068:ISSN 2031:ISSN 1985:ISSN 1907:ISSN 1878:ISSN 1845:ISSN 1778:ISSN 1734:ISSN 1618:ISSN 1548:help 698:ISSN 645:The 629:and 627:arid 597:and 553:and 539:and 525:and 509:cave 503:and 460:and 444:and 393:Lake 369:and 319:and 196:and 180:and 151:and 2060:doi 2023:doi 1977:doi 1965:269 1944:doi 1899:doi 1895:197 1870:doi 1837:doi 1825:123 1807:doi 1768:doi 1756:279 1724:doi 1712:457 1691:doi 1679:167 1662:doi 1610:doi 1606:267 1587:doi 1201:doi 1161:hdl 1153:doi 1043:doi 690:doi 127:of 76:in 2098:: 2066:. 2054:. 2037:. 2029:. 2021:. 2011:61 2009:. 1991:. 1983:. 1975:. 1963:. 1959:. 1942:. 1932:17 1930:. 1913:. 1905:. 1893:. 1876:. 1866:36 1860:. 1843:. 1835:. 1823:. 1805:. 1795:26 1793:. 1776:. 1766:. 1754:. 1750:. 1732:. 1722:. 1710:. 1706:. 1689:. 1660:. 1650:99 1648:. 1644:. 1624:. 1616:. 1604:. 1585:. 1575:11 1573:. 1569:. 1539:: 1537:}} 1533:{{ 1311:^ 1266:^ 1251:^ 1230:^ 1213:^ 1199:. 1189:98 1187:. 1175:^ 1159:. 1151:. 1141:24 1055:^ 1041:. 1031:28 1029:. 1017:^ 1000:^ 985:^ 970:^ 919:^ 903:21 901:. 879:^ 856:^ 735:^ 718:^ 704:. 696:. 688:. 678:50 676:. 664:^ 593:, 589:, 585:, 581:, 577:, 573:, 569:, 549:, 481:c. 456:, 440:, 361:. 315:, 311:, 307:, 192:, 104:. 2074:. 2062:: 2056:4 2045:. 2025:: 2017:: 1999:. 1979:: 1971:: 1950:. 1946:: 1938:: 1921:. 1901:: 1884:. 1872:: 1851:. 1839:: 1831:: 1813:. 1809:: 1801:: 1784:. 1770:: 1762:: 1740:. 1726:: 1718:: 1697:. 1693:: 1685:: 1668:. 1664:: 1656:: 1632:. 1612:: 1595:. 1589:: 1581:: 1550:) 1546:( 1207:. 1203:: 1195:: 1169:. 1163:: 1155:: 1147:: 1049:. 1045:: 1037:: 913:. 909:: 712:. 692:: 684:: 20:)

Index

Pastos Grandes caldera

21°45′S 67°50′W / 21.750°S 67.833°W / -21.750; -67.833
caldera
crater lake
Bolivia
Altiplano-Puna volcanic complex
ignimbrite
Central Volcanic Zone
lava domes
Cerro Chascon-Runtu Jarita complex
faults
hot springs
lithium
Sud Lipez Region
Bolivia
Altiplano
Cordillera Occidental
Cordillera Oriental
salt pans
Salar de Uyuni
Salar de Coipasa
caldera
volcanism
ignimbrites
stratovolcanoes
Chile
andesite
dacite
rhyodacite

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.