Knowledge

Partially ordered set

Source πŸ“

6429: 5113: 5025: 7228: 2823: 1820: 7129: 4497: 5069: 1653: 1640: 1074: 1064: 1034: 1024: 1002: 992: 957: 935: 925: 890: 858: 848: 823: 791: 776: 756: 724: 714: 704: 684: 652: 632: 622: 612: 580: 560: 516: 496: 486: 449: 424: 414: 382: 357: 320: 290: 258: 196: 161: 7284: 4487:
of this DAG is then the Hasse diagram. Similarly this process can be reversed to construct strict partial orders from certain DAGs. In contrast, the graph associated to a non-strict partial order has self-loops at every node and therefore is not a DAG; when a non-strict order is said to be depicted
7213:
which does not have any lower bound (since 1 is not in the poset); on the other hand 2 is a lower bound of the subset of powers of 2, which does not have any upper bound. If the number 0 is included, this will be the greatest element, since this is a multiple of every integer (see Fig. 6).
2806:
Irreflexivity and transitivity together imply asymmetry. Also, asymmetry implies irreflexivity. In other words, a transitive relation is asymmetric if and only if it is irreflexive. So the definition is the same if it omits either irreflexivity or asymmetry (but not both).
10541:
does not hold, all these intervals are empty. Every interval is a convex set, but the converse does not hold; for example, in the poset of divisors of 120, ordered by divisibility (see Fig. 7b), the set {1, 2, 4, 5, 8} is convex, but not an interval.
1384: 4765: 1313: 2196:
partial orders. However some authors use the term for the other common type of partial order relations, the irreflexive partial order relations, also called strict partial orders. Strict and non-strict partial orders can be put into a
9612:
is an extension that is also a linear (that is, total) order. As a classic example, the lexicographic order of totally ordered sets is a linear extension of their product order. Every partial order can be extended to a total order
1628: 1242: 11177: 1513: 1469: 1425: 6885:
If a poset has a greatest element, it must be the unique maximal element, but otherwise there can be more than one maximal element, and similarly for least elements and minimal elements. In our running example,
4368: 4503:
Graph of the divisibility of numbers from 1 to 4. This set is partially, but not totally, ordered because there is a relationship from 1 to every other number, but there is no relationship from 2 to 3 or 3 to
3262: 8221: 8114: 3343: 2998: 1650:
indicates that the property is not guaranteed in general (it might, or might not, hold). For example, that every equivalence relation is symmetric, but not necessarily antisymmetric, is indicated by
5580: 3523:. The dual of a non-strict partial order is a non-strict partial order, and the dual of a strict partial order is a strict partial order. The dual of a dual of a relation is the original relation. 3181: 4250: 1583: 1480: 1436: 1395: 1324: 1253: 1197: 5152: 10672: 5105: 5061: 3061: 10112: 10060: 7793: 5968: 2658: 9851: 8819: 6039: 2007:
is used to indicate that not every pair of elements needs to be comparable; that is, there may be pairs for which neither element precedes the other. Partial orders thus generalize
7162:
is not maximal. If the number 1 is excluded, while keeping divisibility as ordering on the elements greater than 1, then the resulting poset does not have a least element, but any
1186: 9968: 4833: 10177: 8285: 7123: 1572: 7557: 4805: 3495: 6280: 3946: 3113: 7211: 3438: 3391: 9606: 8307: 4573: 4543: 4001: 2876: 9281: 9079: 8861: 2613: 2307: 2074: 11200: 10004: 6418: 5625: 1897: 1873: 10737: 9541: 9442: 8939: 7753: 7628: 7400: 6922: 6691: 5824: 3876: 3091: 1319: 10579: 10206: 9570: 8044: 8018: 7992: 7960: 7894: 7675: 7589: 7516: 7484: 7349: 6377: 6151: 6090: 5720: 5011:
descendancy. Some pairs of people bear the descendant-ancestor relationship, but other pairs of people are incomparable, with neither being a descendant of the other.
4684: 4437: 4021: 3908: 2949: 9407: 9248: 9105: 8170: 7425: 7072: 6883: 6802: 6653: 6624: 6568: 6539: 6229: 4918: 2508: 2482: 2456: 2398: 2372: 2340: 1929: 8223:
that is order-preserving, order-reflecting, and hence an order-embedding. It is not an order-isomorphism (since it, for instance, does not map any number to the set
7842: 6946: 6854: 6828: 6773: 6747: 6715: 6594: 6509: 5507:
are formed from the ordinal sum operation (in this context called series composition) and another operation called parallel composition. Parallel composition is the
3636: 3592: 2800: 2774: 2748: 2716: 2690: 1726: 1248: 9486: 9358: 9308: 9222: 9135: 9026: 8959: 8888: 8247: 7274: 6342: 6116: 5876: 5850: 5786: 5685: 4191: 4168: 4128: 4108: 4044: 3981: 3800: 3780: 3760: 3676: 3614: 3569: 3282: 3201: 2920: 2138: 1981: 1955: 10644:
if every bounded interval is finite. For example, the integers are locally finite under their natural ordering. The lexicographical order on the cartesian product
4481: 4148: 4088: 4068: 3840: 3820: 3716: 3656: 1807: 7819: 7150:
all other elements; on the other hand this poset does not have a greatest element. This partially ordered set does not even have any maximal elements, since any
3521: 2424: 1778: 1752: 1540: 1157: 10135: 9746: 9699: 6476: 10980: 9914: 9723: 9676: 9506: 9462: 9328: 9195: 9175: 9155: 9046: 8999: 8979: 8912: 4461: 3736: 3696: 3549: 3462: 3411: 3137: 2900: 2560: 2254: 2178: 2158: 2118: 2094: 1687: 3963:
can also be referred to as "ordered sets", especially in areas where these structures are more common than posets. Some authors use different symbols than
3210: 1578: 1192: 3291: 1475: 11657: 11319:. CALCULEMUS-2003 – 11th Symposium on the Integration of Symbolic Computation and Mechanized Reasoning. Roma, Italy: Aracne. pp. 89–100. 1431: 1390: 4309: 12384: 61: 11024: 8751: 8336: 12367: 10599:. Every interval that can be represented in interval notation is obviously bounded, but the converse is not true. For example, let 8179: 8072: 11897: 5364: 11733: 11135:
So we can think of every partial order as really being a pair, consisting of a weak partial order and an associated strict one.
10741:
This concept of an interval in a partial order should not be confused with the particular class of partial orders known as the
8313:. The construction of such an order-isomorphism into a power set can be generalized to a wide class of partial orders, called 3846:
refers to a set with all of these relations defined appropriately. But practically, one need only consider a single relation,
2954: 11625: 11604: 11555: 11482: 11438: 11034: 11615: 6948:
are the maximal and minimal elements. Removing these, there are 3 maximal elements and 3 minimal elements (see Fig. 5).
5522: 12214: 8319: 3142: 10950: 8731: 8250: 4212: 11545: 11398: 6435:
The figure above with the greatest and least elements removed. In this reduced poset, the top row of elements are all
5124: 12350: 12209: 11647: 11390: 11351: 11096: 11063: 10647: 5080: 5036: 7292:
Order isomorphism between the divisors of 120 (partially ordered by divisibility) and the divisor-closed subsets of
2832:
about the connections between strict/non-strict relations and their duals, via the operations of reflexive closure (
12204: 3003: 10065: 10013: 7758: 5282: 11840: 5511:
of two partially ordered sets, with no order relation between elements of one set and elements of the other set.
11120: 7166:
is a minimal element for it. In this poset, 60 is an upper bound (though not a least upper bound) of the subset
5907: 11922: 10827: 54: 2624: 2201:, so for every strict partial order there is a unique corresponding non-strict partial order, and vice versa. 12241: 12161: 9785: 8765: 5504: 5173:
In order of increasing strength, i.e., decreasing sets of pairs, three of the possible partial orders on the
17: 11301:
A comparison between two elements s, t in S returns one of three distinct values, namely s≀t, s>t or s|t.
5985: 12026: 11955: 11835: 11929: 11917: 11880: 11855: 11830: 11784: 11753: 10882: 2015: 1162: 12226: 11860: 11850: 11726: 9923: 7359: 4810: 10139: 8256: 7081: 6428: 1546: 12422: 12199: 11865: 11331: 9867: 9863: 9614: 8120:
of natural numbers (ordered by set inclusion) can be defined by taking each number to the set of its
7524: 4770: 4606: 3467: 3139:
may be converted to a non-strict partial order by adjoining all relationships of that form; that is,
2198: 47: 7227: 6250: 3913: 3096: 2160:. When the meaning is clear from context and there is no ambiguity about the partial order, the set 12131: 11758: 11706:
sequence A000112 (Number of partially ordered sets ("posets") with n unlabeled elements.)
10993: 7169: 5892: 5112: 3416: 3369: 1121: 945: 114: 11430: 10758:, a formalization of orderings on a set that allows more general families of orderings than posets 9575: 8290: 8172:) nor order-reflecting (since 12 does not divide 6). Taking instead each number to the set of its 5024: 4556: 4526: 3986: 2855: 1379:{\displaystyle {\begin{aligned}a\neq {}&b\Rightarrow \\aRb{\text{ or }}&bRa\end{aligned}}} 12379: 12362: 9891: 9253: 9051: 8828: 5980: 5979:
is a subset of a poset in which no two distinct elements are comparable. For example, the set of
4760:{\displaystyle \left(a_{n}\right)_{n\in \mathbb {N} }\leq \left(b_{n}\right)_{n\in \mathbb {N} }} 2577: 2271: 2041: 11119:
Avigad, Jeremy; Lewis, Robert Y.; van Doorn, Floris (29 March 2021). "13.2. More on Orderings".
9980: 9878:. Also, every preordered set is equivalent to a poset. Finally, every subcategory of a poset is 6382: 5589: 1882: 1837: 12291: 11907: 11599:. Encyclopedia of Mathematics and its Applications. Vol. 132. Cambridge University Press. 10773: 10689: 10305: 10278: 10216: 9655: 9629: 9511: 9420: 8917: 7714: 7598: 7370: 6951: 6889: 6658: 5791: 4628: 4440: 4397: 4047: 3959:, as long as it is clear from the context that no other kind of order is meant. In particular, 3849: 3353: 3264:
Conversely, if < is a strict partial order, then the corresponding non-strict partial order
3070: 2345: 2261: 2023: 1308:{\displaystyle {\begin{aligned}aRb{\text{ and }}&bRa\\\Rightarrow a={}&b\end{aligned}}} 1091: 84: 11051: 10552: 10182: 9546: 8023: 7997: 7965: 7933: 7867: 7651: 7562: 7489: 7457: 7322: 6347: 6121: 6066: 5690: 4410: 4006: 3881: 2925: 12417: 12269: 12104: 12095: 11964: 11845: 11763: 11719: 11408: 11343: 11336: 11106: 9363: 9227: 9084: 8143: 7404: 7045: 6859: 6778: 6629: 6603: 6544: 6518: 6208: 5182: 4894: 2487: 2461: 2435: 2377: 2351: 2319: 2003:
is an arrangement such that, for certain pairs of elements, one precedes the other. The word
1902: 1646:
indicates that the column's property is always true the row's term (at the very left), while
1101: 94: 7824: 6927: 6833: 6807: 6752: 6726: 6696: 6573: 6488: 3618: 3574: 2779: 2753: 2727: 2695: 2669: 1696: 12357: 12316: 12306: 12296: 12041: 12004: 11994: 11974: 11959: 11148: 10894: 10888: 10852: 10809: 10641: 10324: 10320: 9971: 9471: 9336: 9286: 9200: 9113: 9004: 8944: 8866: 8399: 8389: 8314: 8226: 7519: 7259: 6321: 6095: 5900: 5855: 5829: 5765: 5664: 5353: 4484: 4389: 4378: 4370:
that returns one of four codes when given two elements. This definition is equivalent to a
4176: 4153: 4113: 4093: 4029: 3966: 3785: 3765: 3745: 3661: 3596: 3554: 3267: 3186: 2905: 2618: 2563: 2230: 2123: 1960: 1934: 1667: 878: 153: 11423: 4466: 4133: 4073: 4053: 3825: 3805: 3701: 3641: 1783: 8: 12284: 12195: 12141: 12100: 12090: 11979: 11912: 11875: 10767: 10007: 9633: 8364: 7798: 7135: 5883: 5357: 4923: 4836: 4393: 3500: 2829: 2721: 2663: 2571: 2567: 2429: 2403: 2265: 2027: 1810:
A term's definition may require additional properties that are not listed in this table.
1757: 1731: 1690: 1519: 1136: 1126: 537: 119: 36: 10319:. Every nonempty convex sublattice can be uniquely represented as the intersection of a 10117: 9728: 9681: 6458: 2192:
usually refers to the reflexive partial order relations, referred to in this article as
12396: 12323: 12176: 12085: 12075: 12016: 11934: 11870: 11642:. Cambridge Studies in Advanced Mathematics. Vol. 49. Cambridge University Press. 11635: 11474: 11093:
Lemma 1.1 (iv). This source refers to asymmetric relations as "strictly antisymmetric".
10965: 9899: 9879: 9708: 9661: 9491: 9447: 9313: 9180: 9160: 9140: 9031: 8984: 8964: 8897: 8374: 8369: 5658: 4952: 4948: 4446: 4261: 3739: 3721: 3681: 3534: 3447: 3396: 3204: 3203:
is a non-strict partial order, then the corresponding strict partial order < is the
3122: 2885: 2545: 2313: 2257: 2239: 2163: 2143: 2103: 2079: 2019: 1672: 1116: 1096: 1086: 1012: 109: 89: 79: 12236: 11583: 11566: 11516: 11499: 12333: 12311: 12171: 12156: 12136: 11939: 11643: 11621: 11600: 11551: 11478: 11434: 11386: 11347: 11059: 11030: 10821: 10797: 9917: 8047: 7902: 6655:
A poset can only have one greatest or least element. In our running example, the set
6161: 5278: 5174: 5007:
One familiar example of a partially ordered set is a collection of people ordered by
4579: 3441: 3285: 3064: 2922:
may be converted to a strict partial order by removing all relationships of the form
2234: 2000: 11314: 5349:
All three can similarly be defined for the Cartesian product of more than two sets.
12146: 11999: 11578: 11521: 11511: 10864: 9855: 9645: 9621: 9609: 7353: 6482: 4202: 811: 744: 2817: 12328: 12111: 11989: 11984: 11969: 11885: 11794: 11779: 11592: 10928: 10803: 9875: 9624:, algorithms for finding linear extensions of partial orders (represented as the 8359: 7683: 6720: 4639: 4170: 3116: 2822: 2811: 1819: 672: 469: 40: 4926:, a partially ordered set defined by an alternating sequence of order relations 12246: 12231: 12221: 12080: 12058: 12036: 11669:
Kalmbach, G. (1976). "Extension of Homology Theory to Partially Ordered Sets".
11381:
Neggers, J.; Kim, Hee Sik (1998), "4.2 Product Order and Lexicographic Order",
10858: 10832: 10742: 9871: 7128: 5508: 4851: 4654: 4617: 2845: 1623:{\displaystyle {\begin{aligned}aRb\Rightarrow \\{\text{not }}bRa\end{aligned}}} 340: 11525: 1237:{\displaystyle {\begin{aligned}&aRb\\\Rightarrow {}&bRa\end{aligned}}} 12411: 12345: 12301: 12279: 12151: 12021: 12009: 11814: 11617:
Ordered Sets: An Introduction with Connections from Combinatorics to Topology
11056:
Mathematical Tools for Data Mining: Set Theory, Partial Orders, Combinatorics
10843: 10837: 9975: 8121: 7927: 5734: 5239: 4404: 4206: 3571:, we may uniquely extend our notation to define four partial order relations 2849: 1876: 1827: 1111: 1106: 278: 104: 99: 5014: 4549:
relation < is a strict partial order. The same is also true of the usual
12166: 12048: 12031: 11949: 11789: 11742: 11283: 10788: 10782: 9625: 8737:
The number of strict partial orders is the same as that of partial orders.
7163: 5498: 4643: 4632: 4550: 4400:. This includes both reflexive and irreflexive partial orders as subtypes. 1992: 10824: β€“ Associative algebra used in combinatorics, a branch of mathematics 10800: β€“ Associative algebra used in combinatorics, a branch of mathematics 5891:
is a partial order under which every pair of elements is comparable, i.e.
12372: 12065: 11944: 11809: 11466: 10922: 10870: 10755: 10282: 8394: 8173: 4602: 4513: 3960: 2008: 1988: 402: 1508:{\displaystyle {\begin{aligned}a\wedge b\\{\text{exists}}\end{aligned}}} 12340: 12274: 12115: 11091:(1). Prague: School of Mathematics – Physics Charles University: 55–69. 10761: 10286: 9916:
is a partially ordered set that has also been given the structure of a
6455:
There are several notions of "greatest" and "least" element in a poset
4978: 3910:, or, in rare instances, the non-strict and strict relations together, 600: 10633:, so it cannot be written in interval notation using elements of  4496: 4488:
by a Hasse diagram, actually the corresponding strict order is shown.
1464:{\displaystyle {\begin{aligned}a\vee b\\{\text{exists}}\end{aligned}}} 12391: 12264: 12070: 10876: 10770: β€“ Graph linking pairs of comparable elements in a partial order 9779: 8961:. The latter condition is equivalent to the requirement that for any 8117: 7897: 7708: 5975: 5583: 5068: 5008: 4610: 4590: 4546: 3551:
and a partial order relation, typically the non-strict partial order
1831: 1420:{\displaystyle {\begin{aligned}\min S\\{\text{exists}}\end{aligned}}} 7681:
is both order-preserving and order-reflecting, then it is called an
4363:{\displaystyle {\text{compare}}:P\times P\to \{<,>,=,\vert \}} 2660:, i.e. no element is related to itself (also called anti-reflexive). 12186: 12053: 11804: 10626: 10290: 9702: 9651: 8379: 8140:. However, it is neither injective (since it maps both 12 and 6 to 5904:
is a subset of a poset that is a totally ordered set. For example,
4658: 4598: 2515: 217: 11176:
Kwong, Harris (25 April 2018). "7.4: Partial and Total Ordering".
10931: β€“ Mathematical proposition equivalent to the axiom of choice 10006:
Under this assumption partial order relations are well behaved at
7930:(see Fig. 7a). It can be shown that if order-preserving maps 5895:
holds. For example, the natural numbers with their standard order.
11702: 11690: 10622: 8744:
isomorphism, the sequence 1, 1, 2, 5, 16, 63, 318, ... (sequence
8116:
from the set of natural numbers (ordered by divisibility) to the
7147: 7143: 4621: 4516:, or in general any totally ordered set, ordered by the standard 11049: 10861:, a kind of topological space that can be defined from any poset 3257:{\displaystyle a<b{\text{ if }}a\leq b{\text{ and }}a\neq b.} 11711: 11447: 8891: 4594: 4586: 4373: 2818:
Correspondence of strict and non-strict partial order relations
7283: 11080: 8741: 2514:
A non-strict partial order is also known as an antisymmetric
8216:{\displaystyle g:\mathbb {N} \to \mathbb {P} (\mathbb {N} )} 8109:{\displaystyle f:\mathbb {N} \to \mathbb {P} (\mathbb {N} )} 4508:
Standard examples of posets arising in mathematics include:
4252:
as defined previously, it can be observed that two elements
11705: 11693: 11078: 10791: β€“ partially ordered set equipped with a rank function 8746: 8707: 8702: 8697: 8692: 8687: 8682: 8677: 8672: 8667: 8662: 5360:, the result is in each case also an ordered vector space. 3338:{\displaystyle a\leq b{\text{ if }}a<b{\text{ or }}a=b.} 11079:
FlaΕ‘ka, V.; JeΕΎek, J.; Kepka, T.; Kortelainen, J. (2007).
7217: 11365:
A partially ordered set is conveniently represented by a
5015:
Orders on the Cartesian product of partially ordered sets
2574:; that is, it satisfies the following conditions for all 10342:
is a subset that can be defined with interval notation:
9870:. In a poset, the smallest element, if it exists, is an 2993:{\displaystyle <\;:=\ \leq \ \setminus \ \Delta _{P}} 11316:
Making proofs in a hierarchy of mathematical structures
11313:
Prevosto, Virgile; Jaume, Mathieu (11 September 2003).
10885:– every partial order is contained in some total order. 10848:
Pages displaying short descriptions of redirect targets
9885: 7146:, ordered by divisibility: 1 is a least element, as it 5365:
orders on the Cartesian product of totally ordered sets
4407:. Specifically, taking a strict partial order relation 11550:(2nd ed.). New York: Cambridge University Press. 11029:. Springer Science & Business Media. p. 100. 10867:– continuity of a function between two partial orders. 5575:{\displaystyle ({\mathcal {P}}(\{x,y,z\}),\subseteq )} 2878:
so row 3, column 4 of the bottom left matrix is empty.
2810:
A strict partial order is also known as an asymmetric
10968: 10692: 10650: 10555: 10185: 10142: 10120: 10068: 10016: 9983: 9926: 9902: 9788: 9731: 9711: 9684: 9664: 9578: 9549: 9514: 9494: 9474: 9450: 9423: 9366: 9339: 9316: 9289: 9256: 9230: 9203: 9183: 9163: 9143: 9116: 9087: 9054: 9034: 9007: 8987: 8967: 8947: 8920: 8900: 8869: 8831: 8768: 8332: 8293: 8259: 8229: 8182: 8146: 8075: 8026: 8000: 7968: 7936: 7870: 7827: 7801: 7761: 7717: 7654: 7601: 7565: 7527: 7492: 7460: 7407: 7373: 7325: 7262: 7172: 7084: 7048: 6930: 6892: 6862: 6836: 6810: 6781: 6755: 6729: 6699: 6661: 6632: 6606: 6576: 6547: 6521: 6491: 6461: 6385: 6350: 6324: 6253: 6211: 6124: 6098: 6069: 5988: 5910: 5858: 5832: 5794: 5768: 5693: 5667: 5592: 5525: 5177:
of two partially ordered sets are (see Fig. 4):
5127: 5083: 5039: 4897: 4813: 4773: 4687: 4559: 4529: 4469: 4449: 4413: 4312: 4215: 4179: 4156: 4136: 4116: 4096: 4076: 4056: 4032: 4009: 3989: 3969: 3916: 3884: 3852: 3828: 3808: 3788: 3768: 3748: 3724: 3704: 3684: 3664: 3644: 3621: 3599: 3577: 3557: 3537: 3503: 3470: 3450: 3419: 3399: 3372: 3294: 3270: 3213: 3189: 3176:{\displaystyle \leq \;:=\;\Delta _{P}\;\cup \;<\;} 3145: 3125: 3099: 3073: 3006: 2957: 2928: 2908: 2888: 2858: 2782: 2756: 2730: 2698: 2672: 2627: 2580: 2548: 2490: 2464: 2438: 2406: 2380: 2354: 2322: 2274: 2242: 2166: 2146: 2126: 2106: 2082: 2044: 1963: 1937: 1905: 1885: 1840: 1786: 1760: 1734: 1699: 1675: 1581: 1549: 1522: 1478: 1434: 1393: 1322: 1251: 1195: 1165: 1139: 11118: 11085:
Acta Universitatis Carolinae. Mathematica et Physica
10897:– strict partial order "<" in which the relation 10814:
Pages displaying wikidata descriptions as a fallback
10793:
Pages displaying wikidata descriptions as a fallback
10778:
Pages displaying wikidata descriptions as a fallback
10418:
Using the corresponding strict relation "<", the
5375:
Another way to combine two (disjoint) posets is the
5121:
Reflexive closure of strict direct product order on
10485:on the integers is empty since there is no integer 4443:(DAG) may be constructed by taking each element of 4245:{\displaystyle \leq ,<,\geq ,{\text{ and }}>} 3718:is the associated strict partial order relation on 2426:, i.e. no two distinct elements precede each other. 11694:sequence A001035 (Number of posets with 11422: 11335: 10974: 10840: β€“ Algebraic object with an ordered structure 10817:Pages displaying short descriptions with no spaces 10731: 10666: 10573: 10200: 10171: 10129: 10106: 10054: 9998: 9962: 9908: 9845: 9740: 9717: 9693: 9670: 9600: 9564: 9535: 9500: 9480: 9456: 9436: 9401: 9352: 9322: 9302: 9275: 9242: 9216: 9189: 9169: 9149: 9129: 9099: 9073: 9040: 9020: 8993: 8973: 8953: 8933: 8906: 8882: 8855: 8813: 8301: 8279: 8241: 8215: 8164: 8108: 8038: 8012: 7986: 7954: 7888: 7836: 7813: 7787: 7747: 7669: 7622: 7583: 7551: 7510: 7478: 7419: 7394: 7343: 7268: 7236:Order-preserving, but not order-reflecting (since 7205: 7117: 7066: 6940: 6916: 6877: 6848: 6822: 6796: 6767: 6741: 6709: 6685: 6647: 6618: 6588: 6562: 6533: 6503: 6470: 6412: 6371: 6336: 6274: 6223: 6145: 6110: 6084: 6033: 5962: 5870: 5844: 5818: 5780: 5714: 5679: 5619: 5574: 5146: 5099: 5055: 4912: 4827: 4799: 4759: 4567: 4537: 4475: 4455: 4431: 4362: 4244: 4201:Another way of defining a partial order, found in 4185: 4162: 4142: 4122: 4102: 4082: 4062: 4038: 4015: 3995: 3975: 3940: 3902: 3870: 3834: 3814: 3794: 3774: 3754: 3730: 3710: 3690: 3670: 3650: 3630: 3608: 3586: 3563: 3543: 3515: 3489: 3456: 3432: 3405: 3385: 3337: 3276: 3256: 3195: 3175: 3131: 3107: 3085: 3055: 2992: 2943: 2914: 2894: 2870: 2794: 2768: 2742: 2710: 2684: 2652: 2607: 2554: 2502: 2476: 2450: 2418: 2392: 2366: 2334: 2301: 2248: 2172: 2152: 2132: 2112: 2088: 2068: 1975: 1949: 1923: 1891: 1867: 1801: 1772: 1746: 1720: 1681: 1622: 1566: 1534: 1507: 1463: 1419: 1378: 1307: 1236: 1180: 1151: 11329: 10879: β€“ Numerical ordering with a margin of error 5370: 4023:to distinguish partial orders from total orders. 12409: 11571:Proceedings of the American Mathematical Society 11504:Proceedings of the American Mathematical Society 11050:Simovici, Dan A. & Djeraba, Chabane (2008). 10676:(1, 2) ≀ (1, 3) ≀ (1, 4) ≀ (1, 5) ≀ ... ≀ (2, 1) 10277:. This definition generalizes the definition of 10070: 10018: 7038:itself, and a least element is a lower bound of 5147:{\displaystyle \mathbb {N} \times \mathbb {N} .} 4110:, which is always a subset of the complement of 2902:are closely related. A non-strict partial order 1398: 10925: β€“ Order whose elements are all comparable 10785: β€“ Mathematical ordering with upper bounds 10667:{\displaystyle \mathbb {N} \times \mathbb {N} } 8339:gives the number of partial orders on a set of 5166:are highlighted in green and red, respectively. 5100:{\displaystyle \mathbb {N} \times \mathbb {N} } 5056:{\displaystyle \mathbb {N} \times \mathbb {N} } 11613: 11543: 11453: 11404: 11205:Sage 9.2.beta2 Reference Manual: Combinatorics 11102: 10891: β€“ Partial order between random variables 10806: β€“ Set whose pairs have minima and maxima 10776: β€“ term used in mathematical order theory 10617:as a subposet of the real numbers. The subset 9874:, and the largest element, if it exists, is a 7926:. Isomorphic orders have structurally similar 5397:, defined on the union of the underlying sets 2882:Strict and non-strict partial orders on a set 11727: 11312: 10846: β€“ Group with a compatible partial order 10678:. Using the interval notation, the property " 8351:-element binary relations of different types 4403:A finite poset can be visualized through its 4090:is the converse of the irreflexive kernel of 3119:. Conversely, a strict partial order < on 3056:{\displaystyle \Delta _{P}:=\{(p,p):p\in P\}} 2951:that is, the strict partial order is the set 1663:in the "Antisymmetric" column, respectively. 55: 11420: 11342:. New York: John Wiley & Sons. pp.  10723: 10711: 10107:{\displaystyle \lim _{i\to \infty }b_{i}=b,} 10055:{\displaystyle \lim _{i\to \infty }a_{i}=a,} 9957: 9927: 8236: 8230: 8159: 8147: 7788:{\displaystyle x\leq y{\text{ and }}y\leq x} 7197: 7173: 7109: 7106: 7100: 7094: 7088: 7085: 7061: 7049: 6935: 6931: 6911: 6893: 6830:is a minimal element if there is no element 6749:is a maximal element if there is no element 6704: 6700: 6680: 6662: 6404: 6386: 6363: 6351: 6331: 6325: 6137: 6125: 6105: 6099: 6025: 6022: 6016: 6010: 6004: 5998: 5992: 5989: 5957: 5954: 5936: 5930: 5924: 5918: 5914: 5911: 5865: 5859: 5839: 5833: 5813: 5795: 5775: 5769: 5706: 5694: 5674: 5668: 5627:ordered by set inclusion (see Fig. 1). 5611: 5593: 5557: 5539: 5285:of the corresponding strict orders:   4357: 4354: 4333: 3050: 3020: 1970: 1964: 1944: 1938: 1918: 1906: 1859: 1841: 11081:"Transitive Closures of Binary Relations I" 10764:, a poset-based approach to quantum gravity 8326: 12385:Positive cone of a partially ordered group 11734: 11720: 11380: 11281: 11179:A Spiral Workbook for Discrete Mathematics 11072: 11026:A Beginner's Guide to Discrete Mathematics 7454:is also a partially ordered set, and both 7142:As another example, consider the positive 6282:Using the strict order <, the relation 5963:{\displaystyle \{\{\,\},\{x\},\{x,y,z\}\}} 4384:Wallis defines a more general notion of a 4377:, where equality is taken to be a defined 4196: 3678:is a non-strict partial order relation on 3172: 3168: 3164: 3153: 3149: 3104: 3100: 2961: 2342:, i.e. every element is related to itself. 2183: 62: 48: 11656: 11582: 11564: 11515: 11491: 11282:Chen, Peter; Ding, Guoli; Seiden, Steve. 10962:which always exists and is unique, since 10855: β€“ Vector space with a partial order 10660: 10652: 10471:). An open interval may be empty even if 8295: 8267: 8206: 8198: 8190: 8099: 8091: 8083: 7844:If an order-embedding between two posets 6934: 6703: 5917: 5137: 5129: 5093: 5085: 5049: 5041: 4821: 4751: 4715: 4597:(see Fig. 1). Similarly, the set of 4561: 4531: 1879:. Sets connected by an upward path, like 12368:Positive cone of an ordered vector space 11668: 11018: 11016: 11014: 10285:. When there is possible confusion with 7127: 6427: 4495: 4306:. This can be represented by a function 3183:is a non-strict partial order. Thus, if 2821: 2653:{\displaystyle \neg \left(a<a\right)} 2542:is a homogeneous relation < on a set 2521: 1818: 11634: 11591: 11544:Davey, B. A.; Priestley, H. A. (2002). 9866:to one another if and only if they are 9846:{\displaystyle (y,z)\circ (x,y)=(x,z).} 8814:{\displaystyle P^{*}=(X^{*},\leq ^{*})} 7218:Mappings between partially ordered sets 2852:is depicted in the center. For example 14: 12410: 11500:"Partially Ordered Topological Spaces" 11146: 11022: 9920:, then it is customary to assume that 6034:{\displaystyle \{\{x\},\{y\},\{z\}\}.} 5155: 11715: 11175: 11011: 10994:General relativity Β§ Time travel 10621:is a bounded interval, but it has no 10407:). It contains at least the elements 9853:Such categories are sometimes called 9639: 7559:is order-preserving, too. A function 6439:elements, and the bottom row are all 6197:fits between them; formally: if both 3955:is sometimes used as a shorthand for 2011:, in which every pair is comparable. 11497: 11465: 11385:, World Scientific, pp. 62–63, 9886:Partial orders in topological spaces 7296:(partially ordered by set inclusion) 4264:relationships to each other: either 2844:). Each relation is depicted by its 2180:itself is sometimes called a poset. 1666:All definitions tacitly require the 11147:Rounds, William C. (7 March 2002). 10686:" can be rephrased equivalently as 10549:is bounded if there exist elements 9412: 8732:Stirling numbers of the second kind 5657:, because the relation need not be 4677:precedes the corresponding item in 4624:. (see Fig. 3 and Fig. 6) 2225:, commonly referred to simply as a 1181:{\displaystyle S\neq \varnothing :} 24: 11895:Properties & Types ( 11567:"On Continuity of a Partial Order" 11547:Introduction to Lattices and Order 10481:. For example, the open interval 10080: 10028: 6290:can be equivalently rephrased as " 5531: 5514: 4026:When referring to partial orders, 3155: 3008: 2981: 2628: 1886: 25: 12434: 12351:Positive cone of an ordered field 11683: 11662:Foundations of Algebraic Topology 11584:10.1090/S0002-9939-1968-0236071-7 11517:10.1090/S0002-9939-1954-0063016-5 9963:{\displaystyle \{(a,b):a\leq b\}} 8320:Birkhoff's representation theorem 7821:according to the antisymmetry of 7303:Given two partially ordered sets 6723:and minimal elements: An element 4828:{\displaystyle n\in \mathbb {N} } 4463:to be a node and each element of 2974: 2204: 1172: 27:Mathematical set with an ordering 12205:Ordered topological vector space 11741: 11338:Topological Methods in Chemistry 11270:are not comparable, return None. 10873: β€“ Partial order with joins 10237:with the property that, for any 10172:{\displaystyle a_{i}\leq b_{i},} 8280:{\displaystyle g(\mathbb {N} ).} 7282: 7226: 7158:, which is distinct from it, so 7118:{\displaystyle \{\{x\},\{y\}\}.} 5501:, then so is their ordinal sum. 5111: 5067: 5023: 1651: 1638: 1567:{\displaystyle {\text{not }}aRa} 1072: 1062: 1032: 1022: 1000: 990: 955: 933: 923: 888: 856: 846: 821: 789: 774: 754: 722: 712: 702: 682: 650: 630: 620: 610: 578: 558: 514: 494: 484: 447: 422: 412: 380: 355: 318: 288: 256: 194: 159: 11459: 11414: 11374: 11323: 11306: 11275: 11023:Wallis, W. D. (14 March 2013). 10985: 10956: 9508:provided that for all elements 8309:and its isomorphic image under 8287:Fig. 7b shows a subset of 7552:{\displaystyle g\circ f:S\to U} 7078:for the collection of elements 4800:{\displaystyle a_{n}\leq b_{n}} 4520:relation ≀, is a partial order. 3490:{\displaystyle xR^{\text{op}}y} 2014:Formally, a partial order is a 11614:Bernd SchrΓΆder (11 May 2016). 11193: 11169: 11156:EECS 203: DISCRETE MATHEMATICS 11140: 11112: 11043: 10943: 10705: 10693: 10077: 10025: 9942: 9930: 9837: 9825: 9819: 9807: 9801: 9789: 9396: 9383: 8850: 8838: 8808: 8782: 8271: 8263: 8210: 8202: 8194: 8103: 8095: 8087: 7978: 7946: 7880: 7742: 7736: 7727: 7721: 7575: 7543: 7502: 7470: 7335: 6485:and least element: An element 6275:{\displaystyle a\neq c\neq b.} 5569: 5560: 5536: 5526: 5505:Series-parallel partial orders 5371:Sums of partially ordered sets 4854:containing all functions from 4620:equipped with the relation of 4426: 4414: 4330: 4150:is equal to the complement of 3941:{\displaystyle (P,\leq ,<)} 3935: 3917: 3897: 3885: 3865: 3853: 3842:. Strictly speaking, the term 3347: 3108:{\displaystyle \;\setminus \;} 3035: 3023: 2063: 2051: 2038:for short) is an ordered pair 1659:in the "Symmetric" column and 1595: 1340: 1285: 1214: 13: 1: 12162:Series-parallel partial order 11664:. Princeton University Press. 11565:Deshpande, Jayant V. (1968). 11536: 11291:(Technical report). p. 2 10674:is not locally finite, since 10315:that is also a convex set of 8249:), but it can be made one by 8132:, then each prime divisor of 8124:. It is order-preserving: if 7206:{\displaystyle \{2,3,5,10\},} 6693:is the greatest element, and 3433:{\displaystyle R^{\text{op}}} 3386:{\displaystyle R^{\text{op}}} 1931:, are comparable, while e.g. 1660: 1647: 1057: 1052: 1047: 1042: 1017: 985: 980: 975: 970: 965: 950: 918: 913: 908: 903: 898: 883: 871: 866: 841: 836: 831: 816: 804: 799: 784: 769: 764: 749: 737: 732: 697: 692: 677: 665: 660: 645: 640: 605: 593: 588: 573: 568: 553: 548: 543: 529: 524: 509: 504: 479: 474: 462: 457: 442: 437: 432: 407: 395: 390: 375: 370: 365: 350: 345: 333: 328: 313: 308: 303: 298: 283: 271: 266: 251: 246: 241: 236: 231: 226: 209: 204: 189: 184: 179: 174: 169: 11841:Cantor's isomorphism theorem 11454:Davey & Priestley (2002) 11405:Davey & Priestley (2002) 11103:Davey & Priestley (2002) 11004: 10210: 9601:{\displaystyle x\leq ^{*}y.} 8757: 8302:{\displaystyle \mathbb {N} } 7518:are order-preserving, their 4989:can be causally affected by 4846:and a partially ordered set 4649:For a partially ordered set 4568:{\displaystyle \mathbb {R} } 4538:{\displaystyle \mathbb {R} } 3996:{\displaystyle \sqsubseteq } 3393:of a partial order relation 2871:{\displaystyle 3\not \leq 4} 7: 11881:Szpilrajn extension theorem 11856:Hausdorff maximal principle 11831:Boolean prime ideal theorem 11640:Enumerative Combinatorics 1 10883:Szpilrajn extension theorem 10748: 9276:{\displaystyle x\leq ^{*}y} 9074:{\displaystyle x\leq ^{*}y} 8856:{\displaystyle P=(X,\leq )} 8136:is also a prime divisor of 5649:. This does not imply that 5519:The examples use the poset 4491: 4046:should not be taken as the 3526: 2608:{\displaystyle a,b,c\in P:} 2302:{\displaystyle a,b,c\in P,} 2069:{\displaystyle P=(X,\leq )} 2016:homogeneous binary relation 10: 12439: 12227:Topological vector lattice 10214: 9999:{\displaystyle P\times P.} 9974:subset of the topological 9889: 9643: 8740:If the count is made only 7042:. In our example, the set 6443:elements, but there is no 6423: 6413:{\displaystyle \{x,y,z\}.} 5620:{\displaystyle \{x,y,z\},} 4582:is a strict partial order. 4381:rather than set equality. 3351: 2840:), and converse relation ( 1892:{\displaystyle \emptyset } 1868:{\displaystyle \{x,y,z\},} 12257: 12185: 12124: 11894: 11823: 11772: 11749: 11125:(Release 3.18.4 ed.) 10822:MΓΆbius function on posets 10732:{\displaystyle =\{a,b\}.} 9654:) may be considered as a 9615:order-extension principle 9572:it is also the case that 9536:{\displaystyle x,y\in X,} 9468:of another partial order 9437:{\displaystyle \leq ^{*}} 9157:and furthermore, for all 8934:{\displaystyle \leq ^{*}} 7906:, and the partial orders 7748:{\displaystyle f(x)=f(y)} 7623:{\displaystyle x,y\in S,} 7395:{\displaystyle x,y\in S,} 7138:, ordered by divisibility 6917:{\displaystyle \{x,y,z\}} 6686:{\displaystyle \{x,y,z\}} 5819:{\displaystyle \{x,y,z\}} 4260:may stand in any of four 3871:{\displaystyle (P,\leq )} 3086:{\displaystyle P\times P} 2199:one-to-one correspondence 11836:Cantor–Bernstein theorem 11330:Merrifield, Richard E.; 11052:"Partially Ordered Sets" 10936: 10574:{\displaystyle a,b\in P} 10201:{\displaystyle a\leq b.} 9565:{\displaystyle x\leq y,} 8327:Number of partial orders 8251:restricting its codomain 8039:{\displaystyle f\circ g} 8013:{\displaystyle g\circ f} 7987:{\displaystyle g:T\to U} 7955:{\displaystyle f:S\to T} 7889:{\displaystyle f:S\to T} 7864:. If an order-embedding 7670:{\displaystyle x\leq y.} 7584:{\displaystyle f:S\to T} 7511:{\displaystyle g:T\to U} 7479:{\displaystyle f:S\to T} 7344:{\displaystyle f:S\to T} 7030:. A greatest element of 7002:. Similarly, an element 6998:to be an upper bound of 6372:{\displaystyle \{x,z\},} 6146:{\displaystyle \{x,y\}.} 6085:{\displaystyle a\neq b.} 5715:{\displaystyle \{x,y\},} 4432:{\displaystyle (P,<)} 4016:{\displaystyle \preceq } 3903:{\displaystyle (P,<)} 2944:{\displaystyle a\leq a;} 2221:non-strict partial order 12380:Partially ordered group 12200:Specialization preorder 11498:Ward, L. E. Jr (1954). 10982:is assumed to be finite 10433:is the set of elements 10369:is the set of elements 9892:Partially ordered space 9650:Every poset (and every 9630:directed acyclic graphs 9402:{\displaystyle P^{*}=P} 9243:{\displaystyle x\leq y} 9100:{\displaystyle x\leq y} 8176:divisors defines a map 8165:{\displaystyle \{2,3\}} 8069:For example, a mapping 7420:{\displaystyle x\leq y} 7067:{\displaystyle \{x,y\}} 6878:{\displaystyle a<m.} 6797:{\displaystyle a>g.} 6648:{\displaystyle a\in P.} 6619:{\displaystyle m\leq a} 6563:{\displaystyle a\in P.} 6534:{\displaystyle a\leq g} 6224:{\displaystyle a\neq b} 5586:of a three-element set 5033:Lexicographic order on 4955:, where for two events 4913:{\displaystyle x\in X.} 4197:Alternative definitions 2836:), irreflexive kernel ( 2503:{\displaystyle a\leq c} 2477:{\displaystyle b\leq c} 2451:{\displaystyle a\leq b} 2393:{\displaystyle b\leq a} 2367:{\displaystyle a\leq b} 2335:{\displaystyle a\leq a} 2184:Partial order relations 1924:{\displaystyle \{x,y\}} 1834:of a three-element set 11866:Kruskal's tree theorem 11861:Knaster–Tarski theorem 11851:Dushnik–Miller theorem 11597:Relational Mathematics 10976: 10774:Complete partial order 10733: 10668: 10575: 10527:are defined similarly. 10217:Interval (mathematics) 10202: 10173: 10131: 10108: 10056: 10000: 9964: 9910: 9847: 9742: 9719: 9695: 9672: 9602: 9566: 9537: 9502: 9482: 9458: 9438: 9403: 9354: 9324: 9304: 9277: 9244: 9218: 9191: 9171: 9151: 9131: 9101: 9075: 9042: 9022: 8995: 8975: 8955: 8935: 8908: 8884: 8857: 8815: 8303: 8281: 8243: 8217: 8166: 8110: 8066:are order-isomorphic. 8040: 8014: 7988: 7956: 7890: 7852:exists, one says that 7838: 7837:{\displaystyle \leq .} 7815: 7789: 7749: 7703:. In the latter case, 7671: 7624: 7585: 7553: 7512: 7480: 7421: 7396: 7345: 7270: 7207: 7154:divides for instance 2 7139: 7119: 7068: 6952:Upper and lower bounds 6942: 6941:{\displaystyle \{\,\}} 6918: 6879: 6850: 6849:{\displaystyle a\in P} 6824: 6823:{\displaystyle m\in P} 6804:Similarly, an element 6798: 6769: 6768:{\displaystyle a\in P} 6743: 6742:{\displaystyle g\in P} 6711: 6710:{\displaystyle \{\,\}} 6687: 6649: 6620: 6590: 6589:{\displaystyle m\in P} 6564: 6535: 6505: 6504:{\displaystyle g\in P} 6472: 6452: 6414: 6379:but is not covered by 6373: 6338: 6276: 6225: 6189:is strictly less than 6147: 6118:is strictly less than 6112: 6086: 6035: 5964: 5872: 5846: 5826:are comparable, while 5820: 5782: 5716: 5681: 5621: 5576: 5148: 5101: 5057: 4914: 4829: 4801: 4761: 4629:directed acyclic graph 4569: 4539: 4505: 4477: 4457: 4441:directed acyclic graph 4433: 4386:partial order relation 4364: 4246: 4209:. Specifically, given 4187: 4164: 4144: 4124: 4104: 4084: 4064: 4040: 4017: 3997: 3977: 3942: 3904: 3872: 3836: 3816: 3796: 3776: 3756: 3732: 3712: 3692: 3672: 3652: 3632: 3631:{\displaystyle \geq ,} 3610: 3588: 3587:{\displaystyle \leq ,} 3565: 3545: 3517: 3491: 3458: 3434: 3413:is defined by letting 3407: 3387: 3354:Duality (order theory) 3339: 3278: 3258: 3197: 3177: 3133: 3109: 3087: 3057: 2994: 2945: 2916: 2896: 2879: 2872: 2796: 2795:{\displaystyle a<c} 2770: 2769:{\displaystyle b<c} 2744: 2743:{\displaystyle a<b} 2712: 2711:{\displaystyle b<a} 2686: 2685:{\displaystyle a<b} 2654: 2609: 2556: 2504: 2478: 2452: 2420: 2394: 2368: 2336: 2303: 2250: 2174: 2154: 2134: 2120:) and a partial order 2114: 2090: 2070: 1984: 1977: 1951: 1925: 1893: 1869: 1803: 1774: 1748: 1722: 1721:{\displaystyle a,b,c,} 1683: 1624: 1568: 1536: 1509: 1465: 1421: 1380: 1309: 1238: 1182: 1153: 11421:P. R. Halmos (1974). 10977: 10949:A proof can be found 10828:Nested set collection 10734: 10669: 10576: 10297:instead of "convex". 10203: 10174: 10132: 10109: 10057: 10010:in the sense that if 10001: 9965: 9911: 9848: 9748:More explicitly, let 9743: 9720: 9701:there is at most one 9696: 9673: 9603: 9567: 9538: 9503: 9483: 9481:{\displaystyle \leq } 9459: 9439: 9404: 9355: 9353:{\displaystyle X^{*}} 9325: 9305: 9303:{\displaystyle P^{*}} 9278: 9245: 9219: 9217:{\displaystyle X^{*}} 9192: 9172: 9152: 9132: 9130:{\displaystyle P^{*}} 9102: 9076: 9043: 9023: 9021:{\displaystyle X^{*}} 8996: 8976: 8956: 8954:{\displaystyle \leq } 8936: 8909: 8885: 8883:{\displaystyle X^{*}} 8858: 8816: 8315:distributive lattices 8304: 8282: 8244: 8242:{\displaystyle \{4\}} 8218: 8167: 8111: 8058:, respectively, then 8041: 8015: 7989: 7957: 7891: 7839: 7816: 7790: 7750: 7672: 7625: 7586: 7554: 7513: 7481: 7422: 7397: 7346: 7271: 7269:{\displaystyle \leq } 7208: 7131: 7120: 7069: 7034:is an upper bound of 6970:is an upper bound of 6943: 6919: 6880: 6851: 6825: 6799: 6770: 6744: 6712: 6688: 6650: 6621: 6591: 6565: 6536: 6506: 6473: 6431: 6415: 6374: 6339: 6337:{\displaystyle \{x\}} 6277: 6226: 6193:and no third element 6148: 6113: 6111:{\displaystyle \{x\}} 6087: 6036: 5965: 5873: 5871:{\displaystyle \{y\}} 5847: 5845:{\displaystyle \{x\}} 5821: 5783: 5781:{\displaystyle \{x\}} 5758:. Otherwise they are 5717: 5682: 5680:{\displaystyle \{x\}} 5622: 5577: 5354:ordered vector spaces 5183:lexicographical order 5149: 5102: 5058: 4947:The set of events in 4915: 4830: 4802: 4762: 4646:ordered by inclusion. 4578:By definition, every 4570: 4540: 4499: 4478: 4458: 4434: 4365: 4247: 4205:, is via a notion of 4188: 4186:{\displaystyle \leq } 4165: 4163:{\displaystyle \leq } 4145: 4125: 4123:{\displaystyle \leq } 4105: 4103:{\displaystyle \leq } 4085: 4065: 4041: 4039:{\displaystyle \leq } 4018: 3998: 3978: 3976:{\displaystyle \leq } 3957:partially ordered set 3943: 3905: 3873: 3844:partially ordered set 3837: 3817: 3797: 3795:{\displaystyle \leq } 3777: 3775:{\displaystyle \geq } 3757: 3755:{\displaystyle \leq } 3733: 3713: 3693: 3673: 3671:{\displaystyle \leq } 3653: 3633: 3611: 3609:{\displaystyle <,} 3589: 3566: 3564:{\displaystyle \leq } 3546: 3518: 3492: 3459: 3435: 3408: 3388: 3340: 3279: 3277:{\displaystyle \leq } 3259: 3198: 3196:{\displaystyle \leq } 3178: 3134: 3110: 3088: 3058: 2995: 2946: 2917: 2915:{\displaystyle \leq } 2897: 2873: 2825: 2797: 2771: 2745: 2713: 2687: 2655: 2610: 2557: 2522:Strict partial orders 2505: 2479: 2453: 2421: 2395: 2369: 2337: 2304: 2251: 2175: 2155: 2135: 2133:{\displaystyle \leq } 2115: 2091: 2071: 2032:partially ordered set 1978: 1976:{\displaystyle \{y\}} 1952: 1950:{\displaystyle \{x\}} 1926: 1894: 1870: 1822: 1804: 1775: 1749: 1723: 1684: 1625: 1569: 1537: 1510: 1466: 1422: 1381: 1310: 1239: 1183: 1154: 1133:Definitions, for all 12358:Ordered vector space 11671:J. Reine Angew. Math 11429:. Springer. p.  10966: 10895:Strict weak ordering 10889:Stochastic dominance 10853:Ordered vector space 10810:Locally finite poset 10690: 10648: 10553: 10183: 10140: 10118: 10066: 10014: 9981: 9924: 9900: 9786: 9729: 9709: 9682: 9662: 9576: 9547: 9512: 9492: 9472: 9448: 9421: 9364: 9337: 9314: 9287: 9254: 9228: 9201: 9181: 9161: 9141: 9114: 9085: 9052: 9032: 9005: 8985: 8965: 8945: 8918: 8898: 8867: 8829: 8766: 8400:Equivalence relation 8291: 8257: 8227: 8180: 8144: 8073: 8024: 7998: 7966: 7934: 7868: 7825: 7799: 7759: 7715: 7652: 7599: 7563: 7525: 7490: 7458: 7405: 7371: 7323: 7260: 7170: 7136:Nonnegative integers 7082: 7046: 7010:is a lower bound of 6928: 6890: 6860: 6834: 6808: 6779: 6753: 6727: 6697: 6659: 6630: 6604: 6574: 6545: 6519: 6489: 6459: 6383: 6348: 6322: 6251: 6209: 6122: 6096: 6067: 5986: 5908: 5856: 5830: 5792: 5766: 5722:but not the reverse. 5691: 5665: 5590: 5523: 5125: 5081: 5037: 4951:and, in most cases, 4895: 4811: 4771: 4685: 4627:The vertex set of a 4589:of a given set (its 4557: 4527: 4523:On the real numbers 4485:transitive reduction 4476:{\displaystyle <} 4467: 4447: 4411: 4390:homogeneous relation 4379:equivalence relation 4310: 4213: 4177: 4154: 4143:{\displaystyle >} 4134: 4114: 4094: 4083:{\displaystyle >} 4074: 4063:{\displaystyle >} 4054: 4030: 4007: 3987: 3967: 3961:totally ordered sets 3914: 3882: 3850: 3835:{\displaystyle <} 3826: 3815:{\displaystyle >} 3806: 3786: 3766: 3746: 3722: 3711:{\displaystyle <} 3702: 3682: 3662: 3651:{\displaystyle >} 3642: 3619: 3597: 3575: 3555: 3535: 3501: 3468: 3448: 3417: 3397: 3370: 3292: 3268: 3211: 3187: 3143: 3123: 3097: 3071: 3004: 2955: 2926: 2906: 2886: 2856: 2848:for the poset whose 2780: 2754: 2728: 2696: 2670: 2625: 2578: 2546: 2538:strict partial order 2488: 2462: 2436: 2404: 2378: 2352: 2320: 2272: 2240: 2231:homogeneous relation 2164: 2144: 2124: 2104: 2080: 2076:consisting of a set 2042: 1961: 1935: 1903: 1883: 1838: 1802:{\displaystyle aRc.} 1784: 1758: 1732: 1697: 1673: 1668:homogeneous relation 1579: 1547: 1520: 1476: 1432: 1391: 1320: 1249: 1193: 1163: 1137: 879:Strict partial order 154:Equivalence relation 12196:Alexandrov topology 12142:Lexicographic order 12101:Well-quasi-ordering 11636:Stanley, Richard P. 11471:The Axiom of Choice 10812: β€“ Mathematics 10768:Comparability graph 10502:half-open intervals 10311:is a sublattice of 9778:(and otherwise the 9658:where, for objects 9634:topological sorting 8352: 7814:{\displaystyle x=y} 7022:, for each element 6982:, for each element 6165:by another element 5653:is also related to 4837:componentwise order 4483:to be an edge. The 4372:partial order on a 3516:{\displaystyle yRx} 2830:Commutative diagram 2419:{\displaystyle a=b} 2268:. That is, for all 1773:{\displaystyle bRc} 1747:{\displaystyle aRb} 1535:{\displaystyle aRa} 1152:{\displaystyle a,b} 538:Well-quasi-ordering 12177:Transitive closure 12137:Converse/Transpose 11846:Dilworth's theorem 11526:10338.dmlcz/101379 11475:Dover Publications 11332:Simmons, Howard E. 10972: 10729: 10664: 10640:A poset is called 10571: 10198: 10169: 10130:{\displaystyle i,} 10127: 10104: 10084: 10052: 10032: 9996: 9960: 9906: 9880:isomorphism-closed 9843: 9741:{\displaystyle y.} 9738: 9715: 9694:{\displaystyle y,} 9691: 9668: 9640:In category theory 9598: 9562: 9533: 9498: 9478: 9454: 9434: 9399: 9350: 9320: 9300: 9273: 9240: 9214: 9187: 9167: 9147: 9127: 9097: 9071: 9038: 9028:(and thus also in 9018: 8991: 8971: 8951: 8931: 8904: 8880: 8853: 8811: 8346: 8343:labeled elements: 8299: 8277: 8239: 8213: 8162: 8106: 8036: 8010: 7984: 7952: 7900:, it is called an 7886: 7834: 7811: 7785: 7745: 7667: 7620: 7581: 7549: 7508: 7476: 7417: 7392: 7341: 7266: 7203: 7140: 7115: 7064: 6938: 6914: 6875: 6846: 6820: 6794: 6765: 6739: 6707: 6683: 6645: 6626:for every element 6616: 6586: 6560: 6541:for every element 6531: 6501: 6471:{\displaystyle P,} 6468: 6453: 6410: 6369: 6334: 6272: 6243:is false for each 6221: 6143: 6108: 6082: 6049:strictly less than 6031: 5960: 5868: 5842: 5816: 5778: 5712: 5677: 5617: 5584:set of all subsets 5582:consisting of the 5572: 5497:If two posets are 5144: 5097: 5053: 4953:general relativity 4949:special relativity 4910: 4825: 4797: 4757: 4669:precedes sequence 4565: 4535: 4518:less-than-or-equal 4506: 4473: 4453: 4429: 4360: 4262:mutually exclusive 4242: 4193:is a total order. 4183: 4160: 4140: 4120: 4100: 4080: 4060: 4036: 4013: 3993: 3973: 3938: 3900: 3868: 3832: 3812: 3792: 3772: 3752: 3740:irreflexive kernel 3728: 3708: 3688: 3668: 3648: 3628: 3606: 3584: 3561: 3541: 3513: 3487: 3454: 3430: 3403: 3383: 3335: 3274: 3254: 3205:irreflexive kernel 3193: 3173: 3129: 3105: 3083: 3053: 2990: 2941: 2912: 2892: 2880: 2868: 2792: 2766: 2740: 2708: 2682: 2650: 2605: 2552: 2500: 2474: 2448: 2416: 2390: 2364: 2332: 2299: 2246: 2170: 2150: 2130: 2110: 2086: 2066: 1985: 1973: 1947: 1921: 1889: 1865: 1832:set of all subsets 1799: 1770: 1744: 1718: 1679: 1620: 1618: 1564: 1532: 1505: 1503: 1461: 1459: 1417: 1415: 1376: 1374: 1305: 1303: 1234: 1232: 1178: 1149: 1013:Strict total order 12405: 12404: 12363:Partially ordered 12172:Symmetric closure 12157:Reflexive closure 11900: 11698:labeled elements) 11627:978-3-319-29788-0 11606:978-0-521-76268-7 11557:978-0-521-78451-1 11484:978-0-486-46624-8 11456:, pp. 23–24. 11440:978-1-4757-1645-0 11232:in the poset. If 11216:compare_elements( 11149:"Lectures slides" 11036:978-1-4757-3826-1 10975:{\displaystyle P} 10798:Incidence algebra 10302:convex sublattice 10069: 10017: 9918:topological space 9909:{\displaystyle P} 9718:{\displaystyle x} 9671:{\displaystyle x} 9501:{\displaystyle X} 9457:{\displaystyle X} 9323:{\displaystyle P} 9190:{\displaystyle y} 9170:{\displaystyle x} 9150:{\displaystyle P} 9137:is a subposet of 9041:{\displaystyle X} 8994:{\displaystyle y} 8974:{\displaystyle x} 8907:{\displaystyle X} 8825:of another poset 8713: 8712: 8048:identity function 7903:order isomorphism 7774: 6990:. In particular, 5279:reflexive closure 5175:Cartesian product 5077:Product order on 4977:is in the future 4673:if every item in 4665:, where sequence 4661:of elements from 4605:, and the set of 4580:strict weak order 4553:relation > on 4456:{\displaystyle P} 4316: 4237: 3731:{\displaystyle P} 3691:{\displaystyle P} 3544:{\displaystyle P} 3481: 3457:{\displaystyle R} 3442:converse relation 3427: 3406:{\displaystyle R} 3380: 3321: 3307: 3286:reflexive closure 3240: 3226: 3132:{\displaystyle P} 3065:identity relation 2979: 2973: 2967: 2895:{\displaystyle P} 2555:{\displaystyle P} 2309:it must satisfy: 2249:{\displaystyle P} 2173:{\displaystyle X} 2153:{\displaystyle X} 2113:{\displaystyle P} 2089:{\displaystyle X} 1815: 1814: 1682:{\displaystyle R} 1633: 1632: 1605: 1553: 1499: 1455: 1411: 1359: 1268: 946:Strict weak order 132:Total, Semiconnex 16:(Redirected from 12430: 12423:Binary relations 12147:Linear extension 11896: 11876:Mirsky's theorem 11736: 11729: 11722: 11713: 11712: 11704: 11692: 11678: 11665: 11653: 11631: 11610: 11593:Schmidt, Gunther 11588: 11586: 11561: 11530: 11529: 11519: 11495: 11489: 11488: 11463: 11457: 11451: 11445: 11444: 11428: 11425:Naive Set Theory 11418: 11412: 11402: 11396: 11395: 11378: 11372: 11371: 11362: 11360: 11341: 11327: 11321: 11320: 11310: 11304: 11303: 11298: 11296: 11290: 11285:On Poset Merging 11279: 11273: 11272: 11261: 11251: 11242:, return βˆ’1. If 11241: 11213: 11211: 11197: 11191: 11190: 11188: 11186: 11173: 11167: 11166: 11164: 11162: 11153: 11144: 11138: 11137: 11132: 11130: 11116: 11110: 11100: 11094: 11092: 11076: 11070: 11069: 11047: 11041: 11040: 11020: 10998: 10989: 10983: 10981: 10979: 10978: 10973: 10960: 10954: 10947: 10918: 10907: 10865:Scott continuity 10849: 10818: 10815: 10794: 10779: 10738: 10736: 10735: 10730: 10677: 10673: 10671: 10670: 10665: 10663: 10655: 10620: 10616: 10615: 10611: 10607: 10598: 10597: 10580: 10578: 10577: 10572: 10548: 10540: 10526: 10514: 10496: 10488: 10484: 10480: 10470: 10460: 10450: 10432: 10406: 10396: 10386: 10368: 10276: 10248: 10232: 10207: 10205: 10204: 10199: 10178: 10176: 10175: 10170: 10165: 10164: 10152: 10151: 10136: 10134: 10133: 10128: 10113: 10111: 10110: 10105: 10094: 10093: 10083: 10061: 10059: 10058: 10053: 10042: 10041: 10031: 10005: 10003: 10002: 9997: 9969: 9967: 9966: 9961: 9915: 9913: 9912: 9907: 9852: 9850: 9849: 9844: 9777: 9767: 9747: 9745: 9744: 9739: 9724: 9722: 9721: 9716: 9700: 9698: 9697: 9692: 9677: 9675: 9674: 9669: 9646:Posetal category 9622:computer science 9610:linear extension 9607: 9605: 9604: 9599: 9591: 9590: 9571: 9569: 9568: 9563: 9542: 9540: 9539: 9534: 9507: 9505: 9504: 9499: 9487: 9485: 9484: 9479: 9463: 9461: 9460: 9455: 9443: 9441: 9440: 9435: 9433: 9432: 9417:A partial order 9413:Linear extension 9408: 9406: 9405: 9400: 9395: 9394: 9376: 9375: 9359: 9357: 9356: 9351: 9349: 9348: 9329: 9327: 9326: 9321: 9310:the subposet of 9309: 9307: 9306: 9301: 9299: 9298: 9282: 9280: 9279: 9274: 9269: 9268: 9249: 9247: 9246: 9241: 9223: 9221: 9220: 9215: 9213: 9212: 9196: 9194: 9193: 9188: 9176: 9174: 9173: 9168: 9156: 9154: 9153: 9148: 9136: 9134: 9133: 9128: 9126: 9125: 9106: 9104: 9103: 9098: 9080: 9078: 9077: 9072: 9067: 9066: 9047: 9045: 9044: 9039: 9027: 9025: 9024: 9019: 9017: 9016: 9000: 8998: 8997: 8992: 8980: 8978: 8977: 8972: 8960: 8958: 8957: 8952: 8940: 8938: 8937: 8932: 8930: 8929: 8913: 8911: 8910: 8905: 8889: 8887: 8886: 8881: 8879: 8878: 8862: 8860: 8859: 8854: 8820: 8818: 8817: 8812: 8807: 8806: 8794: 8793: 8778: 8777: 8749: 8729: 8657: 8644: 8643: 8623: 8606: 8605: 8554: 8549: 8544: 8539: 8353: 8345: 8312: 8308: 8306: 8305: 8300: 8298: 8286: 8284: 8283: 8278: 8270: 8248: 8246: 8245: 8240: 8222: 8220: 8219: 8214: 8209: 8201: 8193: 8171: 8169: 8168: 8163: 8139: 8135: 8131: 8127: 8115: 8113: 8112: 8107: 8102: 8094: 8086: 8045: 8043: 8042: 8037: 8019: 8017: 8016: 8011: 7994:exist such that 7993: 7991: 7990: 7985: 7961: 7959: 7958: 7953: 7921: 7913: 7895: 7893: 7892: 7887: 7843: 7841: 7840: 7835: 7820: 7818: 7817: 7812: 7794: 7792: 7791: 7786: 7775: 7772: 7754: 7752: 7751: 7746: 7706: 7702: 7694: 7680: 7676: 7674: 7673: 7668: 7647: 7629: 7627: 7626: 7621: 7593:order-reflecting 7590: 7588: 7587: 7582: 7558: 7556: 7555: 7550: 7517: 7515: 7514: 7509: 7485: 7483: 7482: 7477: 7453: 7445: 7426: 7424: 7423: 7418: 7401: 7399: 7398: 7393: 7354:order-preserving 7350: 7348: 7347: 7342: 7318: 7310: 7295: 7286: 7276: 7275: 7273: 7272: 7267: 7254: 7230: 7212: 7210: 7209: 7204: 7124: 7122: 7121: 7116: 7073: 7071: 7070: 7065: 6947: 6945: 6944: 6939: 6923: 6921: 6920: 6915: 6884: 6882: 6881: 6876: 6855: 6853: 6852: 6847: 6829: 6827: 6826: 6821: 6803: 6801: 6800: 6795: 6774: 6772: 6771: 6766: 6748: 6746: 6745: 6740: 6721:Maximal elements 6716: 6714: 6713: 6708: 6692: 6690: 6689: 6684: 6654: 6652: 6651: 6646: 6625: 6623: 6622: 6617: 6595: 6593: 6592: 6587: 6569: 6567: 6566: 6561: 6540: 6538: 6537: 6532: 6513:greatest element 6510: 6508: 6507: 6502: 6483:Greatest element 6477: 6475: 6474: 6469: 6419: 6417: 6416: 6411: 6378: 6376: 6375: 6370: 6343: 6341: 6340: 6335: 6318:". For example, 6313: 6299: 6281: 6279: 6278: 6273: 6230: 6228: 6227: 6222: 6152: 6150: 6149: 6144: 6117: 6115: 6114: 6109: 6091: 6089: 6088: 6083: 6040: 6038: 6037: 6032: 5969: 5967: 5966: 5961: 5877: 5875: 5874: 5869: 5851: 5849: 5848: 5843: 5825: 5823: 5822: 5817: 5787: 5785: 5784: 5779: 5757: 5747: 5721: 5719: 5718: 5713: 5686: 5684: 5683: 5678: 5626: 5624: 5623: 5618: 5581: 5579: 5578: 5573: 5535: 5534: 5420:if and only if: 5419: 5396: 5344: 5334: 5324: 5314: 5304: 5234: 5224: 5214: 5204: 5165: 5161: 5153: 5151: 5150: 5145: 5140: 5132: 5115: 5106: 5104: 5103: 5098: 5096: 5088: 5071: 5062: 5060: 5059: 5054: 5052: 5044: 5027: 5002: 4972: 4944: 4919: 4917: 4916: 4911: 4890: 4871: 4834: 4832: 4831: 4826: 4824: 4806: 4804: 4803: 4798: 4796: 4795: 4783: 4782: 4766: 4764: 4763: 4758: 4756: 4755: 4754: 4742: 4738: 4737: 4720: 4719: 4718: 4706: 4702: 4701: 4574: 4572: 4571: 4566: 4564: 4544: 4542: 4541: 4536: 4534: 4482: 4480: 4479: 4474: 4462: 4460: 4459: 4454: 4438: 4436: 4435: 4430: 4369: 4367: 4366: 4361: 4317: 4314: 4293: 4283: 4273: 4251: 4249: 4248: 4243: 4238: 4235: 4203:computer science 4192: 4190: 4189: 4184: 4169: 4167: 4166: 4161: 4149: 4147: 4146: 4141: 4129: 4127: 4126: 4121: 4109: 4107: 4106: 4101: 4089: 4087: 4086: 4081: 4069: 4067: 4066: 4061: 4045: 4043: 4042: 4037: 4022: 4020: 4019: 4014: 4002: 4000: 3999: 3994: 3982: 3980: 3979: 3974: 3947: 3945: 3944: 3939: 3909: 3907: 3906: 3901: 3877: 3875: 3874: 3869: 3841: 3839: 3838: 3833: 3821: 3819: 3818: 3813: 3801: 3799: 3798: 3793: 3781: 3779: 3778: 3773: 3761: 3759: 3758: 3753: 3737: 3735: 3734: 3729: 3717: 3715: 3714: 3709: 3697: 3695: 3694: 3689: 3677: 3675: 3674: 3669: 3657: 3655: 3654: 3649: 3637: 3635: 3634: 3629: 3615: 3613: 3612: 3607: 3593: 3591: 3590: 3585: 3570: 3568: 3567: 3562: 3550: 3548: 3547: 3542: 3522: 3520: 3519: 3514: 3496: 3494: 3493: 3488: 3483: 3482: 3479: 3463: 3461: 3460: 3455: 3439: 3437: 3436: 3431: 3429: 3428: 3425: 3412: 3410: 3409: 3404: 3392: 3390: 3389: 3384: 3382: 3381: 3378: 3344: 3342: 3341: 3336: 3322: 3319: 3308: 3305: 3283: 3281: 3280: 3275: 3263: 3261: 3260: 3255: 3241: 3238: 3227: 3224: 3202: 3200: 3199: 3194: 3182: 3180: 3179: 3174: 3163: 3162: 3138: 3136: 3135: 3130: 3114: 3112: 3111: 3106: 3092: 3090: 3089: 3084: 3062: 3060: 3059: 3054: 3016: 3015: 2999: 2997: 2996: 2991: 2989: 2988: 2977: 2971: 2965: 2950: 2948: 2947: 2942: 2921: 2919: 2918: 2913: 2901: 2899: 2898: 2893: 2877: 2875: 2874: 2869: 2801: 2799: 2798: 2793: 2775: 2773: 2772: 2767: 2749: 2747: 2746: 2741: 2717: 2715: 2714: 2709: 2691: 2689: 2688: 2683: 2659: 2657: 2656: 2651: 2649: 2645: 2614: 2612: 2611: 2606: 2561: 2559: 2558: 2553: 2540: 2539: 2509: 2507: 2506: 2501: 2483: 2481: 2480: 2475: 2457: 2455: 2454: 2449: 2425: 2423: 2422: 2417: 2399: 2397: 2396: 2391: 2373: 2371: 2370: 2365: 2341: 2339: 2338: 2333: 2308: 2306: 2305: 2300: 2255: 2253: 2252: 2247: 2223: 2222: 2179: 2177: 2176: 2171: 2159: 2157: 2156: 2151: 2139: 2137: 2136: 2131: 2119: 2117: 2116: 2111: 2095: 2093: 2092: 2087: 2075: 2073: 2072: 2067: 1982: 1980: 1979: 1974: 1956: 1954: 1953: 1948: 1930: 1928: 1927: 1922: 1898: 1896: 1895: 1890: 1874: 1872: 1871: 1866: 1808: 1806: 1805: 1800: 1779: 1777: 1776: 1771: 1753: 1751: 1750: 1745: 1727: 1725: 1724: 1719: 1688: 1686: 1685: 1680: 1662: 1658: 1655: 1654: 1649: 1645: 1642: 1641: 1629: 1627: 1626: 1621: 1619: 1606: 1603: 1573: 1571: 1570: 1565: 1554: 1551: 1541: 1539: 1538: 1533: 1514: 1512: 1511: 1506: 1504: 1500: 1497: 1470: 1468: 1467: 1462: 1460: 1456: 1453: 1426: 1424: 1423: 1418: 1416: 1412: 1409: 1385: 1383: 1382: 1377: 1375: 1360: 1357: 1334: 1314: 1312: 1311: 1306: 1304: 1295: 1269: 1266: 1243: 1241: 1240: 1235: 1233: 1218: 1199: 1187: 1185: 1184: 1179: 1158: 1156: 1155: 1150: 1079: 1076: 1075: 1069: 1066: 1065: 1059: 1054: 1049: 1044: 1039: 1036: 1035: 1029: 1026: 1025: 1019: 1007: 1004: 1003: 997: 994: 993: 987: 982: 977: 972: 967: 962: 959: 958: 952: 940: 937: 936: 930: 927: 926: 920: 915: 910: 905: 900: 895: 892: 891: 885: 873: 868: 863: 860: 859: 853: 850: 849: 843: 838: 833: 828: 825: 824: 818: 812:Meet-semilattice 806: 801: 796: 793: 792: 786: 781: 778: 777: 771: 766: 761: 758: 757: 751: 745:Join-semilattice 739: 734: 729: 726: 725: 719: 716: 715: 709: 706: 705: 699: 694: 689: 686: 685: 679: 667: 662: 657: 654: 653: 647: 642: 637: 634: 633: 627: 624: 623: 617: 614: 613: 607: 595: 590: 585: 582: 581: 575: 570: 565: 562: 561: 555: 550: 545: 540: 531: 526: 521: 518: 517: 511: 506: 501: 498: 497: 491: 488: 487: 481: 476: 464: 459: 454: 451: 450: 444: 439: 434: 429: 426: 425: 419: 416: 415: 409: 397: 392: 387: 384: 383: 377: 372: 367: 362: 359: 358: 352: 347: 335: 330: 325: 322: 321: 315: 310: 305: 300: 295: 292: 291: 285: 273: 268: 263: 260: 259: 253: 248: 243: 238: 233: 228: 223: 221: 211: 206: 201: 198: 197: 191: 186: 181: 176: 171: 166: 163: 162: 156: 74: 73: 64: 57: 50: 43: 41:binary relations 32: 31: 21: 12438: 12437: 12433: 12432: 12431: 12429: 12428: 12427: 12408: 12407: 12406: 12401: 12397:Young's lattice 12253: 12181: 12120: 11970:Heyting algebra 11918:Boolean algebra 11890: 11871:Laver's theorem 11819: 11785:Boolean algebra 11780:Binary relation 11768: 11745: 11740: 11710: 11686: 11681: 11650: 11628: 11607: 11558: 11539: 11534: 11533: 11496: 11492: 11485: 11464: 11460: 11452: 11448: 11441: 11419: 11415: 11403: 11399: 11393: 11379: 11375: 11358: 11356: 11354: 11328: 11324: 11311: 11307: 11294: 11292: 11288: 11280: 11276: 11262:, return 1. If 11253: 11252:, return 0. If 11243: 11233: 11209: 11207: 11201:"Finite posets" 11199: 11198: 11194: 11184: 11182: 11174: 11170: 11160: 11158: 11151: 11145: 11141: 11128: 11126: 11122:Logic and Proof 11117: 11113: 11101: 11097: 11077: 11073: 11066: 11048: 11044: 11037: 11021: 11012: 11007: 11002: 11001: 10990: 10986: 10967: 10964: 10963: 10961: 10957: 10948: 10944: 10939: 10934: 10908: 10898: 10847: 10816: 10813: 10792: 10777: 10751: 10743:interval orders 10691: 10688: 10687: 10675: 10659: 10651: 10649: 10646: 10645: 10618: 10613: 10609: 10605: 10600: 10587: 10585: 10582: 10554: 10551: 10550: 10546: 10532: 10516: 10504: 10494: 10490: 10486: 10482: 10472: 10462: 10452: 10438: 10422: 10398: 10388: 10374: 10358: 10356:closed interval 10274: 10246: 10230: 10219: 10213: 10184: 10181: 10180: 10160: 10156: 10147: 10143: 10141: 10138: 10137: 10119: 10116: 10115: 10089: 10085: 10073: 10067: 10064: 10063: 10037: 10033: 10021: 10015: 10012: 10011: 9982: 9979: 9978: 9925: 9922: 9921: 9901: 9898: 9897: 9894: 9888: 9876:terminal object 9787: 9784: 9783: 9769: 9749: 9730: 9727: 9726: 9710: 9707: 9706: 9683: 9680: 9679: 9663: 9660: 9659: 9648: 9642: 9586: 9582: 9577: 9574: 9573: 9548: 9545: 9544: 9513: 9510: 9509: 9493: 9490: 9489: 9473: 9470: 9469: 9449: 9446: 9445: 9428: 9424: 9422: 9419: 9418: 9415: 9390: 9386: 9371: 9367: 9365: 9362: 9361: 9344: 9340: 9338: 9335: 9334: 9315: 9312: 9311: 9294: 9290: 9288: 9285: 9284: 9283:, then we call 9264: 9260: 9255: 9252: 9251: 9229: 9226: 9225: 9208: 9204: 9202: 9199: 9198: 9182: 9179: 9178: 9162: 9159: 9158: 9142: 9139: 9138: 9121: 9117: 9115: 9112: 9111: 9086: 9083: 9082: 9062: 9058: 9053: 9050: 9049: 9033: 9030: 9029: 9012: 9008: 9006: 9003: 9002: 8986: 8983: 8982: 8966: 8963: 8962: 8946: 8943: 8942: 8941:is a subset of 8925: 8921: 8919: 8916: 8915: 8899: 8896: 8895: 8874: 8870: 8868: 8865: 8864: 8830: 8827: 8826: 8802: 8798: 8789: 8785: 8773: 8769: 8767: 8764: 8763: 8760: 8754:) is obtained. 8745: 8716: 8642: 8636: 8635: 8634: 8632: 8604: 8598: 8597: 8596: 8594: 8552: 8547: 8542: 8537: 8356:Elem­ents 8329: 8310: 8294: 8292: 8289: 8288: 8266: 8258: 8255: 8254: 8228: 8225: 8224: 8205: 8197: 8189: 8181: 8178: 8177: 8145: 8142: 8141: 8137: 8133: 8129: 8125: 8098: 8090: 8082: 8074: 8071: 8070: 8025: 8022: 8021: 7999: 7996: 7995: 7967: 7964: 7963: 7935: 7932: 7931: 7922:are said to be 7915: 7907: 7869: 7866: 7865: 7826: 7823: 7822: 7800: 7797: 7796: 7773: and  7771: 7760: 7757: 7756: 7716: 7713: 7712: 7707:is necessarily 7704: 7696: 7688: 7684:order-embedding 7678: 7653: 7650: 7649: 7630: 7600: 7597: 7596: 7564: 7561: 7560: 7526: 7523: 7522: 7491: 7488: 7487: 7459: 7456: 7455: 7447: 7428: 7406: 7403: 7402: 7372: 7369: 7368: 7324: 7321: 7320: 7312: 7304: 7301: 7300: 7299: 7298: 7297: 7294:{2, 3, 4, 5, 8} 7293: 7287: 7279: 7278: 7261: 7258: 7257: 7256: 7237: 7231: 7220: 7171: 7168: 7167: 7083: 7080: 7079: 7047: 7044: 7043: 6994:need not be in 6954:: For a subset 6929: 6926: 6925: 6891: 6888: 6887: 6861: 6858: 6857: 6835: 6832: 6831: 6809: 6806: 6805: 6780: 6777: 6776: 6754: 6751: 6750: 6728: 6725: 6724: 6698: 6695: 6694: 6660: 6657: 6656: 6631: 6628: 6627: 6605: 6602: 6601: 6575: 6572: 6571: 6546: 6543: 6542: 6520: 6517: 6516: 6490: 6487: 6486: 6460: 6457: 6456: 6426: 6384: 6381: 6380: 6349: 6346: 6345: 6323: 6320: 6319: 6301: 6291: 6252: 6249: 6248: 6210: 6207: 6206: 6123: 6120: 6119: 6097: 6094: 6093: 6068: 6065: 6064: 5987: 5984: 5983: 5909: 5906: 5905: 5857: 5854: 5853: 5831: 5828: 5827: 5793: 5790: 5789: 5767: 5764: 5763: 5762:. For example, 5749: 5739: 5692: 5689: 5688: 5666: 5663: 5662: 5661:. For example, 5591: 5588: 5587: 5530: 5529: 5524: 5521: 5520: 5517: 5515:Derived notions 5471: 5444: 5415: 5406: 5384: 5373: 5336: 5326: 5316: 5306: 5286: 5226: 5216: 5206: 5186: 5171: 5170: 5169: 5168: 5167: 5163: 5159: 5136: 5128: 5126: 5123: 5122: 5116: 5108: 5107: 5092: 5084: 5082: 5079: 5078: 5072: 5064: 5063: 5048: 5040: 5038: 5035: 5034: 5028: 5017: 4994: 4973:if and only if 4964: 4927: 4896: 4893: 4892: 4873: 4872:if and only if 4863: 4820: 4812: 4809: 4808: 4791: 4787: 4778: 4774: 4772: 4769: 4768: 4767:if and only if 4750: 4743: 4733: 4729: 4725: 4724: 4714: 4707: 4697: 4693: 4689: 4688: 4686: 4683: 4682: 4657:containing all 4618:natural numbers 4560: 4558: 4555: 4554: 4530: 4528: 4525: 4524: 4494: 4468: 4465: 4464: 4448: 4445: 4444: 4412: 4409: 4408: 4313: 4311: 4308: 4307: 4285: 4275: 4265: 4236: and  4234: 4214: 4211: 4210: 4199: 4178: 4175: 4174: 4171:if, and only if 4155: 4152: 4151: 4135: 4132: 4131: 4115: 4112: 4111: 4095: 4092: 4091: 4075: 4072: 4071: 4070:. The relation 4055: 4052: 4051: 4031: 4028: 4027: 4008: 4005: 4004: 3988: 3985: 3984: 3968: 3965: 3964: 3915: 3912: 3911: 3883: 3880: 3879: 3851: 3848: 3847: 3827: 3824: 3823: 3822:is the dual of 3807: 3804: 3803: 3787: 3784: 3783: 3782:is the dual of 3767: 3764: 3763: 3747: 3744: 3743: 3723: 3720: 3719: 3703: 3700: 3699: 3683: 3680: 3679: 3663: 3660: 3659: 3643: 3640: 3639: 3620: 3617: 3616: 3598: 3595: 3594: 3576: 3573: 3572: 3556: 3553: 3552: 3536: 3533: 3532: 3529: 3502: 3499: 3498: 3497:if and only if 3478: 3474: 3469: 3466: 3465: 3449: 3446: 3445: 3424: 3420: 3418: 3415: 3414: 3398: 3395: 3394: 3377: 3373: 3371: 3368: 3367: 3356: 3350: 3318: 3304: 3293: 3290: 3289: 3269: 3266: 3265: 3239: and  3237: 3223: 3212: 3209: 3208: 3188: 3185: 3184: 3158: 3154: 3144: 3141: 3140: 3124: 3121: 3120: 3117:set subtraction 3098: 3095: 3094: 3072: 3069: 3068: 3011: 3007: 3005: 3002: 3001: 2984: 2980: 2956: 2953: 2952: 2927: 2924: 2923: 2907: 2904: 2903: 2887: 2884: 2883: 2857: 2854: 2853: 2820: 2812:strict preorder 2781: 2778: 2777: 2755: 2752: 2751: 2729: 2726: 2725: 2697: 2694: 2693: 2671: 2668: 2667: 2635: 2631: 2626: 2623: 2622: 2579: 2576: 2575: 2547: 2544: 2543: 2537: 2536: 2524: 2489: 2486: 2485: 2463: 2460: 2459: 2437: 2434: 2433: 2405: 2402: 2401: 2379: 2376: 2375: 2353: 2350: 2349: 2321: 2318: 2317: 2273: 2270: 2269: 2241: 2238: 2237: 2220: 2219: 2207: 2186: 2165: 2162: 2161: 2145: 2142: 2141: 2125: 2122: 2121: 2105: 2102: 2101: 2081: 2078: 2077: 2043: 2040: 2039: 1962: 1959: 1958: 1936: 1933: 1932: 1904: 1901: 1900: 1884: 1881: 1880: 1839: 1836: 1835: 1817: 1816: 1809: 1785: 1782: 1781: 1759: 1756: 1755: 1733: 1730: 1729: 1698: 1695: 1694: 1674: 1671: 1670: 1664: 1656: 1652: 1643: 1639: 1617: 1616: 1602: 1599: 1598: 1582: 1580: 1577: 1576: 1550: 1548: 1545: 1544: 1521: 1518: 1517: 1502: 1501: 1496: 1493: 1492: 1479: 1477: 1474: 1473: 1458: 1457: 1452: 1449: 1448: 1435: 1433: 1430: 1429: 1414: 1413: 1408: 1405: 1404: 1394: 1392: 1389: 1388: 1373: 1372: 1361: 1356: 1344: 1343: 1335: 1333: 1323: 1321: 1318: 1317: 1302: 1301: 1296: 1294: 1282: 1281: 1270: 1267: and  1265: 1252: 1250: 1247: 1246: 1231: 1230: 1219: 1217: 1211: 1210: 1196: 1194: 1191: 1190: 1164: 1161: 1160: 1138: 1135: 1134: 1077: 1073: 1067: 1063: 1037: 1033: 1027: 1023: 1005: 1001: 995: 991: 960: 956: 938: 934: 928: 924: 893: 889: 861: 857: 851: 847: 826: 822: 794: 790: 779: 775: 759: 755: 727: 723: 717: 713: 707: 703: 687: 683: 655: 651: 635: 631: 625: 621: 615: 611: 583: 579: 563: 559: 536: 519: 515: 499: 495: 489: 485: 470:Prewellordering 452: 448: 427: 423: 417: 413: 385: 381: 360: 356: 323: 319: 293: 289: 261: 257: 219: 216: 199: 195: 164: 160: 152: 144: 68: 35: 28: 23: 22: 15: 12: 11: 5: 12436: 12426: 12425: 12420: 12403: 12402: 12400: 12399: 12394: 12389: 12388: 12387: 12377: 12376: 12375: 12370: 12365: 12355: 12354: 12353: 12343: 12338: 12337: 12336: 12331: 12324:Order morphism 12321: 12320: 12319: 12309: 12304: 12299: 12294: 12289: 12288: 12287: 12277: 12272: 12267: 12261: 12259: 12255: 12254: 12252: 12251: 12250: 12249: 12244: 12242:Locally convex 12239: 12234: 12224: 12222:Order topology 12219: 12218: 12217: 12215:Order topology 12212: 12202: 12192: 12190: 12183: 12182: 12180: 12179: 12174: 12169: 12164: 12159: 12154: 12149: 12144: 12139: 12134: 12128: 12126: 12122: 12121: 12119: 12118: 12108: 12098: 12093: 12088: 12083: 12078: 12073: 12068: 12063: 12062: 12061: 12051: 12046: 12045: 12044: 12039: 12034: 12029: 12027:Chain-complete 12019: 12014: 12013: 12012: 12007: 12002: 11997: 11992: 11982: 11977: 11972: 11967: 11962: 11952: 11947: 11942: 11937: 11932: 11927: 11926: 11925: 11915: 11910: 11904: 11902: 11892: 11891: 11889: 11888: 11883: 11878: 11873: 11868: 11863: 11858: 11853: 11848: 11843: 11838: 11833: 11827: 11825: 11821: 11820: 11818: 11817: 11812: 11807: 11802: 11797: 11792: 11787: 11782: 11776: 11774: 11770: 11769: 11767: 11766: 11761: 11756: 11750: 11747: 11746: 11739: 11738: 11731: 11724: 11716: 11709: 11708: 11700: 11687: 11685: 11684:External links 11682: 11680: 11679: 11666: 11654: 11648: 11632: 11626: 11620:. BirkhΓ€user. 11611: 11605: 11589: 11577:(2): 383–386. 11562: 11556: 11540: 11538: 11535: 11532: 11531: 11510:(1): 144–161. 11490: 11483: 11458: 11446: 11439: 11413: 11397: 11391: 11373: 11352: 11322: 11305: 11274: 11192: 11168: 11139: 11111: 11095: 11071: 11064: 11042: 11035: 11009: 11008: 11006: 11003: 11000: 10999: 10984: 10971: 10955: 10941: 10940: 10938: 10935: 10933: 10932: 10926: 10920: 10919:is transitive. 10892: 10886: 10880: 10874: 10868: 10862: 10859:Poset topology 10856: 10850: 10841: 10835: 10833:Order polytope 10830: 10825: 10819: 10807: 10801: 10795: 10786: 10780: 10771: 10765: 10759: 10752: 10750: 10747: 10728: 10725: 10722: 10719: 10716: 10713: 10710: 10707: 10704: 10701: 10698: 10695: 10682:is covered by 10662: 10658: 10654: 10642:locally finite 10583: 10570: 10567: 10564: 10561: 10558: 10529: 10528: 10498: 10492: 10416: 10212: 10209: 10197: 10194: 10191: 10188: 10168: 10163: 10159: 10155: 10150: 10146: 10126: 10123: 10103: 10100: 10097: 10092: 10088: 10082: 10079: 10076: 10072: 10051: 10048: 10045: 10040: 10036: 10030: 10027: 10024: 10020: 9995: 9992: 9989: 9986: 9959: 9956: 9953: 9950: 9947: 9944: 9941: 9938: 9935: 9932: 9929: 9905: 9890:Main article: 9887: 9884: 9872:initial object 9842: 9839: 9836: 9833: 9830: 9827: 9824: 9821: 9818: 9815: 9812: 9809: 9806: 9803: 9800: 9797: 9794: 9791: 9737: 9734: 9714: 9690: 9687: 9667: 9652:preordered set 9644:Main article: 9641: 9638: 9597: 9594: 9589: 9585: 9581: 9561: 9558: 9555: 9552: 9532: 9529: 9526: 9523: 9520: 9517: 9497: 9477: 9453: 9431: 9427: 9414: 9411: 9398: 9393: 9389: 9385: 9382: 9379: 9374: 9370: 9347: 9343: 9319: 9297: 9293: 9272: 9267: 9263: 9259: 9239: 9236: 9233: 9211: 9207: 9186: 9166: 9146: 9124: 9120: 9096: 9093: 9090: 9070: 9065: 9061: 9057: 9037: 9015: 9011: 8990: 8970: 8950: 8928: 8924: 8903: 8877: 8873: 8863:provided that 8852: 8849: 8846: 8843: 8840: 8837: 8834: 8810: 8805: 8801: 8797: 8792: 8788: 8784: 8781: 8776: 8772: 8759: 8756: 8711: 8710: 8705: 8700: 8695: 8690: 8685: 8680: 8675: 8670: 8665: 8659: 8658: 8637: 8630: 8624: 8599: 8592: 8590: 8588: 8585: 8582: 8580: 8577: 8571: 8570: 8567: 8564: 8561: 8558: 8555: 8550: 8545: 8540: 8535: 8531: 8530: 8527: 8524: 8521: 8518: 8515: 8512: 8509: 8506: 8503: 8499: 8498: 8495: 8492: 8489: 8486: 8483: 8480: 8477: 8474: 8471: 8467: 8466: 8463: 8460: 8457: 8454: 8451: 8448: 8445: 8442: 8439: 8435: 8434: 8431: 8428: 8425: 8422: 8419: 8416: 8413: 8410: 8407: 8403: 8402: 8397: 8392: 8390:Total preorder 8387: 8382: 8377: 8372: 8367: 8362: 8357: 8328: 8325: 8297: 8276: 8273: 8269: 8265: 8262: 8238: 8235: 8232: 8212: 8208: 8204: 8200: 8196: 8192: 8188: 8185: 8161: 8158: 8155: 8152: 8149: 8122:prime divisors 8105: 8101: 8097: 8093: 8089: 8085: 8081: 8078: 8035: 8032: 8029: 8009: 8006: 8003: 7983: 7980: 7977: 7974: 7971: 7951: 7948: 7945: 7942: 7939: 7928:Hasse diagrams 7885: 7882: 7879: 7876: 7873: 7833: 7830: 7810: 7807: 7804: 7784: 7781: 7778: 7770: 7767: 7764: 7744: 7741: 7738: 7735: 7732: 7729: 7726: 7723: 7720: 7666: 7663: 7660: 7657: 7619: 7616: 7613: 7610: 7607: 7604: 7580: 7577: 7574: 7571: 7568: 7548: 7545: 7542: 7539: 7536: 7533: 7530: 7507: 7504: 7501: 7498: 7495: 7475: 7472: 7469: 7466: 7463: 7416: 7413: 7410: 7391: 7388: 7385: 7382: 7379: 7376: 7340: 7337: 7334: 7331: 7328: 7288: 7281: 7280: 7265: 7232: 7225: 7224: 7223: 7222: 7221: 7219: 7216: 7202: 7199: 7196: 7193: 7190: 7187: 7184: 7181: 7178: 7175: 7126: 7125: 7114: 7111: 7108: 7105: 7102: 7099: 7096: 7093: 7090: 7087: 7077: 7063: 7060: 7057: 7054: 7051: 6949: 6937: 6933: 6913: 6910: 6907: 6904: 6901: 6898: 6895: 6874: 6871: 6868: 6865: 6845: 6842: 6839: 6819: 6816: 6813: 6793: 6790: 6787: 6784: 6764: 6761: 6758: 6738: 6735: 6732: 6718: 6706: 6702: 6682: 6679: 6676: 6673: 6670: 6667: 6664: 6644: 6641: 6638: 6635: 6615: 6612: 6609: 6599: 6585: 6582: 6579: 6559: 6556: 6553: 6550: 6530: 6527: 6524: 6514: 6500: 6497: 6494: 6467: 6464: 6450: 6446: 6442: 6438: 6425: 6422: 6421: 6420: 6409: 6406: 6403: 6400: 6397: 6394: 6391: 6388: 6368: 6365: 6362: 6359: 6356: 6353: 6344:is covered by 6333: 6330: 6327: 6271: 6268: 6265: 6262: 6259: 6256: 6231:are true, and 6220: 6217: 6214: 6159:is said to be 6153: 6142: 6139: 6136: 6133: 6130: 6127: 6107: 6104: 6101: 6081: 6078: 6075: 6072: 6047:is said to be 6041: 6030: 6027: 6024: 6021: 6018: 6015: 6012: 6009: 6006: 6003: 6000: 5997: 5994: 5991: 5971: 5959: 5956: 5953: 5950: 5947: 5944: 5941: 5938: 5935: 5932: 5929: 5926: 5923: 5920: 5916: 5913: 5896: 5879: 5867: 5864: 5861: 5841: 5838: 5835: 5815: 5812: 5809: 5806: 5803: 5800: 5797: 5777: 5774: 5771: 5723: 5711: 5708: 5705: 5702: 5699: 5696: 5687:is related to 5676: 5673: 5670: 5616: 5613: 5610: 5607: 5604: 5601: 5598: 5595: 5571: 5568: 5565: 5562: 5559: 5556: 5553: 5550: 5547: 5544: 5541: 5538: 5533: 5528: 5516: 5513: 5509:disjoint union 5495: 5494: 5476: 5467: 5449: 5440: 5411: 5372: 5369: 5356:over the same 5347: 5346: 5283:direct product 5275: 5236: 5143: 5139: 5135: 5131: 5117: 5110: 5109: 5095: 5091: 5087: 5073: 5066: 5065: 5051: 5047: 5043: 5029: 5022: 5021: 5020: 5019: 5018: 5016: 5013: 5005: 5004: 4945: 4920: 4909: 4906: 4903: 4900: 4852:function space 4840: 4823: 4819: 4816: 4794: 4790: 4786: 4781: 4777: 4753: 4749: 4746: 4741: 4736: 4732: 4728: 4723: 4717: 4713: 4710: 4705: 4700: 4696: 4692: 4655:sequence space 4647: 4636: 4625: 4614: 4583: 4576: 4563: 4533: 4521: 4493: 4490: 4472: 4452: 4428: 4425: 4422: 4419: 4416: 4359: 4356: 4353: 4350: 4347: 4344: 4341: 4338: 4335: 4332: 4329: 4326: 4323: 4320: 4241: 4233: 4230: 4227: 4224: 4221: 4218: 4198: 4195: 4182: 4159: 4139: 4119: 4099: 4079: 4059: 4035: 4012: 3992: 3972: 3937: 3934: 3931: 3928: 3925: 3922: 3919: 3899: 3896: 3893: 3890: 3887: 3867: 3864: 3861: 3858: 3855: 3831: 3811: 3791: 3771: 3751: 3727: 3707: 3687: 3667: 3647: 3627: 3624: 3605: 3602: 3583: 3580: 3560: 3540: 3528: 3525: 3512: 3509: 3506: 3486: 3477: 3473: 3453: 3423: 3402: 3376: 3352:Main article: 3349: 3346: 3334: 3331: 3328: 3325: 3320: or  3317: 3314: 3311: 3306: if  3303: 3300: 3297: 3273: 3253: 3250: 3247: 3244: 3236: 3233: 3230: 3225: if  3222: 3219: 3216: 3192: 3171: 3167: 3161: 3157: 3152: 3148: 3128: 3103: 3082: 3079: 3076: 3052: 3049: 3046: 3043: 3040: 3037: 3034: 3031: 3028: 3025: 3022: 3019: 3014: 3010: 2987: 2983: 2976: 2970: 2964: 2960: 2940: 2937: 2934: 2931: 2911: 2891: 2867: 2864: 2861: 2846:logical matrix 2819: 2816: 2804: 2803: 2791: 2788: 2785: 2765: 2762: 2759: 2739: 2736: 2733: 2719: 2707: 2704: 2701: 2681: 2678: 2675: 2661: 2648: 2644: 2641: 2638: 2634: 2630: 2604: 2601: 2598: 2595: 2592: 2589: 2586: 2583: 2551: 2523: 2520: 2512: 2511: 2499: 2496: 2493: 2473: 2470: 2467: 2447: 2444: 2441: 2427: 2415: 2412: 2409: 2389: 2386: 2383: 2363: 2360: 2357: 2343: 2331: 2328: 2325: 2298: 2295: 2292: 2289: 2286: 2283: 2280: 2277: 2245: 2206: 2205:Partial orders 2203: 2185: 2182: 2169: 2149: 2129: 2109: 2085: 2065: 2062: 2059: 2056: 2053: 2050: 2047: 1972: 1969: 1966: 1946: 1943: 1940: 1920: 1917: 1914: 1911: 1908: 1888: 1864: 1861: 1858: 1855: 1852: 1849: 1846: 1843: 1813: 1812: 1798: 1795: 1792: 1789: 1769: 1766: 1763: 1743: 1740: 1737: 1717: 1714: 1711: 1708: 1705: 1702: 1678: 1635: 1634: 1631: 1630: 1615: 1612: 1609: 1601: 1600: 1597: 1594: 1591: 1588: 1585: 1584: 1574: 1563: 1560: 1557: 1542: 1531: 1528: 1525: 1515: 1495: 1494: 1491: 1488: 1485: 1482: 1481: 1471: 1451: 1450: 1447: 1444: 1441: 1438: 1437: 1427: 1407: 1406: 1403: 1400: 1397: 1396: 1386: 1371: 1368: 1365: 1362: 1358: or  1355: 1352: 1349: 1346: 1345: 1342: 1339: 1336: 1332: 1329: 1326: 1325: 1315: 1300: 1297: 1293: 1290: 1287: 1284: 1283: 1280: 1277: 1274: 1271: 1264: 1261: 1258: 1255: 1254: 1244: 1229: 1226: 1223: 1220: 1216: 1213: 1212: 1209: 1206: 1203: 1200: 1198: 1188: 1177: 1174: 1171: 1168: 1148: 1145: 1142: 1130: 1129: 1124: 1119: 1114: 1109: 1104: 1099: 1094: 1089: 1084: 1081: 1080: 1070: 1060: 1055: 1050: 1045: 1040: 1030: 1020: 1015: 1009: 1008: 998: 988: 983: 978: 973: 968: 963: 953: 948: 942: 941: 931: 921: 916: 911: 906: 901: 896: 886: 881: 875: 874: 869: 864: 854: 844: 839: 834: 829: 819: 814: 808: 807: 802: 797: 787: 782: 772: 767: 762: 752: 747: 741: 740: 735: 730: 720: 710: 700: 695: 690: 680: 675: 669: 668: 663: 658: 648: 643: 638: 628: 618: 608: 603: 597: 596: 591: 586: 576: 571: 566: 556: 551: 546: 541: 533: 532: 527: 522: 512: 507: 502: 492: 482: 477: 472: 466: 465: 460: 455: 445: 440: 435: 430: 420: 410: 405: 399: 398: 393: 388: 378: 373: 368: 363: 353: 348: 343: 341:Total preorder 337: 336: 331: 326: 316: 311: 306: 301: 296: 286: 281: 275: 274: 269: 264: 254: 249: 244: 239: 234: 229: 224: 213: 212: 207: 202: 192: 187: 182: 177: 172: 167: 157: 149: 148: 146: 141: 139: 137: 135: 133: 130: 128: 126: 123: 122: 117: 112: 107: 102: 97: 92: 87: 82: 77: 70: 69: 67: 66: 59: 52: 44: 30: 29: 26: 9: 6: 4: 3: 2: 12435: 12424: 12421: 12419: 12416: 12415: 12413: 12398: 12395: 12393: 12390: 12386: 12383: 12382: 12381: 12378: 12374: 12371: 12369: 12366: 12364: 12361: 12360: 12359: 12356: 12352: 12349: 12348: 12347: 12346:Ordered field 12344: 12342: 12339: 12335: 12332: 12330: 12327: 12326: 12325: 12322: 12318: 12315: 12314: 12313: 12310: 12308: 12305: 12303: 12302:Hasse diagram 12300: 12298: 12295: 12293: 12290: 12286: 12283: 12282: 12281: 12280:Comparability 12278: 12276: 12273: 12271: 12268: 12266: 12263: 12262: 12260: 12256: 12248: 12245: 12243: 12240: 12238: 12235: 12233: 12230: 12229: 12228: 12225: 12223: 12220: 12216: 12213: 12211: 12208: 12207: 12206: 12203: 12201: 12197: 12194: 12193: 12191: 12188: 12184: 12178: 12175: 12173: 12170: 12168: 12165: 12163: 12160: 12158: 12155: 12153: 12152:Product order 12150: 12148: 12145: 12143: 12140: 12138: 12135: 12133: 12130: 12129: 12127: 12125:Constructions 12123: 12117: 12113: 12109: 12106: 12102: 12099: 12097: 12094: 12092: 12089: 12087: 12084: 12082: 12079: 12077: 12074: 12072: 12069: 12067: 12064: 12060: 12057: 12056: 12055: 12052: 12050: 12047: 12043: 12040: 12038: 12035: 12033: 12030: 12028: 12025: 12024: 12023: 12022:Partial order 12020: 12018: 12015: 12011: 12010:Join and meet 12008: 12006: 12003: 12001: 11998: 11996: 11993: 11991: 11988: 11987: 11986: 11983: 11981: 11978: 11976: 11973: 11971: 11968: 11966: 11963: 11961: 11957: 11953: 11951: 11948: 11946: 11943: 11941: 11938: 11936: 11933: 11931: 11928: 11924: 11921: 11920: 11919: 11916: 11914: 11911: 11909: 11908:Antisymmetric 11906: 11905: 11903: 11899: 11893: 11887: 11884: 11882: 11879: 11877: 11874: 11872: 11869: 11867: 11864: 11862: 11859: 11857: 11854: 11852: 11849: 11847: 11844: 11842: 11839: 11837: 11834: 11832: 11829: 11828: 11826: 11822: 11816: 11815:Weak ordering 11813: 11811: 11808: 11806: 11803: 11801: 11800:Partial order 11798: 11796: 11793: 11791: 11788: 11786: 11783: 11781: 11778: 11777: 11775: 11771: 11765: 11762: 11760: 11757: 11755: 11752: 11751: 11748: 11744: 11737: 11732: 11730: 11725: 11723: 11718: 11717: 11714: 11707: 11701: 11699: 11697: 11689: 11688: 11676: 11672: 11667: 11663: 11659: 11658:Eilenberg, S. 11655: 11651: 11649:0-521-66351-2 11645: 11641: 11637: 11633: 11629: 11623: 11619: 11618: 11612: 11608: 11602: 11598: 11594: 11590: 11585: 11580: 11576: 11572: 11568: 11563: 11559: 11553: 11549: 11548: 11542: 11541: 11527: 11523: 11518: 11513: 11509: 11505: 11501: 11494: 11486: 11480: 11476: 11472: 11468: 11462: 11455: 11450: 11442: 11436: 11432: 11427: 11426: 11417: 11410: 11406: 11401: 11394: 11392:9789810235895 11388: 11384: 11377: 11370: 11368: 11367:Hasse diagram 11355: 11353:0-471-83817-9 11349: 11345: 11340: 11339: 11333: 11326: 11318: 11317: 11309: 11302: 11287: 11286: 11278: 11271: 11269: 11265: 11260: 11256: 11250: 11246: 11240: 11236: 11231: 11227: 11223: 11219: 11206: 11202: 11196: 11181: 11180: 11172: 11157: 11150: 11143: 11136: 11124: 11123: 11115: 11108: 11104: 11099: 11090: 11086: 11082: 11075: 11067: 11065:9781848002012 11061: 11057: 11053: 11046: 11038: 11032: 11028: 11027: 11019: 11017: 11015: 11010: 10996: 10995: 10988: 10969: 10959: 10952: 10946: 10942: 10930: 10927: 10924: 10921: 10916: 10912: 10906: 10902: 10896: 10893: 10890: 10887: 10884: 10881: 10878: 10875: 10872: 10869: 10866: 10863: 10860: 10857: 10854: 10851: 10845: 10844:Ordered group 10842: 10839: 10838:Ordered field 10836: 10834: 10831: 10829: 10826: 10823: 10820: 10811: 10808: 10805: 10802: 10799: 10796: 10790: 10787: 10784: 10781: 10775: 10772: 10769: 10766: 10763: 10760: 10757: 10754: 10753: 10746: 10744: 10739: 10726: 10720: 10717: 10714: 10708: 10702: 10699: 10696: 10685: 10681: 10656: 10643: 10638: 10636: 10632: 10628: 10624: 10603: 10595: 10591: 10568: 10565: 10562: 10559: 10556: 10543: 10539: 10535: 10524: 10520: 10512: 10508: 10503: 10499: 10479: 10475: 10469: 10465: 10459: 10455: 10449: 10445: 10441: 10436: 10430: 10426: 10421: 10420:open interval 10417: 10414: 10410: 10405: 10401: 10395: 10391: 10385: 10381: 10377: 10372: 10366: 10362: 10357: 10353: 10349: 10345: 10344: 10343: 10341: 10337: 10332: 10330: 10326: 10322: 10318: 10314: 10310: 10307: 10303: 10298: 10296: 10292: 10288: 10284: 10280: 10272: 10268: 10264: 10260: 10256: 10252: 10244: 10240: 10236: 10228: 10224: 10218: 10208: 10195: 10192: 10189: 10186: 10166: 10161: 10157: 10153: 10148: 10144: 10124: 10121: 10101: 10098: 10095: 10090: 10086: 10074: 10049: 10046: 10043: 10038: 10034: 10022: 10009: 9993: 9990: 9987: 9984: 9977: 9976:product space 9973: 9954: 9951: 9948: 9945: 9939: 9936: 9933: 9919: 9903: 9893: 9883: 9881: 9877: 9873: 9869: 9865: 9860: 9858: 9857: 9840: 9834: 9831: 9828: 9822: 9816: 9813: 9810: 9804: 9798: 9795: 9792: 9781: 9776: 9772: 9765: 9761: 9757: 9753: 9735: 9732: 9712: 9704: 9688: 9685: 9665: 9657: 9653: 9647: 9637: 9635: 9632:) are called 9631: 9627: 9623: 9618: 9616: 9611: 9595: 9592: 9587: 9583: 9579: 9559: 9556: 9553: 9550: 9530: 9527: 9524: 9521: 9518: 9515: 9495: 9475: 9467: 9464:is called an 9451: 9429: 9425: 9410: 9391: 9387: 9380: 9377: 9372: 9368: 9345: 9341: 9332: 9317: 9295: 9291: 9270: 9265: 9261: 9257: 9250:we also have 9237: 9234: 9231: 9209: 9205: 9184: 9164: 9144: 9122: 9118: 9108: 9094: 9091: 9088: 9068: 9063: 9059: 9055: 9035: 9013: 9009: 8988: 8968: 8948: 8926: 8922: 8901: 8893: 8875: 8871: 8847: 8844: 8841: 8835: 8832: 8824: 8803: 8799: 8795: 8790: 8786: 8779: 8774: 8770: 8755: 8753: 8748: 8743: 8738: 8735: 8733: 8727: 8723: 8719: 8709: 8706: 8704: 8701: 8699: 8696: 8694: 8691: 8689: 8686: 8684: 8681: 8679: 8676: 8674: 8671: 8669: 8666: 8664: 8661: 8660: 8655: 8651: 8647: 8640: 8631: 8628: 8625: 8621: 8617: 8613: 8609: 8602: 8593: 8591: 8589: 8586: 8583: 8581: 8578: 8576: 8573: 8572: 8568: 8565: 8562: 8559: 8556: 8551: 8546: 8541: 8536: 8533: 8532: 8528: 8525: 8522: 8519: 8516: 8513: 8510: 8507: 8504: 8501: 8500: 8496: 8493: 8490: 8487: 8484: 8481: 8478: 8475: 8472: 8469: 8468: 8464: 8461: 8458: 8455: 8452: 8449: 8446: 8443: 8440: 8437: 8436: 8432: 8429: 8426: 8423: 8420: 8417: 8414: 8411: 8408: 8405: 8404: 8401: 8398: 8396: 8393: 8391: 8388: 8386: 8385:Partial order 8383: 8381: 8378: 8376: 8373: 8371: 8368: 8366: 8363: 8361: 8358: 8355: 8354: 8350: 8344: 8342: 8338: 8334: 8324: 8322: 8321: 8316: 8274: 8260: 8252: 8233: 8186: 8183: 8175: 8156: 8153: 8150: 8123: 8119: 8079: 8076: 8067: 8065: 8061: 8057: 8053: 8049: 8033: 8030: 8027: 8007: 8004: 8001: 7981: 7975: 7972: 7969: 7949: 7943: 7940: 7937: 7929: 7925: 7919: 7911: 7905: 7904: 7899: 7883: 7877: 7874: 7871: 7863: 7859: 7855: 7851: 7847: 7831: 7828: 7808: 7805: 7802: 7782: 7779: 7776: 7768: 7765: 7762: 7739: 7733: 7730: 7724: 7718: 7710: 7700: 7692: 7686: 7685: 7664: 7661: 7658: 7655: 7645: 7641: 7637: 7633: 7617: 7614: 7611: 7608: 7605: 7602: 7594: 7578: 7572: 7569: 7566: 7546: 7540: 7537: 7534: 7531: 7528: 7521: 7505: 7499: 7496: 7493: 7473: 7467: 7464: 7461: 7451: 7443: 7439: 7435: 7431: 7414: 7411: 7408: 7389: 7386: 7383: 7380: 7377: 7374: 7367:, if for all 7366: 7362: 7361: 7356: 7355: 7338: 7332: 7329: 7326: 7319:, a function 7316: 7308: 7291: 7285: 7263: 7252: 7248: 7244: 7240: 7235: 7229: 7215: 7200: 7194: 7191: 7188: 7185: 7182: 7179: 7176: 7165: 7161: 7157: 7153: 7149: 7145: 7137: 7134: 7130: 7112: 7103: 7097: 7091: 7075: 7058: 7055: 7052: 7041: 7037: 7033: 7029: 7025: 7021: 7018: β‰₯  7017: 7013: 7009: 7005: 7001: 6997: 6993: 6989: 6985: 6981: 6978: β‰€  6977: 6973: 6969: 6965: 6962:, an element 6961: 6957: 6953: 6950: 6908: 6905: 6902: 6899: 6896: 6872: 6869: 6866: 6863: 6843: 6840: 6837: 6817: 6814: 6811: 6791: 6788: 6785: 6782: 6762: 6759: 6756: 6736: 6733: 6730: 6722: 6719: 6717:is the least. 6677: 6674: 6671: 6668: 6665: 6642: 6639: 6636: 6633: 6613: 6610: 6607: 6598:least element 6597: 6583: 6580: 6577: 6557: 6554: 6551: 6548: 6528: 6525: 6522: 6512: 6498: 6495: 6492: 6484: 6481: 6480: 6479: 6465: 6462: 6448: 6444: 6440: 6436: 6434: 6430: 6407: 6401: 6398: 6395: 6392: 6389: 6366: 6360: 6357: 6354: 6328: 6317: 6312: 6308: 6304: 6298: 6294: 6289: 6285: 6269: 6266: 6263: 6260: 6257: 6254: 6246: 6242: 6238: 6234: 6218: 6215: 6212: 6204: 6200: 6196: 6192: 6188: 6184: 6180: 6176: 6172: 6168: 6164: 6163: 6158: 6154: 6140: 6134: 6131: 6128: 6102: 6092:For example, 6079: 6076: 6073: 6070: 6062: 6058: 6054: 6050: 6046: 6042: 6028: 6019: 6013: 6007: 6001: 5995: 5982: 5978: 5977: 5972: 5951: 5948: 5945: 5942: 5939: 5933: 5927: 5921: 5903: 5902: 5897: 5894: 5890: 5886: 5885: 5880: 5862: 5836: 5810: 5807: 5804: 5801: 5798: 5772: 5761: 5756: 5752: 5746: 5742: 5737: 5736: 5731: 5727: 5724: 5709: 5703: 5700: 5697: 5671: 5660: 5656: 5652: 5648: 5644: 5640: 5637: 5633: 5630: 5629: 5628: 5614: 5608: 5605: 5602: 5599: 5596: 5585: 5566: 5563: 5554: 5551: 5548: 5545: 5542: 5512: 5510: 5506: 5502: 5500: 5492: 5488: 5484: 5480: 5477: 5474: 5470: 5465: 5461: 5457: 5453: 5450: 5447: 5443: 5438: 5434: 5430: 5426: 5423: 5422: 5421: 5418: 5414: 5409: 5405:by the order 5404: 5400: 5395: 5391: 5387: 5382: 5378: 5368: 5366: 5361: 5359: 5355: 5350: 5343: 5339: 5333: 5329: 5323: 5319: 5313: 5309: 5302: 5298: 5294: 5290: 5284: 5280: 5276: 5273: 5269: 5265: 5261: 5257: 5253: 5249: 5245: 5241: 5240:product order 5237: 5233: 5229: 5223: 5219: 5213: 5209: 5202: 5198: 5194: 5190: 5184: 5180: 5179: 5178: 5176: 5162:and covering 5157: 5141: 5133: 5120: 5114: 5089: 5076: 5070: 5045: 5032: 5026: 5012: 5010: 5001: 4997: 4992: 4988: 4984: 4980: 4976: 4971: 4967: 4962: 4958: 4954: 4950: 4946: 4942: 4938: 4934: 4930: 4925: 4921: 4907: 4904: 4901: 4898: 4888: 4884: 4880: 4876: 4870: 4866: 4861: 4857: 4853: 4849: 4845: 4841: 4838: 4835:; that is, a 4817: 4814: 4792: 4788: 4784: 4779: 4775: 4747: 4744: 4739: 4734: 4730: 4726: 4721: 4711: 4708: 4703: 4698: 4694: 4690: 4680: 4676: 4672: 4668: 4664: 4660: 4656: 4652: 4648: 4645: 4641: 4637: 4634: 4630: 4626: 4623: 4619: 4615: 4612: 4608: 4604: 4600: 4596: 4593:) ordered by 4592: 4588: 4584: 4581: 4577: 4552: 4548: 4522: 4519: 4515: 4511: 4510: 4509: 4502: 4498: 4489: 4486: 4470: 4450: 4442: 4423: 4420: 4417: 4406: 4405:Hasse diagram 4401: 4399: 4398:antisymmetric 4395: 4391: 4387: 4382: 4380: 4376: 4375: 4351: 4348: 4345: 4342: 4339: 4336: 4327: 4324: 4321: 4318: 4305: 4301: 4297: 4292: 4288: 4282: 4278: 4272: 4268: 4263: 4259: 4255: 4239: 4231: 4228: 4225: 4222: 4219: 4216: 4208: 4204: 4194: 4180: 4172: 4157: 4137: 4117: 4097: 4077: 4057: 4049: 4033: 4024: 4010: 3990: 3970: 3962: 3958: 3954: 3949: 3932: 3929: 3926: 3923: 3920: 3894: 3891: 3888: 3862: 3859: 3856: 3845: 3829: 3809: 3789: 3769: 3749: 3741: 3725: 3705: 3685: 3665: 3645: 3625: 3622: 3603: 3600: 3581: 3578: 3558: 3538: 3524: 3510: 3507: 3504: 3484: 3475: 3471: 3451: 3443: 3421: 3400: 3374: 3365: 3361: 3355: 3345: 3332: 3329: 3326: 3323: 3315: 3312: 3309: 3301: 3298: 3295: 3287: 3271: 3251: 3248: 3245: 3242: 3234: 3231: 3228: 3220: 3217: 3214: 3206: 3190: 3169: 3165: 3159: 3150: 3146: 3126: 3118: 3101: 3080: 3077: 3074: 3066: 3047: 3044: 3041: 3038: 3032: 3029: 3026: 3017: 3012: 2985: 2968: 2962: 2958: 2938: 2935: 2932: 2929: 2909: 2889: 2865: 2862: 2859: 2851: 2850:Hasse diagram 2847: 2843: 2839: 2835: 2831: 2828: 2824: 2815: 2813: 2808: 2789: 2786: 2783: 2763: 2760: 2757: 2737: 2734: 2731: 2723: 2720: 2705: 2702: 2699: 2679: 2676: 2673: 2665: 2662: 2646: 2642: 2639: 2636: 2632: 2620: 2619:Irreflexivity 2617: 2616: 2615: 2602: 2599: 2596: 2593: 2590: 2587: 2584: 2581: 2573: 2569: 2565: 2549: 2541: 2533: 2529: 2519: 2517: 2497: 2494: 2491: 2471: 2468: 2465: 2445: 2442: 2439: 2431: 2428: 2413: 2410: 2407: 2387: 2384: 2381: 2361: 2358: 2355: 2347: 2344: 2329: 2326: 2323: 2315: 2312: 2311: 2310: 2296: 2293: 2290: 2287: 2284: 2281: 2278: 2275: 2267: 2263: 2262:antisymmetric 2259: 2243: 2236: 2232: 2228: 2227:partial order 2224: 2216: 2212: 2202: 2200: 2195: 2191: 2190:partial order 2181: 2167: 2147: 2127: 2107: 2099: 2083: 2060: 2057: 2054: 2048: 2045: 2037: 2033: 2029: 2025: 2024:antisymmetric 2021: 2017: 2012: 2010: 2006: 2002: 1998: 1997:partial order 1994: 1991:, especially 1990: 1967: 1941: 1915: 1912: 1909: 1878: 1862: 1856: 1853: 1850: 1847: 1844: 1833: 1829: 1828:Hasse diagram 1825: 1821: 1811: 1796: 1793: 1790: 1787: 1767: 1764: 1761: 1741: 1738: 1735: 1715: 1712: 1709: 1706: 1703: 1700: 1692: 1676: 1669: 1637: 1636: 1613: 1610: 1607: 1592: 1589: 1586: 1575: 1561: 1558: 1555: 1543: 1529: 1526: 1523: 1516: 1489: 1486: 1483: 1472: 1445: 1442: 1439: 1428: 1401: 1387: 1369: 1366: 1363: 1353: 1350: 1347: 1337: 1330: 1327: 1316: 1298: 1291: 1288: 1278: 1275: 1272: 1262: 1259: 1256: 1245: 1227: 1224: 1221: 1207: 1204: 1201: 1189: 1175: 1169: 1166: 1146: 1143: 1140: 1132: 1131: 1128: 1125: 1123: 1120: 1118: 1115: 1113: 1110: 1108: 1105: 1103: 1100: 1098: 1095: 1093: 1092:Antisymmetric 1090: 1088: 1085: 1083: 1082: 1071: 1061: 1056: 1051: 1046: 1041: 1031: 1021: 1016: 1014: 1011: 1010: 999: 989: 984: 979: 974: 969: 964: 954: 949: 947: 944: 943: 932: 922: 917: 912: 907: 902: 897: 887: 882: 880: 877: 876: 870: 865: 855: 845: 840: 835: 830: 820: 815: 813: 810: 809: 803: 798: 788: 783: 773: 768: 763: 753: 748: 746: 743: 742: 736: 731: 721: 711: 701: 696: 691: 681: 676: 674: 671: 670: 664: 659: 649: 644: 639: 629: 619: 609: 604: 602: 601:Well-ordering 599: 598: 592: 587: 577: 572: 567: 557: 552: 547: 542: 539: 535: 534: 528: 523: 513: 508: 503: 493: 483: 478: 473: 471: 468: 467: 461: 456: 446: 441: 436: 431: 421: 411: 406: 404: 401: 400: 394: 389: 379: 374: 369: 364: 354: 349: 344: 342: 339: 338: 332: 327: 317: 312: 307: 302: 297: 287: 282: 280: 279:Partial order 277: 276: 270: 265: 255: 250: 245: 240: 235: 230: 225: 222: 215: 214: 208: 203: 193: 188: 183: 178: 173: 168: 158: 155: 151: 150: 147: 142: 140: 138: 136: 134: 131: 129: 127: 125: 124: 121: 118: 116: 113: 111: 108: 106: 103: 101: 98: 96: 93: 91: 88: 86: 85:Antisymmetric 83: 81: 78: 76: 75: 72: 71: 65: 60: 58: 53: 51: 46: 45: 42: 38: 34: 33: 19: 18:Partial Order 12418:Order theory 12189:& Orders 12167:Star product 12096:Well-founded 12049:Prefix order 12005:Distributive 11995:Complemented 11965:Foundational 11930:Completeness 11886:Zorn's lemma 11799: 11790:Cyclic order 11773:Key concepts 11743:Order theory 11695: 11674: 11670: 11661: 11639: 11616: 11596: 11574: 11570: 11546: 11507: 11503: 11493: 11470: 11467:Jech, Thomas 11461: 11449: 11424: 11416: 11400: 11383:Basic Posets 11382: 11376: 11366: 11364: 11357:. Retrieved 11337: 11325: 11315: 11308: 11300: 11293:. Retrieved 11284: 11277: 11267: 11263: 11258: 11254: 11248: 11244: 11238: 11234: 11229: 11225: 11221: 11217: 11215: 11208:. Retrieved 11204: 11195: 11183:. Retrieved 11178: 11171: 11159:. Retrieved 11155: 11142: 11134: 11127:. Retrieved 11121: 11114: 11098: 11088: 11084: 11074: 11058:. Springer. 11055: 11045: 11025: 10992: 10987: 10958: 10945: 10929:Zorn's lemma 10914: 10910: 10904: 10900: 10789:Graded poset 10783:Directed set 10740: 10683: 10679: 10639: 10634: 10630: 10601: 10593: 10589: 10545:An interval 10544: 10537: 10533: 10530: 10522: 10518: 10510: 10506: 10501: 10477: 10473: 10467: 10463: 10457: 10453: 10447: 10443: 10439: 10434: 10428: 10424: 10419: 10412: 10408: 10403: 10399: 10393: 10389: 10383: 10379: 10375: 10370: 10364: 10360: 10355: 10351: 10347: 10339: 10335: 10333: 10328: 10316: 10312: 10308: 10301: 10299: 10295:order-convex 10294: 10283:real numbers 10270: 10266: 10262: 10258: 10254: 10250: 10242: 10238: 10234: 10229:is a subset 10226: 10222: 10220: 10114:and for all 9895: 9861: 9854: 9774: 9770: 9763: 9759: 9755: 9751: 9649: 9626:reachability 9619: 9465: 9416: 9360:, and write 9330: 9109: 8822: 8821:is called a 8761: 8739: 8736: 8725: 8721: 8717: 8714: 8653: 8649: 8645: 8638: 8626: 8619: 8615: 8611: 8607: 8600: 8574: 8384: 8348: 8340: 8330: 8318: 8068: 8063: 8059: 8055: 8051: 7923: 7917: 7909: 7901: 7861: 7857: 7853: 7849: 7845: 7795:and in turn 7698: 7690: 7682: 7643: 7639: 7635: 7631: 7592: 7449: 7441: 7437: 7433: 7429: 7364: 7358: 7352: 7314: 7306: 7302: 7289: 7255:, but not u 7250: 7246: 7242: 7238: 7233: 7164:prime number 7159: 7155: 7151: 7141: 7132: 7039: 7035: 7031: 7027: 7023: 7019: 7015: 7011: 7007: 7003: 6999: 6995: 6991: 6987: 6983: 6979: 6975: 6971: 6967: 6963: 6959: 6955: 6454: 6432: 6315: 6310: 6306: 6302: 6296: 6292: 6287: 6283: 6244: 6240: 6236: 6232: 6202: 6198: 6194: 6190: 6186: 6182: 6178: 6174: 6170: 6166: 6160: 6156: 6060: 6056: 6052: 6048: 6044: 5974: 5899: 5889:linear order 5888: 5882: 5760:incomparable 5759: 5754: 5750: 5744: 5740: 5733: 5729: 5725: 5654: 5650: 5646: 5642: 5638: 5635: 5631: 5518: 5503: 5499:well-ordered 5496: 5490: 5486: 5482: 5478: 5472: 5468: 5463: 5459: 5455: 5451: 5445: 5441: 5436: 5432: 5428: 5424: 5416: 5412: 5407: 5402: 5398: 5393: 5389: 5385: 5380: 5376: 5374: 5362: 5351: 5348: 5341: 5337: 5331: 5327: 5321: 5317: 5311: 5307: 5300: 5296: 5292: 5288: 5271: 5267: 5263: 5259: 5255: 5251: 5247: 5243: 5231: 5227: 5221: 5217: 5211: 5207: 5200: 5196: 5192: 5188: 5172: 5118: 5074: 5030: 5009:genealogical 5006: 4999: 4995: 4990: 4986: 4982: 4974: 4969: 4965: 4960: 4956: 4940: 4936: 4932: 4928: 4886: 4882: 4878: 4874: 4868: 4864: 4859: 4855: 4847: 4843: 4681:. Formally, 4678: 4674: 4670: 4666: 4662: 4650: 4644:vector space 4633:reachability 4622:divisibility 4551:greater than 4545:, the usual 4517: 4514:real numbers 4507: 4500: 4402: 4385: 4383: 4371: 4304:incomparable 4303: 4299: 4295: 4290: 4286: 4280: 4276: 4270: 4266: 4257: 4253: 4200: 4025: 3956: 3952: 3950: 3843: 3531:Given a set 3530: 3363: 3359: 3357: 2881: 2841: 2837: 2833: 2826: 2809: 2805: 2722:Transitivity 2535: 2531: 2527: 2525: 2513: 2430:Transitivity 2346:Antisymmetry 2226: 2218: 2214: 2210: 2208: 2193: 2189: 2187: 2097: 2096:(called the 2035: 2031: 2013: 2009:total orders 2004: 1996: 1993:order theory 1986: 1823: 1665: 1102:Well-founded 220:(Quasiorder) 95:Well-founded 12373:Riesz space 12334:Isomorphism 12210:Normal cone 12132:Composition 12066:Semilattice 11975:Homogeneous 11960:Equivalence 11810:Total order 11407:, pp.  11224:): Compare 11105:, pp.  10923:Total order 10871:Semilattice 10756:Antimatroid 10437:satisfying 10373:satisfying 10338:in a poset 10293:, one uses 10287:convex sets 10273:is also in 10225:in a poset 9862:Posets are 9224:, whenever 8395:Total order 8174:prime power 8046:yields the 7595:if for all 7520:composition 7076:upper bound 6570:An element 6155:An element 6051:an element 6043:An element 5970:is a chain. 5884:total order 5377:ordinal sum 5352:Applied to 5242::   ( 4985:. An event 4638:The set of 4631:ordered by 4616:The set of 4609:ordered by 4603:subsequence 4601:ordered by 4585:The set of 3953:ordered set 3348:Dual orders 2564:irreflexive 2528:irreflexive 2314:Reflexivity 1989:mathematics 1875:ordered by 1122:Irreflexive 403:Total order 115:Irreflexive 12412:Categories 12341:Order type 12275:Cofinality 12116:Well-order 12091:Transitive 11980:Idempotent 11913:Asymmetric 11677:: 134–156. 11537:References 10762:Causal set 10581:such that 10489:such that 10387:(that is, 10223:convex set 10215:See also: 9868:isomorphic 9864:equivalent 9628:orders of 8730:refers to 8715:Note that 8365:Transitive 8347:Number of 7924:isomorphic 7591:is called 7351:is called 6856:such that 6775:such that 6169:, written 5981:singletons 5893:trichotomy 5735:comparable 5636:related to 5381:linear sum 4979:light cone 4842:For a set 4394:transitive 4207:comparison 4048:complement 3288:given by: 2572:transitive 2568:asymmetric 2266:transitive 2194:non-strict 2098:ground set 2028:transitive 1693:: for all 1691:transitive 1127:Asymmetric 120:Asymmetric 37:Transitive 12392:Upper set 12329:Embedding 12265:Antichain 12086:Tolerance 12076:Symmetric 12071:Semiorder 12017:Reflexive 11935:Connected 11469:(2008) . 11295:5 January 11210:5 January 11005:Citations 10899:"neither 10877:Semiorder 10657:× 10566:∈ 10531:Whenever 10279:intervals 10211:Intervals 10190:≤ 10154:≤ 10081:∞ 10078:→ 10029:∞ 10026:→ 9988:× 9952:≤ 9805:∘ 9780:empty set 9588:∗ 9584:≤ 9554:≤ 9543:whenever 9525:∈ 9476:≤ 9466:extension 9444:on a set 9430:∗ 9426:≤ 9392:∗ 9373:∗ 9346:∗ 9296:∗ 9266:∗ 9262:≤ 9235:≤ 9210:∗ 9123:∗ 9092:≤ 9064:∗ 9060:≤ 9014:∗ 8949:≤ 8927:∗ 8923:≤ 8876:∗ 8848:≤ 8804:∗ 8800:≤ 8791:∗ 8775:∗ 8758:Subposets 8375:Symmetric 8370:Reflexive 8331:Sequence 8195:→ 8118:power set 8088:→ 8031:∘ 8005:∘ 7979:→ 7947:→ 7898:bijective 7881:→ 7829:≤ 7780:≤ 7766:≤ 7709:injective 7659:≤ 7612:∈ 7576:→ 7544:→ 7532:∘ 7503:→ 7471:→ 7412:≤ 7384:∈ 7336:→ 7264:≤ 6841:∈ 6815:∈ 6760:∈ 6734:∈ 6637:∈ 6611:≤ 6581:∈ 6552:∈ 6526:≤ 6496:∈ 6478:notably: 6264:≠ 6258:≠ 6216:≠ 6074:≠ 5976:antichain 5659:symmetric 5567:⊆ 5363:See also 5185::   5154:Elements 5134:× 5090:× 5046:× 4902:∈ 4818:∈ 4785:≤ 4748:∈ 4722:≤ 4712:∈ 4659:sequences 4640:subspaces 4611:substring 4599:sequences 4595:inclusion 4591:power set 4547:less than 4331:→ 4325:× 4229:≥ 4217:≤ 4181:≤ 4158:≤ 4118:≤ 4098:≤ 4034:≤ 4011:⪯ 3991:⊑ 3971:≤ 3951:The term 3927:≤ 3863:≤ 3790:≤ 3770:≥ 3750:≤ 3666:≤ 3623:≥ 3579:≤ 3559:≤ 3299:≤ 3272:≤ 3246:≠ 3232:≤ 3207:given by 3191:≤ 3166:∪ 3156:Δ 3147:≤ 3102:∖ 3078:× 3045:∈ 3009:Δ 2982:Δ 2975:∖ 2969:≤ 2933:≤ 2910:≤ 2692:then not 2664:Asymmetry 2629:¬ 2597:∈ 2495:≤ 2469:≤ 2443:≤ 2385:≤ 2359:≤ 2327:≤ 2291:∈ 2258:reflexive 2211:reflexive 2188:The term 2128:≤ 2061:≤ 2020:reflexive 1887:∅ 1877:inclusion 1604:not  1596:⇒ 1552:not  1487:∧ 1443:∨ 1341:⇒ 1331:≠ 1286:⇒ 1215:⇒ 1173:∅ 1170:≠ 1117:Reflexive 1112:Has meets 1107:Has joins 1097:Connected 1087:Symmetric 218:Preorder 145:reflexive 110:Reflexive 105:Has meets 100:Has joins 90:Connected 80:Symmetric 12187:Topology 12054:Preorder 12037:Eulerian 12000:Complete 11950:Directed 11940:Covering 11805:Preorder 11764:Category 11759:Glossary 11660:(2016). 11638:(1997). 11595:(2010). 11334:(1989). 10749:See also 10629:in  10627:supremum 10336:interval 10291:geometry 10249:and any 9703:morphism 9656:category 8823:subposet 8762:A poset 8380:Preorder 8128:divides 7858:embedded 7755:implies 7711:, since 7648:implies 7427:implies 7360:monotone 7144:integers 6451:element. 6445:greatest 6314:for any 6300:but not 5878:are not. 4993:only if 4891:for all 4862:, where 4807:for all 4492:Examples 4392:that is 3983:such as 3658:, where 3527:Notation 3364:opposite 3115:denotes 2863:≰ 2562:that is 2516:preorder 2256:that is 2018:that is 1983:are not. 1661:✗ 1648:✗ 1058:✗ 1053:✗ 1048:✗ 1043:✗ 1018:✗ 986:✗ 981:✗ 976:✗ 971:✗ 966:✗ 951:✗ 919:✗ 914:✗ 909:✗ 904:✗ 899:✗ 884:✗ 872:✗ 867:✗ 842:✗ 837:✗ 832:✗ 817:✗ 805:✗ 800:✗ 785:✗ 770:✗ 765:✗ 750:✗ 738:✗ 733:✗ 698:✗ 693:✗ 678:✗ 666:✗ 661:✗ 646:✗ 641:✗ 606:✗ 594:✗ 589:✗ 574:✗ 569:✗ 554:✗ 549:✗ 544:✗ 530:✗ 525:✗ 510:✗ 505:✗ 480:✗ 475:✗ 463:✗ 458:✗ 443:✗ 438:✗ 433:✗ 408:✗ 396:✗ 391:✗ 376:✗ 371:✗ 366:✗ 351:✗ 346:✗ 334:✗ 329:✗ 314:✗ 309:✗ 304:✗ 299:✗ 284:✗ 272:✗ 267:✗ 252:✗ 247:✗ 242:✗ 237:✗ 232:✗ 227:✗ 210:✗ 205:✗ 190:✗ 185:✗ 180:✗ 175:✗ 170:✗ 12292:Duality 12270:Cofinal 12258:Related 12237:FrΓ©chet 12114:)  11990:Bounded 11985:Lattice 11958:)  11956:Partial 11824:Results 11795:Lattice 11359:27 July 11185:23 July 11161:23 July 11129:24 July 10804:Lattice 10623:infimum 10491:0 < 10323:and an 10306:lattice 10269:, then 9856:posetal 9331:induced 8750:in the 8747:A000112 8708:A000110 8703:A000142 8698:A000670 8693:A001035 8688:A000798 8683:A006125 8678:A053763 8673:A006905 8668:A002416 8333:A001035 7856:can be 7365:isotone 7290:Fig. 7b 7277:v) map. 7234:Fig. 7a 7148:divides 6447:and no 6441:minimal 6437:maximal 6424:Extrema 6162:covered 5281:of the 5156:covered 5119:Fig. 4c 5075:Fig. 4b 5031:Fig. 4a 4607:strings 4587:subsets 4388:as any 4315:compare 3464:, i.e. 3440:be the 3284:is the 3063:is the 2233:≀ on a 2229:, is a 2005:partial 1830:of the 673:Lattice 12317:Subnet 12297:Filter 12247:Normed 12232:Banach 12198:& 12105:Better 12042:Strict 12032:Graded 11923:topics 11754:Topics 11646:  11624:  11603:  11554:  11481:  11437:  11389:  11350:  11062:  11033:  10619:(1, 2) 10614:(2, 3) 10610:(1, 2) 10606:(0, 1) 10495:< 1 10483:(0, 1) 10451:(i.e. 10354:, the 10321:filter 10008:limits 9972:closed 9782:) and 9758:) = {( 9048:), if 8892:subset 8538:65,536 8317:; see 7133:Fig. 6 7074:is an 6433:Fig. 5 6185:), if 6181:<: 5325:) or ( 5164:(3, 3) 5160:(3, 3) 4850:, the 4653:, the 4501:Fig. 3 4374:setoid 4130:, but 3802:, and 3000:where 2978:  2972:  2966:  2827:Fig. 2 2570:, and 2532:strong 2264:, and 2026:, and 1824:Fig. 1 1498:exists 1454:exists 1410:exists 39:  12307:Ideal 12285:Graph 12081:Total 12059:Total 11945:Dense 11409:17–18 11289:(PDF) 11257:> 11237:< 11152:(PDF) 11107:14–15 10937:Notes 10913:< 10903:< 10596:] 10588:[ 10525:] 10505:[ 10476:< 10466:< 10456:< 10446:< 10442:< 10367:] 10359:[ 10325:ideal 10304:of a 10257:, if 10179:then 9970:is a 9705:from 9081:then 8890:is a 8742:up to 8553:1,024 8548:4,096 8543:3,994 7860:into 7695:into 7446:. If 7363:, or 7357:, or 6596:is a 6511:is a 6449:least 6309:< 6305:< 6295:< 6247:with 6055:, if 5901:chain 5641:when 5462:with 5435:with 5358:field 5320:< 5310:< 5295:) ≀ ( 5258:) if 5250:) ≀ ( 5210:< 5195:) ≀ ( 4939:< 4935:> 4931:< 4924:fence 4642:of a 4294:, or 4289:> 4284:, or 4274:, or 4269:< 3738:(the 2776:then 2724:: if 2666:: if 2534:, or 2484:then 2432:: if 2400:then 2348:: if 2217:, or 2036:poset 1999:on a 1780:then 143:Anti- 11898:list 11703:OEIS 11691:OEIS 11644:ISBN 11622:ISBN 11601:ISBN 11552:ISBN 11479:ISBN 11435:ISBN 11387:ISBN 11361:2012 11348:ISBN 11297:2022 11266:and 11228:and 11212:2022 11187:2021 11163:2021 11131:2021 11060:ISBN 11031:ISBN 10991:See 10951:here 10909:nor 10515:and 10500:The 10461:and 10411:and 10397:and 10346:For 10241:and 10062:and 9750:hom( 9678:and 9177:and 8981:and 8914:and 8752:OEIS 8663:OEIS 8337:OEIS 8062:and 8054:and 8020:and 7962:and 7920:, β‰Ό) 7914:and 7912:, ≀) 7848:and 7701:, β‰Ό) 7693:, ≀) 7638:) β‰Ό 7486:and 7452:, ≲) 7436:) β‰Ό 7317:, β‰Ό) 7311:and 7309:, ≀) 7245:) β‰Ό 6924:and 6867:< 6786:> 6205:and 6177:(or 6063:and 5852:and 5788:and 5732:are 5728:and 5485:and 5475:, or 5448:, or 5401:and 5379:(or 5335:and 5315:and 5305:if ( 5277:the 5266:and 5238:the 5225:and 5215:or ( 5181:the 4959:and 4881:) ≀ 4512:The 4471:< 4439:, a 4424:< 4396:and 4343:> 4337:< 4302:are 4298:and 4256:and 4240:> 4223:< 4138:> 4078:> 4058:> 3933:< 3895:< 3830:< 3810:> 3706:< 3646:> 3638:and 3601:< 3362:(or 3360:dual 3358:The 3313:< 3218:< 3170:< 3093:and 2959:< 2787:< 2761:< 2750:and 2735:< 2703:< 2677:< 2640:< 2458:and 2374:and 2215:weak 2030:. A 1995:, a 1957:and 1899:and 1826:The 1754:and 1159:and 12312:Net 12112:Pre 11675:280 11579:doi 11522:hdl 11512:doi 11369:... 10625:or 10334:An 10327:of 10289:of 10281:of 10253:in 10245:in 10233:of 10071:lim 10019:lim 9896:If 9768:if 9725:to 9620:In 9617:). 9488:on 9333:by 9197:in 9110:If 9001:in 8894:of 8569:15 8560:219 8557:355 8508:171 8505:512 8360:Any 8335:in 8253:to 8050:on 7896:is 7687:of 7677:If 7026:in 7014:if 7006:in 6986:in 6974:if 6966:in 6958:of 6600:if 6515:if 5973:An 5887:or 5748:or 5738:if 5634:is 5383:), 5205:if 5158:by 4981:of 4943:... 4858:to 4050:of 4003:or 3948:. 3878:or 3762:), 3742:of 3444:of 3067:on 2842:cnv 2838:ker 2834:cls 2621:: 2526:An 2235:set 2140:on 2100:of 2001:set 1987:In 1728:if 1689:be 1399:min 12414:: 11673:. 11575:19 11573:. 11569:. 11520:. 11506:. 11502:. 11477:. 11473:. 11433:. 11431:82 11363:. 11346:. 11344:28 11299:. 11247:= 11220:, 11214:. 11203:. 11154:. 11133:. 11089:48 11087:. 11083:. 11054:. 11013:^ 10745:. 10637:. 10612:βˆͺ 10608:βˆͺ 10604:= 10592:, 10586:βŠ† 10536:≀ 10521:, 10509:, 10427:, 10402:≀ 10392:≀ 10382:≀ 10378:≀ 10363:, 10350:≀ 10331:. 10300:A 10265:≀ 10261:≀ 10221:A 9882:. 9859:. 9773:≀ 9766:)} 9762:, 9754:, 9636:. 9608:A 9409:. 9107:. 8734:. 8724:, 8652:, 8641:=0 8629:! 8618:, 8603:=0 8587:2 8584:2 8579:2 8566:24 8563:75 8529:5 8523:13 8520:19 8517:29 8514:64 8511:64 8497:2 8476:13 8473:16 8465:1 8433:1 8323:. 7195:10 6286:β‹– 6239:≀ 6235:≀ 6201:≀ 6173:β‹– 6059:≀ 5898:A 5881:A 5753:≀ 5743:≀ 5645:≀ 5489:∈ 5481:∈ 5458:∈ 5454:, 5431:∈ 5427:, 5392:βŠ• 5388:= 5367:. 5345:). 5340:= 5330:= 5299:, 5291:, 5270:≀ 5262:≀ 5254:, 5246:, 5235:); 5230:≀ 5220:= 5199:, 5191:, 4998:≀ 4968:≀ 4963:, 4922:A 4867:≀ 4279:= 4173:, 3698:, 3480:op 3426:op 3379:op 3366:) 3151::= 3018::= 2963::= 2814:. 2566:, 2530:, 2518:. 2316:: 2260:, 2213:, 2209:A 2022:, 12110:( 12107:) 12103:( 11954:( 11901:) 11735:e 11728:t 11721:v 11696:n 11652:. 11630:. 11609:. 11587:. 11581:: 11560:. 11528:. 11524:: 11514:: 11508:5 11487:. 11443:. 11411:. 11268:y 11264:x 11259:y 11255:x 11249:y 11245:x 11239:y 11235:x 11230:y 11226:x 11222:y 11218:x 11189:. 11165:. 11109:. 11068:. 11039:. 10997:. 10970:P 10953:. 10917:" 10915:a 10911:b 10905:b 10901:a 10727:. 10724:} 10721:b 10718:, 10715:a 10712:{ 10709:= 10706:] 10703:b 10700:, 10697:a 10694:[ 10684:b 10680:a 10661:N 10653:N 10635:P 10631:P 10602:P 10594:b 10590:a 10584:I 10569:P 10563:b 10560:, 10557:a 10547:I 10538:b 10534:a 10523:b 10519:a 10517:( 10513:) 10511:b 10507:a 10497:. 10493:x 10487:x 10478:b 10474:a 10468:b 10464:x 10458:x 10454:a 10448:b 10444:x 10440:a 10435:x 10431:) 10429:b 10425:a 10423:( 10415:. 10413:b 10409:a 10404:b 10400:x 10394:x 10390:a 10384:b 10380:x 10376:a 10371:x 10365:b 10361:a 10352:b 10348:a 10340:P 10329:L 10317:L 10313:L 10309:L 10275:I 10271:z 10267:y 10263:z 10259:x 10255:P 10251:z 10247:I 10243:y 10239:x 10235:P 10231:I 10227:P 10196:. 10193:b 10187:a 10167:, 10162:i 10158:b 10149:i 10145:a 10125:, 10122:i 10102:, 10099:b 10096:= 10091:i 10087:b 10075:i 10050:, 10047:a 10044:= 10039:i 10035:a 10023:i 9994:. 9991:P 9985:P 9958:} 9955:b 9949:a 9946:: 9943:) 9940:b 9937:, 9934:a 9931:( 9928:{ 9904:P 9841:. 9838:) 9835:z 9832:, 9829:x 9826:( 9823:= 9820:) 9817:y 9814:, 9811:x 9808:( 9802:) 9799:z 9796:, 9793:y 9790:( 9775:y 9771:x 9764:y 9760:x 9756:y 9752:x 9736:. 9733:y 9713:x 9689:, 9686:y 9666:x 9613:( 9596:. 9593:y 9580:x 9560:, 9557:y 9551:x 9531:, 9528:X 9522:y 9519:, 9516:x 9496:X 9452:X 9397:] 9388:X 9384:[ 9381:P 9378:= 9369:P 9342:X 9318:P 9292:P 9271:y 9258:x 9238:y 9232:x 9206:X 9185:y 9165:x 9145:P 9119:P 9095:y 9089:x 9069:y 9056:x 9036:X 9010:X 8989:y 8969:x 8902:X 8872:X 8851:) 8845:, 8842:X 8839:( 8836:= 8833:P 8809:) 8796:, 8787:X 8783:( 8780:= 8771:P 8728:) 8726:k 8722:n 8720:( 8718:S 8656:) 8654:k 8650:n 8648:( 8646:S 8639:k 8633:βˆ‘ 8627:n 8622:) 8620:k 8616:n 8614:( 8612:S 8610:! 8608:k 8601:k 8595:βˆ‘ 8575:n 8534:4 8526:6 8502:3 8494:2 8491:3 8488:3 8485:4 8482:8 8479:4 8470:2 8462:1 8459:1 8456:1 8453:1 8450:2 8447:1 8444:2 8441:2 8438:1 8430:1 8427:1 8424:1 8421:1 8418:1 8415:1 8412:1 8409:1 8406:0 8349:n 8341:n 8311:g 8296:N 8275:. 8272:) 8268:N 8264:( 8261:g 8237:} 8234:4 8231:{ 8211:) 8207:N 8203:( 8199:P 8191:N 8187:: 8184:g 8160:} 8157:3 8154:, 8151:2 8148:{ 8138:y 8134:x 8130:y 8126:x 8104:) 8100:N 8096:( 8092:P 8084:N 8080:: 8077:f 8064:T 8060:S 8056:T 8052:S 8034:g 8028:f 8008:f 8002:g 7982:U 7976:T 7973:: 7970:g 7950:T 7944:S 7941:: 7938:f 7918:T 7916:( 7910:S 7908:( 7884:T 7878:S 7875:: 7872:f 7862:T 7854:S 7850:T 7846:S 7832:. 7809:y 7806:= 7803:x 7783:x 7777:y 7769:y 7763:x 7743:) 7740:y 7737:( 7734:f 7731:= 7728:) 7725:x 7722:( 7719:f 7705:f 7699:T 7697:( 7691:S 7689:( 7679:f 7665:. 7662:y 7656:x 7646:) 7644:y 7642:( 7640:f 7636:x 7634:( 7632:f 7618:, 7615:S 7609:y 7606:, 7603:x 7579:T 7573:S 7570:: 7567:f 7547:U 7541:S 7538:: 7535:f 7529:g 7506:U 7500:T 7497:: 7494:g 7474:T 7468:S 7465:: 7462:f 7450:U 7448:( 7444:) 7442:y 7440:( 7438:f 7434:x 7432:( 7430:f 7415:y 7409:x 7390:, 7387:S 7381:y 7378:, 7375:x 7339:T 7333:S 7330:: 7327:f 7315:T 7313:( 7307:S 7305:( 7253:) 7251:v 7249:( 7247:f 7243:u 7241:( 7239:f 7201:, 7198:} 7192:, 7189:5 7186:, 7183:3 7180:, 7177:2 7174:{ 7160:g 7156:g 7152:g 7113:. 7110:} 7107:} 7104:y 7101:{ 7098:, 7095:} 7092:x 7089:{ 7086:{ 7062:} 7059:y 7056:, 7053:x 7050:{ 7040:P 7036:P 7032:P 7028:A 7024:a 7020:x 7016:a 7012:A 7008:P 7004:x 7000:A 6996:A 6992:x 6988:A 6984:a 6980:x 6976:a 6972:A 6968:P 6964:x 6960:P 6956:A 6936:} 6932:{ 6912:} 6909:z 6906:, 6903:y 6900:, 6897:x 6894:{ 6873:. 6870:m 6864:a 6844:P 6838:a 6818:P 6812:m 6792:. 6789:g 6783:a 6763:P 6757:a 6737:P 6731:g 6705:} 6701:{ 6681:} 6678:z 6675:, 6672:y 6669:, 6666:x 6663:{ 6643:. 6640:P 6634:a 6614:a 6608:m 6584:P 6578:m 6558:. 6555:P 6549:a 6529:g 6523:a 6499:P 6493:g 6466:, 6463:P 6408:. 6405:} 6402:z 6399:, 6396:y 6393:, 6390:x 6387:{ 6367:, 6364:} 6361:z 6358:, 6355:x 6352:{ 6332:} 6329:x 6326:{ 6316:c 6311:b 6307:c 6303:a 6297:b 6293:a 6288:b 6284:a 6270:. 6267:b 6261:c 6255:a 6245:c 6241:b 6237:c 6233:a 6219:b 6213:a 6203:b 6199:a 6195:c 6191:b 6187:a 6183:b 6179:a 6175:b 6171:a 6167:b 6157:a 6141:. 6138:} 6135:y 6132:, 6129:x 6126:{ 6106:} 6103:x 6100:{ 6080:. 6077:b 6071:a 6061:b 6057:a 6053:b 6045:a 6029:. 6026:} 6023:} 6020:z 6017:{ 6014:, 6011:} 6008:y 6005:{ 6002:, 5999:} 5996:x 5993:{ 5990:{ 5958:} 5955:} 5952:z 5949:, 5946:y 5943:, 5940:x 5937:{ 5934:, 5931:} 5928:x 5925:{ 5922:, 5919:} 5915:{ 5912:{ 5866:} 5863:y 5860:{ 5840:} 5837:x 5834:{ 5814:} 5811:z 5808:, 5805:y 5802:, 5799:x 5796:{ 5776:} 5773:x 5770:{ 5755:a 5751:b 5745:b 5741:a 5730:b 5726:a 5710:, 5707:} 5704:y 5701:, 5698:x 5695:{ 5675:} 5672:x 5669:{ 5655:a 5651:b 5647:b 5643:a 5639:b 5632:a 5615:, 5612:} 5609:z 5606:, 5603:y 5600:, 5597:x 5594:{ 5570:) 5564:, 5561:) 5558:} 5555:z 5552:, 5549:y 5546:, 5543:x 5540:{ 5537:( 5532:P 5527:( 5493:. 5491:Y 5487:b 5483:X 5479:a 5473:b 5469:Y 5466:≀ 5464:a 5460:Y 5456:b 5452:a 5446:b 5442:X 5439:≀ 5437:a 5433:X 5429:b 5425:a 5417:b 5413:Z 5410:≀ 5408:a 5403:Y 5399:X 5394:Y 5390:X 5386:Z 5342:d 5338:b 5332:c 5328:a 5322:d 5318:b 5312:c 5308:a 5303:) 5301:d 5297:c 5293:b 5289:a 5287:( 5274:; 5272:d 5268:b 5264:c 5260:a 5256:d 5252:c 5248:b 5244:a 5232:d 5228:b 5222:c 5218:a 5212:c 5208:a 5203:) 5201:d 5197:c 5193:b 5189:a 5187:( 5142:. 5138:N 5130:N 5094:N 5086:N 5050:N 5042:N 5003:. 5000:Y 4996:X 4991:X 4987:Y 4983:X 4975:Y 4970:Y 4966:X 4961:Y 4957:X 4941:d 4937:c 4933:b 4929:a 4908:. 4905:X 4899:x 4889:) 4887:x 4885:( 4883:g 4879:x 4877:( 4875:f 4869:g 4865:f 4860:P 4856:X 4848:P 4844:X 4839:. 4822:N 4815:n 4793:n 4789:b 4780:n 4776:a 4752:N 4745:n 4740:) 4735:n 4731:b 4727:( 4716:N 4709:n 4704:) 4699:n 4695:a 4691:( 4679:b 4675:a 4671:b 4667:a 4663:P 4651:P 4635:. 4613:. 4575:. 4562:R 4532:R 4504:4 4451:P 4427:) 4421:, 4418:P 4415:( 4358:} 4355:| 4352:, 4349:= 4346:, 4340:, 4334:{ 4328:P 4322:P 4319:: 4300:y 4296:x 4291:y 4287:x 4281:y 4277:x 4271:y 4267:x 4258:y 4254:x 4232:, 4226:, 4220:, 3936:) 3930:, 3924:, 3921:P 3918:( 3898:) 3892:, 3889:P 3886:( 3866:) 3860:, 3857:P 3854:( 3726:P 3686:P 3626:, 3604:, 3582:, 3539:P 3511:x 3508:R 3505:y 3485:y 3476:R 3472:x 3452:R 3422:R 3401:R 3375:R 3333:. 3330:b 3327:= 3324:a 3316:b 3310:a 3302:b 3296:a 3252:. 3249:b 3243:a 3235:b 3229:a 3221:b 3215:a 3160:P 3127:P 3081:P 3075:P 3051:} 3048:P 3042:p 3039:: 3036:) 3033:p 3030:, 3027:p 3024:( 3021:{ 3013:P 2986:P 2939:; 2936:a 2930:a 2890:P 2866:4 2860:3 2802:. 2790:c 2784:a 2764:c 2758:b 2738:b 2732:a 2718:. 2706:a 2700:b 2680:b 2674:a 2647:) 2643:a 2637:a 2633:( 2603:: 2600:P 2594:c 2591:, 2588:b 2585:, 2582:a 2550:P 2510:. 2498:c 2492:a 2472:c 2466:b 2446:b 2440:a 2414:b 2411:= 2408:a 2388:a 2382:b 2362:b 2356:a 2330:a 2324:a 2297:, 2294:P 2288:c 2285:, 2282:b 2279:, 2276:a 2244:P 2168:X 2148:X 2108:P 2084:X 2064:) 2058:, 2055:X 2052:( 2049:= 2046:P 2034:( 1971:} 1968:y 1965:{ 1945:} 1942:x 1939:{ 1919:} 1916:y 1913:, 1910:x 1907:{ 1863:, 1860:} 1857:z 1854:, 1851:y 1848:, 1845:x 1842:{ 1797:. 1794:c 1791:R 1788:a 1768:c 1765:R 1762:b 1742:b 1739:R 1736:a 1716:, 1713:c 1710:, 1707:b 1704:, 1701:a 1677:R 1657:Y 1644:Y 1614:a 1611:R 1608:b 1593:b 1590:R 1587:a 1562:a 1559:R 1556:a 1530:a 1527:R 1524:a 1490:b 1484:a 1446:b 1440:a 1402:S 1370:a 1367:R 1364:b 1354:b 1351:R 1348:a 1338:b 1328:a 1299:b 1292:= 1289:a 1279:a 1276:R 1273:b 1263:b 1260:R 1257:a 1228:a 1225:R 1222:b 1208:b 1205:R 1202:a 1176:: 1167:S 1147:b 1144:, 1141:a 1078:Y 1068:Y 1038:Y 1028:Y 1006:Y 996:Y 961:Y 939:Y 929:Y 894:Y 862:Y 852:Y 827:Y 795:Y 780:Y 760:Y 728:Y 718:Y 708:Y 688:Y 656:Y 636:Y 626:Y 616:Y 584:Y 564:Y 520:Y 500:Y 490:Y 453:Y 428:Y 418:Y 386:Y 361:Y 324:Y 294:Y 262:Y 200:Y 165:Y 63:e 56:t 49:v 20:)

Index

Partial Order
Transitive
binary relations
v
t
e
Symmetric
Antisymmetric
Connected
Well-founded
Has joins
Has meets
Reflexive
Irreflexive
Asymmetric
Equivalence relation
Preorder (Quasiorder)
Partial order
Total preorder
Total order
Prewellordering
Well-quasi-ordering
Well-ordering
Lattice
Join-semilattice
Meet-semilattice
Strict partial order
Strict weak order
Strict total order
Symmetric

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑