Knowledge

Parallel manipulator

Source đź“ť

270:, which are positions where, for some trajectories of the movement, the variation of the lengths of the legs is infinitely smaller than the variation of the position. Conversely, at a singular position, a force (like gravity) applied on the end-effector induce infinitely large constraints on the legs, which may result in a kind of "explosion" of the manipulator. The determination of the singular positions is difficult (for a general parallel manipulator, this is an open problem). This implies that the workspaces of the parallel manipulators are, usually, artificially limited to a small region where one knows that there is no singularity. 199: 252: 190:
robot and the 3 orientation coordinates are in the constraint subspace.  The motion subspace of lower mobility manipulators may be further decomposed into independent (desired) and dependent subspaces: consisting of `concomitant’ or `parasitic’ motion which is undesired motion of the manipulator.  The debilitating effects of parasitic motion should be mitigated or eliminated in the successful design of lower mobility manipulators.  For example, the Delta robot does not have parasitic motion since its end effector does not rotate.
340: 666: 892: 1475: 51: 1487: 220:; a precision serial manipulator is a compromise between precision, complexity, mass (of the manipulator and of the manipulated objects) and cost. On the other hand, with parallel manipulators, a high rigidity may be obtained with a small mass of the manipulator (relatively to the charge being manipulated). This allows high precision and high speed of movements, and motivates the use of parallel manipulators in 240: 20: 189:
mobility and has proven to be very successful for rapid pick-and-place translational positioning applications. The workspace of lower mobility manipulators may be decomposed into `motion’ and `constraint’ subspaces. For example, 3 position coordinates constitute the motion subspace of the 3 DoF Delta
265:
A drawback of parallel manipulators, in comparison to serial manipulators, is their limited workspace. As for serial manipulators, the workspace is limited by the geometrical and mechanical limits of the design (collisions between legs maximal and minimal lengths of the legs). The workspace is also
147:
A further advantage of the parallel manipulator is that the heavy actuators may often be centrally mounted on a single base platform, the movement of the arm taking place through struts and joints alone. This reduction in mass along the arm permits a lighter arm construction, thus lighter actuators
211:
also have this movement under deliberate control by an actuator. A movement requiring several axes thus requires a number of such joints. Unwanted flexibility or sloppiness in one joint causes a similar sloppiness in the arm, which may be amplified by the distance between the joint and the
184:
obility. However, when a manipulation task requires less than 6 DoF, the use of lower mobility manipulators, with fewer than 6 DoF, may bring advantages in terms of simpler architecture, easier control, faster motion and lower cost.  For example, the 3 DoF Delta robot has lower
335:
Parallel robots are usually more limited in the workspace; for instance, they generally cannot reach around obstacles. The calculations involved in performing a desired manipulation (forward kinematics) are also usually more difficult and can lead to multiple solutions.
159:
All these features result in manipulators with a wide range of motion capability. As their speed of action is often constrained by their rigidity rather than sheer power, they can be fast-acting, in comparison to serial manipulators.
206:
Most robot applications require rigidity. Serial robots may achieve this by using high-quality rotary joints that permit movement in one axis but are rigid against movement outside this. Any joint permitting movement
277:
behavior: the command which is needed for getting a linear or a circular movement of the end-effector depends dramatically on the location in the workspace and does not vary linearly during the movement.
43:. Perhaps, the best known parallel manipulator is formed from six linear actuators that support a movable base for devices such as flight simulators. This device is called a 110:
stiffness that makes the overall parallel manipulator stiff relative to its components, unlike the serial chain that becomes progressively less rigid with more components.
86:(or 'hand') of this linkage (or 'arm') is directly connected to its base by a number of (usually three or six) separate and independent linkages working simultaneously. No 144:: the links and their actuators feel only tension or compression, without any bending or torque, which again reduces the effects of any flexibility to off-axis forces. 136:
that move a light, stiff, parallelogram arm. The effector is mounted between the tips of three of these arms and again, it may be mounted with simple ball-joints.
106:, as for a serial robot; however in the parallel robot the off-axis flexibility of a joint is also constrained by the effect of the other chains. It is this 415: 102:. Errors in one chain's positioning are averaged in conjunction with the others, rather than being cumulative. Each actuator must still move within its own 636: 881: 98:
A parallel manipulator is designed so that each chain is usually short, simple and can thus be rigid against unwanted movement, compared to a
128:. The ball joints are passive: simply free to move, without actuators or brakes; their position is constrained solely by the other chains. 781: 1555:"Optimization of 3-DoF Manipulators' Parasitic Motion with the Instantaneous Restriction Space-Based Analytic Coupling Relation" 573:"Optimization of 3-DoF Manipulators' Parasitic Motion with the Instantaneous Restriction Space-Based Analytic Coupling Relation" 1460: 1220: 760: 739: 720: 701: 682: 501: 437: 398: 1141: 813: 604: 369: 694:
Structural Synthesis of Parallel Robots, Part 2: Translational topologies with Two and Three Degrees of Freedom
640: 169: 103: 1596: 1136: 107: 1412: 488:, Mechanisms and Machine Science, vol. 83, Cham: Springer International Publishing, pp. 242–252, 1286: 1230: 1450: 846: 212:
end-effectuor: there is no opportunity to brace one joint's movement against another. Their inevitable
786: 1514:"Analysis of parasitic motion with the constraint embedded Jacobian for a 3-PRS parallel manipulator" 1438: 532:"Analysis of parasitic motion with the constraint embedded Jacobian for a 3-PRS parallel manipulator" 457:
Device for the movement and positioning of an element in space, R. Clavel - US Patent 4,976,582, 1990
1591: 1087: 1082: 47:
or the Gough-Stewart platform in recognition of the engineers who first designed and used them.
1281: 806: 1392: 1246: 856: 317: 198: 74:
that use similar mechanisms for the movement of either the robot on its base, or one or more
1342: 1266: 1031: 991: 841: 233: 75: 70:, the actuators are paired together on both the basis and the platform), these systems are 8: 1530: 1513: 1491: 1433: 1296: 996: 836: 548: 531: 480:
Nigatu, Hassen; Yihun, Yimesker (2020), Larochelle, Pierre; McCarthy, J. Michael (eds.),
87: 481: 316:
in high speed, high-accuracy positioning with limited workspace, such as in assembly of
251: 1402: 1377: 1367: 1332: 1276: 1256: 1203: 1176: 1114: 1026: 960: 861: 507: 323: 225: 99: 79: 36: 622: 339: 1535: 1479: 1443: 1372: 1301: 1188: 974: 876: 851: 799: 756: 735: 716: 697: 678: 553: 511: 497: 433: 394: 149: 141: 71: 32: 1566: 1525: 1428: 1306: 1291: 1166: 1158: 1077: 1036: 1021: 969: 871: 584: 543: 489: 423: 364: 348: 290: 244: 221: 148:
and faster movements. This centralisation of mass also reduces the robot's overall
114: 67: 44: 1337: 1322: 1225: 1215: 1207: 1072: 945: 923: 913: 493: 329: 217: 133: 121: 118: 1455: 1271: 1261: 1183: 1126: 1067: 1006: 1001: 986: 918: 1585: 1539: 1407: 1362: 1046: 1041: 1016: 1011: 557: 305: 229: 153: 54:
Over-actuated planar parallel ma­ni­pulator simulated with MeKin2D.
486:
Proceedings of the 2020 USCToMM Symposium on Mechanical Systems and Robotics
1171: 1146: 1131: 1104: 1094: 955: 866: 83: 40: 1193: 1119: 1109: 1099: 1062: 979: 940: 891: 352: 259: 129: 1571: 1554: 589: 572: 665: 608: 343:
Prototype of "PAR4", a 4-degree-of-freedom, high-speed, parallel robot.
322:
as micro manipulators mounted on the end effector of larger but slower
213: 125: 1357: 1251: 950: 753:
Kinematic Analysis of Parallel Manipulators by Algebraic Screw Theory
301: 274: 50: 1397: 1347: 822: 482:"Algebraic Insight on the Concomitant Motion of 3RPS and 3PRS PKMS" 470:
Proc 18th Int Symp Ind Robots; Sydney, Australia (1988), pp. 91-100
1327: 908: 428: 137: 1382: 933: 928: 140:
representation of a parallel robot is often akin to that of a
1352: 900: 202:
Hexapod positioning systems, also known as Stewart Platforms.
776: 675:
Structural Synthesis of Parallel Robots, Part 1: Methodology
19: 1387: 791: 239: 113:
This mutual stiffening also permits simple construction:
23:
Abstract render of a Hexapod platform (Stewart Platform)
1512:
Nigatu, Hassen; Choi, Yun Ho; Kim, Doik (2021-10-01).
530:
Nigatu, Hassen; Choi, Yun Ho; Kim, Doik (2021-10-01).
216:
and off-axis flexibility accumulates along the arm's
286:
Major industrial applications of these devices are:
193: 78:
arms. Their 'parallel' distinction, as opposed to a
273:Another drawback of parallel manipulators is their 236:(very high precision in positioning large masses). 420:Industrial Robotics: Theory, Modelling and Control 750: 1583: 422:, Pro Literatur Verlag, Germany / ARS, Austria, 347:Two examples of popular parallel robots are the 414:Di, Raffaele (2006-12-01), Cubero, Sam (ed.), 168:A manipulator can move an object with up to 6 1511: 807: 529: 729: 152:, which may be an advantage for a mobile or 669:Parallel manipulator with parasitic motion. 623:"Sketchy, a home-constructed drawing robot" 479: 468:Delta: a fast robot with parallel geometry, 416:"Parallel Manipulators with Lower Mobility" 814: 800: 224:(high speed with rather large masses) and 1570: 1552: 1529: 588: 570: 547: 427: 1553:Nigatu, Hassen; Kim, Doik (2021-01-01). 664: 605:"DexTAR - an educational parallel robot" 571:Nigatu, Hassen; Kim, Doik (2021-01-01). 338: 250: 238: 197: 49: 18: 1584: 777:Parallel Mechanisms Information Center 710: 388: 1221:Simultaneous localization and mapping 795: 732:Type Synthesis of Parallel Mechanisms 1531:10.1016/j.mechmachtheory.2021.104409 691: 672: 637:"Active and Passive Fiber Alignment" 549:10.1016/j.mechmachtheory.2021.104409 312:They have also become more popular: 172:(DoF), determined by 3 translation 13: 658: 413: 93: 14: 1608: 770: 194:Comparison to serial manipulators 163: 39:to support a single platform, or 37:computer-controlled serial chains 1485: 1474: 1473: 890: 1546: 1505: 1486: 730:Kong, X.; Gosselin, C. (2007). 629: 370:Cartesian parallel manipulators 281: 751:Gallardo-Alvarado, J. (2016). 615: 597: 564: 523: 473: 460: 451: 407: 382: 1: 375: 328:as high speed/high-precision 64:generalized Stewart platforms 1518:Mechanism and Machine Theory 821: 787:References on parallel robot 713:Parallel Robots, 2nd Edition 536:Mechanism and Machine Theory 494:10.1007/978-3-030-43929-3_22 391:Parallel Robots, 2nd Edition 266:limited by the existence of 7: 1231:Vision-guided robot systems 358: 124:between any-axis universal 10: 1613: 1451:Technological unemployment 1469: 1439:Workplace robotics safety 1421: 1315: 1239: 1202: 1157: 1055: 899: 888: 829: 782:What is a parallel robot? 16:Type of mechanical system 1287:Human–robot interaction 88:geometrical parallelism 692:Gogu, Grigore (2009). 673:Gogu, Grigore (2008). 670: 344: 262: 248: 203: 55: 24: 1393:Starship Technologies 711:Merlet, J.P. (2008). 668: 389:Merlet, J.P. (2008). 342: 295:automobile simulators 258:, a portrait-drawing 254: 242: 234:particle accelerators 201: 180:coordinates for full 53: 22: 1597:Articulated robotics 1343:Energid Technologies 117:hexapods chains use 29:parallel manipulator 1572:10.3390/app11104690 1434:Powered exoskeleton 590:10.3390/app11104690 324:serial manipulators 1403:Universal Robotics 1378:Intuitive Surgical 1368:Harvest Automation 1333:Barrett Technology 1115:Robotic spacecraft 961:Audio-Animatronics 671: 345: 263: 249: 204: 170:degrees of freedom 132:have base-mounted 100:serial manipulator 80:serial manipulator 72:articulated robots 56: 35:that uses several 25: 1501: 1500: 1444:Robotic tech vest 1373:Honeybee Robotics 1189:Electric unicycle 1142:remotely-operated 762:978-3-319-31124-1 741:978-3-540-71989-2 722:978-1-4020-4132-7 703:978-1-4020-9793-5 684:978-1-4020-5102-9 503:978-3-030-43928-6 439:978-3-86611-285-8 400:978-1-4020-4132-7 298:in work processes 291:flight simulators 222:flight simulators 150:moment of inertia 142:pin-jointed truss 104:degree of freedom 33:mechanical system 1604: 1577: 1576: 1574: 1559:Applied Sciences 1550: 1544: 1543: 1533: 1509: 1489: 1488: 1477: 1476: 1461:Fictional robots 1429:Critique of work 1078:Unmanned vehicle 894: 816: 809: 802: 793: 792: 766: 745: 726: 707: 688: 652: 651: 649: 648: 639:. Archived from 633: 627: 626: 619: 613: 612: 607:. Archived from 601: 595: 594: 592: 577:Applied Sciences 568: 562: 561: 551: 527: 521: 520: 519: 518: 477: 471: 464: 458: 455: 449: 448: 447: 446: 431: 411: 405: 404: 386: 365:Robot kinematics 349:Stewart platform 330:milling machines 134:rotary actuators 122:linear actuators 115:Stewart platform 68:Stewart platform 45:Stewart platform 1612: 1611: 1607: 1606: 1605: 1603: 1602: 1601: 1592:Parallel robots 1582: 1581: 1580: 1551: 1547: 1510: 1506: 1502: 1497: 1465: 1417: 1338:Boston Dynamics 1323:Amazon Robotics 1311: 1235: 1226:Visual odometry 1216:Motion planning 1198: 1153: 1073:Continuum robot 1056:Classifications 1051: 914:Anthropomorphic 895: 886: 882:AI competitions 825: 820: 773: 763: 742: 723: 704: 685: 661: 659:Further reading 656: 655: 646: 644: 635: 634: 630: 621: 620: 616: 603: 602: 598: 569: 565: 528: 524: 516: 514: 504: 478: 474: 465: 461: 456: 452: 444: 442: 440: 412: 408: 401: 387: 383: 378: 361: 284: 230:magnetic lenses 218:kinematic chain 196: 176:and 3 rotation 166: 119:prismatic joint 96: 94:Design features 82:, is that the 60:parallel robots 17: 12: 11: 5: 1610: 1600: 1599: 1594: 1579: 1578: 1545: 1503: 1499: 1498: 1496: 1495: 1483: 1470: 1467: 1466: 1464: 1463: 1458: 1456:Terrainability 1453: 1448: 1447: 1446: 1436: 1431: 1425: 1423: 1419: 1418: 1416: 1415: 1410: 1405: 1400: 1395: 1390: 1385: 1380: 1375: 1370: 1365: 1360: 1355: 1350: 1345: 1340: 1335: 1330: 1325: 1319: 1317: 1313: 1312: 1310: 1309: 1304: 1299: 1294: 1289: 1284: 1279: 1274: 1269: 1264: 1259: 1254: 1249: 1243: 1241: 1237: 1236: 1234: 1233: 1228: 1223: 1218: 1212: 1210: 1200: 1199: 1197: 1196: 1191: 1186: 1181: 1180: 1179: 1169: 1163: 1161: 1155: 1154: 1152: 1151: 1150: 1149: 1144: 1134: 1129: 1124: 1123: 1122: 1112: 1107: 1102: 1097: 1092: 1091: 1090: 1085: 1075: 1070: 1068:Cloud robotics 1065: 1059: 1057: 1053: 1052: 1050: 1049: 1044: 1039: 1034: 1029: 1024: 1019: 1014: 1009: 1004: 999: 994: 989: 984: 983: 982: 972: 967: 966: 965: 964: 963: 948: 943: 938: 937: 936: 931: 926: 921: 911: 905: 903: 897: 896: 889: 887: 885: 884: 879: 874: 869: 864: 859: 854: 849: 844: 839: 833: 831: 827: 826: 819: 818: 811: 804: 796: 790: 789: 784: 779: 772: 771:External links 769: 768: 767: 761: 747: 746: 740: 727: 721: 708: 702: 689: 683: 660: 657: 654: 653: 628: 614: 611:on 2014-05-29. 596: 563: 522: 502: 472: 459: 450: 438: 406: 399: 380: 379: 377: 374: 373: 372: 367: 360: 357: 333: 332: 326: 320: 310: 309: 299: 296: 293: 283: 280: 247:parallel robot 195: 192: 165: 164:Lower mobility 162: 95: 92: 58:Also known as 15: 9: 6: 4: 3: 2: 1609: 1598: 1595: 1593: 1590: 1589: 1587: 1573: 1568: 1564: 1560: 1556: 1549: 1541: 1537: 1532: 1527: 1523: 1519: 1515: 1508: 1504: 1494: 1493: 1484: 1482: 1481: 1472: 1471: 1468: 1462: 1459: 1457: 1454: 1452: 1449: 1445: 1442: 1441: 1440: 1437: 1435: 1432: 1430: 1427: 1426: 1424: 1420: 1414: 1411: 1409: 1408:Wolf Robotics 1406: 1404: 1401: 1399: 1396: 1394: 1391: 1389: 1386: 1384: 1381: 1379: 1376: 1374: 1371: 1369: 1366: 1364: 1363:Foster-Miller 1361: 1359: 1356: 1354: 1351: 1349: 1346: 1344: 1341: 1339: 1336: 1334: 1331: 1329: 1326: 1324: 1321: 1320: 1318: 1314: 1308: 1305: 1303: 1300: 1298: 1295: 1293: 1290: 1288: 1285: 1283: 1282:Developmental 1280: 1278: 1275: 1273: 1270: 1268: 1265: 1263: 1260: 1258: 1255: 1253: 1250: 1248: 1245: 1244: 1242: 1238: 1232: 1229: 1227: 1224: 1222: 1219: 1217: 1214: 1213: 1211: 1209: 1205: 1201: 1195: 1192: 1190: 1187: 1185: 1182: 1178: 1175: 1174: 1173: 1170: 1168: 1165: 1164: 1162: 1160: 1156: 1148: 1145: 1143: 1140: 1139: 1138: 1135: 1133: 1130: 1128: 1125: 1121: 1118: 1117: 1116: 1113: 1111: 1108: 1106: 1103: 1101: 1098: 1096: 1093: 1089: 1086: 1084: 1081: 1080: 1079: 1076: 1074: 1071: 1069: 1066: 1064: 1061: 1060: 1058: 1054: 1048: 1047:Soft robotics 1045: 1043: 1042:BEAM robotics 1040: 1038: 1035: 1033: 1030: 1028: 1025: 1023: 1020: 1018: 1015: 1013: 1010: 1008: 1005: 1003: 1000: 998: 997:Entertainment 995: 993: 990: 988: 985: 981: 978: 977: 976: 973: 971: 968: 962: 959: 958: 957: 954: 953: 952: 949: 947: 944: 942: 939: 935: 932: 930: 927: 925: 922: 920: 917: 916: 915: 912: 910: 907: 906: 904: 902: 898: 893: 883: 880: 878: 875: 873: 870: 868: 865: 863: 860: 858: 855: 853: 850: 848: 845: 843: 840: 838: 835: 834: 832: 830:Main articles 828: 824: 817: 812: 810: 805: 803: 798: 797: 794: 788: 785: 783: 780: 778: 775: 774: 764: 758: 754: 749: 748: 743: 737: 733: 728: 724: 718: 714: 709: 705: 699: 695: 690: 686: 680: 676: 667: 663: 662: 643:on 2006-12-11 642: 638: 632: 624: 618: 610: 606: 600: 591: 586: 582: 578: 574: 567: 559: 555: 550: 545: 541: 537: 533: 526: 513: 509: 505: 499: 495: 491: 487: 483: 476: 469: 463: 454: 441: 435: 430: 425: 421: 417: 410: 402: 396: 392: 385: 381: 371: 368: 366: 363: 362: 356: 354: 350: 341: 337: 331: 327: 325: 321: 319: 315: 314: 313: 307: 306:optical fiber 303: 300: 297: 294: 292: 289: 288: 287: 279: 276: 271: 269: 268:singularities 261: 257: 253: 246: 241: 237: 235: 231: 227: 226:electrostatic 223: 219: 215: 210: 200: 191: 188: 183: 179: 175: 171: 161: 157: 155: 154:walking robot 151: 145: 143: 139: 135: 131: 127: 123: 120: 116: 111: 109: 105: 101: 91: 89: 85: 81: 77: 73: 69: 65: 61: 52: 48: 46: 42: 38: 34: 30: 21: 1565:(10): 4690. 1562: 1558: 1548: 1521: 1517: 1507: 1490: 1478: 1247:Evolutionary 1194:Robotic fins 1147:Robotic fish 1132:Telerobotics 1105:Nanorobotics 1095:Mobile robot 1032:Food service 1027:Agricultural 877:Competitions 862:Hall of Fame 755:. Springer. 752: 734:. Springer. 731: 715:. Springer. 712: 696:. Springer. 693: 677:. Springer. 674: 645:. Retrieved 641:the original 631: 617: 609:the original 599: 583:(10): 4690. 580: 576: 566: 539: 535: 525: 515:, retrieved 485: 475: 467: 462: 453: 443:, retrieved 429:10.5772/5030 419: 409: 393:. Springer. 390: 384: 346: 334: 311: 285: 282:Applications 272: 267: 264: 255: 208: 205: 186: 181: 177: 173: 167: 158: 146: 130:Delta robots 112: 97: 90:is implied. 84:end effector 63: 59: 57: 41:end-effector 28: 26: 1267:Open-source 1120:Space probe 1110:Necrobotics 1100:Microbotics 1063:Biorobotics 992:Educational 975:Articulated 956:Animatronic 941:Claytronics 466:R. Clavel, 353:Delta robot 260:delta robot 126:ball joints 108:closed-loop 76:manipulator 1586:Categories 1524:: 104409. 1307:Ubiquitous 1297:Perceptual 1204:Navigation 1159:Locomotion 1137:Underwater 1022:Disability 970:Industrial 647:2007-03-29 625:. Jarkman. 542:: 104409. 517:2020-12-13 445:2020-12-03 376:References 214:hysteresis 1540:0094-114X 1358:Figure AI 1316:Companies 1292:Paradigms 1277:Adaptable 1257:Simulator 951:Automaton 946:Companion 857:Geography 558:0094-114X 512:218789290 308:alignment 302:photonics 275:nonlinear 1480:Category 1398:Symbotic 1348:FarmWise 1302:Situated 1272:Software 1240:Research 1184:Climbing 1007:Military 1002:Juggling 987:Domestic 919:Humanoid 842:Glossary 823:Robotics 359:See also 351:and the 245:five-bar 66:(in the 1492:Outline 1422:Related 1413:Yaskawa 1328:Anybots 1208:mapping 1177:Hexapod 1172:Walking 1017:Service 1012:Medical 924:Android 909:Aerobot 852:History 837:Outline 256:Sketchy 1538:  1383:IRobot 1167:Tracks 1088:ground 1083:aerial 1037:Retail 934:Gynoid 929:Cyborg 867:Ethics 759:  738:  719:  700:  681:  556:  510:  500:  436:  397:  182:3T3R m 138:Static 1353:FANUC 1262:Suite 1127:Swarm 901:Types 847:Index 508:S2CID 62:, or 31:is a 1536:ISSN 1388:KUKA 1252:Kits 1206:and 872:Laws 757:ISBN 736:ISBN 717:ISBN 698:ISBN 679:ISBN 554:ISSN 498:ISBN 434:ISBN 395:ISBN 318:PCBs 209:must 1567:doi 1526:doi 1522:164 980:arm 585:doi 544:doi 540:164 490:doi 424:doi 232:in 228:or 1588:: 1563:11 1561:. 1557:. 1534:. 1520:. 1516:. 581:11 579:. 575:. 552:. 538:. 534:. 506:, 496:, 484:, 432:, 418:, 355:. 304:/ 243:A 187:3T 178:3R 174:3T 156:. 27:A 1575:. 1569:: 1542:. 1528:: 815:e 808:t 801:v 765:. 744:. 725:. 706:. 687:. 650:. 593:. 587:: 560:. 546:: 492:: 426:: 403:.

Index


mechanical system
computer-controlled serial chains
end-effector
Stewart platform

Stewart platform
articulated robots
manipulator
serial manipulator
end effector
geometrical parallelism
serial manipulator
degree of freedom
closed-loop
Stewart platform
prismatic joint
linear actuators
ball joints
Delta robots
rotary actuators
Static
pin-jointed truss
moment of inertia
walking robot
degrees of freedom

hysteresis
kinematic chain
flight simulators

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑