Knowledge

Best response

Source 📝

461:. These functions are similar to the best response correspondence, except that the function does not "jump" from one pure strategy to another. The difference is illustrated in Figure 8, where black represents the best response correspondence and the other colors each represent different smoothed best response functions. In standard best response correspondences, even the slightest benefit to one action will result in the individual playing that action with probability 1. In smoothed best response as the difference between two actions decreases the individual's play approaches 50:50. 317:, the "Cooperate" move is not optimal for any probability of opponent Cooperation. Figure 5 shows the reaction correspondence for such a game, where the dimensions are "Probability play Cooperate", the Nash equilibrium is in the lower left corner where neither player plays Cooperate. If the dimensions were defined as "Probability play Defect", then both players best response curves would be 1 for all opponent strategy probabilities and the reaction correspondences would cross (and form a Nash equilibrium) at the top right corner. 372: 450: 298: 285: 246: 67: 137: 334: 368:-axis) wins if the players discoordinate. Player Y's reaction correspondence is that of a coordination game, while that of player X is a discoordination game. The only Nash equilibrium is the combination of mixed strategies where both players independently choose heads and tails with probability 0.5 each. 601:
There are several advantages to using smoothed best response, both theoretical and empirical. First, it is consistent with psychological experiments; when individuals are roughly indifferent between two actions they appear to choose more or less at random. Second, the play of individuals is uniquely
341:
game. The axes are assumed to show the probability that the player plays their strategy 1. From left to right: A) Always play 2, strategy 1 is dominated, B) Always play 1, strategy 2 is dominated, C) Strategy 1 best when opponent plays his strategy 1 and 2 best when opponent plays his 2, D) Strategy
261:
in which players score highest when they choose opposite strategies, i.e., discoordinate, are called anti-coordination games. They have reaction correspondences (Figure 4) that cross in the opposite direction to coordination games, with three Nash equilibria, one in each of the top left and bottom
350:
games (of which one is trivial), the five different best response curves per player allow for a larger number of payoff asymmetric game types. Many of these are not truly different from each other. The dimensions may be redefined (exchange names of strategies 1 and 2) to produce symmetrical games
329:
games with payoff asymmetries. For each player there are five possible best response shapes, shown in Figure 6. From left to right these are: dominated strategy (always play 2), dominated strategy (always play 1), rising (play strategy 2 if probability that the other player plays 2 is above
237:. These games have reaction correspondences of the same shape as Figure 3, where there is one Nash equilibrium in the bottom left corner, another in the top right, and a mixing Nash somewhere along the diagonal between the other two. 212:
games: coordination games, discoordination games, and games with dominated strategies (the trivial fourth case in which payoffs are always equal for both moves is not really a game theoretical problem). Any payoff symmetric
571: 363:
game. In this game one player, the row player (graphed on the y dimension) wins if the players coordinate (both choose heads or both choose tails) while the other player, the column player (shown in the
396:
represents a class of strategy updating rules, where players strategies in the next round are determined by their best responses to some subset of the population. Some examples include:
411:. Players do not consider the effect that choosing a strategy on the next round would have on future play in the game. This constraint results in the dynamical rule often being called 88:
must only have one value per argument, and many reaction correspondences will be undefined, i.e., a vertical line, for some opponent strategy choice. One constructs a correspondence
379:
game. The leftmost mapping is for the coordinating player, the middle shows the mapping for the discoordinating player. The sole Nash equilibrium is shown in the right hand graph.
330:
threshold), falling (play strategy 1 if probability that the other player plays 2 is above threshold), and indifferent (both strategies play equally well under all conditions).
288:
Figure 4. Reaction correspondence for both players in the hawk-dove game. Nash equilibria shown with points, where the two player's correspondences agree, i.e. cross
249:
Figure 3. Reaction correspondence for both players in the Stag Hunt game. Nash equilibria shown with points, where the two player's correspondences agree, i.e. cross
469: 464:
There are many functions that represent smoothed best response functions. The functions illustrated here are several variations on the following function:
400:
In a large population model, players choose their next action probabilistically based on which strategies are best responses to the population as a whole.
266:
which lies along the diagonal from the bottom left to top right corners. If the players do not know which one of them is which, then the mixed Nash is an
309:
strategies have reaction correspondences which only cross at one point, which will be in either the bottom left, or top right corner in payoff symmetric
342:
1 best when opponent plays his strategy 2 and 2 best when opponent plays his 1, E) Both strategies play equally well no matter what the opponent plays.
95:, for each player from the set of opponent strategy profiles into the set of the player's strategies. So, for any given set of opponent's strategies 58:, the point at which each player in a game has selected the best response (or one of the best responses) to the other players' strategies. 262:
right corners, where one player chooses one strategy, the other player chooses the opposite strategy. The third Nash equilibrium is a
171: 964: 407:
Importantly, in these models players only choose the best response on the next round that would give them the highest payoff
1863: 198:
variables in the opposite axes to those normally used, so that it may be superimposed onto the previous graph, to show the
1680: 1215: 1013: 403:
In a spatial model, players choose (in the next round) the action that is the best response to all of their neighbors.
1499: 1318: 815: 230: 28: 1120: 1589: 1459: 1130: 594:
is a parameter that determines the degree to which the function deviates from the true best response (a larger
268: 1298: 1640: 1058: 1033: 1990: 1416: 1170: 1160: 1095: 899: 182:-axis). In Figure 2 the dotted line shows the optimal probability that player X plays 'Stag' (shown in the 17: 1210: 1190: 1924: 1675: 1645: 1303: 1145: 1140: 908: 168: 50:
for a player, taking other players' strategies as given. The concept of a best response is central to
1960: 1883: 1619: 1175: 1100: 957: 1975: 1708: 1594: 1391: 1185: 1003: 389: 1778: 1980: 1579: 1549: 1205: 993: 936: 306: 2005: 1985: 1965: 1914: 1584: 1489: 1348: 1293: 1225: 1195: 1115: 1043: 607: 274: 205:
There are three distinctive reaction correspondence shapes, one for each of the three types of
85: 43: 1464: 1449: 1023: 821: 314: 225:
Games in which players score highest when both players choose the same strategy, such as the
47: 801: 440:
In any finite potential game, best response dynamics always converge to a Nash equilibrium.
2026: 1798: 1783: 1670: 1665: 1569: 1554: 1519: 1484: 1083: 1028: 950: 859: 371: 191: 8: 1955: 1574: 1524: 1361: 1288: 1268: 1125: 1008: 80:, also known as best response correspondences, are used in the proof of the existence of 1614: 863: 1934: 1793: 1624: 1604: 1454: 1333: 1238: 1165: 1110: 882: 832: 766: 707: 603: 195: 152: 76: 1919: 1888: 1843: 1738: 1609: 1564: 1539: 1469: 1343: 1273: 1263: 1155: 1105: 1053: 887: 811: 234: 836: 297: 284: 245: 2000: 1995: 1929: 1893: 1873: 1833: 1803: 1758: 1713: 1698: 1655: 1509: 1150: 1087: 1073: 1038: 916: 877: 867: 843: 758: 427: 376: 360: 199: 148: 66: 55: 51: 273:, as play is confined to the bottom left to top right diagonal line. Otherwise an 136: 1898: 1858: 1813: 1728: 1723: 1444: 1396: 1283: 1048: 1018: 988: 778: 618: 611: 254: 160: 1763: 333: 186:-axis), as a function of the probability that player Y plays Stag (shown in the 178:-axis), as a function of the probability that player X plays Stag (shown in the 1838: 1828: 1818: 1753: 1743: 1733: 1718: 1514: 1494: 1479: 1474: 1434: 1401: 1386: 1381: 1371: 1180: 852:
Proceedings of the National Academy of Sciences of the United States of America
793: 743: 615: 419: 263: 258: 206: 81: 2020: 1878: 1868: 1823: 1808: 1788: 1559: 1534: 1406: 1376: 1366: 1353: 1258: 1200: 1135: 1068: 566:{\displaystyle {\frac {e^{E(1)/\gamma }}{e^{E(1)/\gamma }+e^{E(2)/\gamma }}}} 84:
Nash equilibria. Reaction correspondences are not "reaction functions" since
643: 1853: 1848: 1703: 1278: 891: 1970: 1773: 1768: 1748: 1544: 1529: 1338: 1308: 1243: 1233: 1063: 998: 974: 872: 797: 630: 156: 35: 942: 610:. Finally, using smoothed best response with some learning rules (as in 453:
Figure 8. A BR correspondence (black) and smoothed BR functions (colors)
337:
Figure 6 - The five possible reaction correspondences for a player in a
1599: 1253: 770: 683: 671: 301:
Figure 5. Reaction correspondence for a game with a dominated strategy.
202:
at the points where the two player's best responses agree in Figure 3.
1504: 1424: 1248: 924: 807: 786: 226: 164: 140:
Figure 2. Reaction correspondence for player X in the Stag Hunt game.
70:
Figure 1. Reaction correspondence for player Y in the Stag Hunt game.
762: 1939: 1439: 163:. Figures 1 to 3 graphs the best response correspondences for the 27:"Reaction function" redirects here. For the economic concept, see 1660: 1650: 1328: 898:
Nisan, N.; Roughgarden, T.; Tardos, É.; Vazirani, V. V. (2007),
449: 325:
A wider range of reaction correspondences shapes is possible in
897: 713: 1429: 346:
While there are only four possible types of payoff symmetric
598:
implies that the player is more likely to make 'mistakes').
719: 457:
Instead of best response correspondences, some models use
278: 375:
Figure 7. Reaction correspondences for players in the
472: 277:
is said to exist, and the corner Nash equilibria are
359:One well-known game with payoff asymmetries is the 695: 565: 320: 292: 46:(or strategies) which produces the most favorable 914: 689: 430:by computing the best response for every player: 2018: 792: 776: 744:"Learning, Local Interaction, and Coordination" 725: 677: 659: 649: 958: 167:game. The dotted line in Figure 1 shows the 965: 951: 240: 972: 881: 871: 614:) can result in players learning to play 586:represents the expected payoff of action 217:game will take one of these three forms. 448: 370: 332: 313:games. For instance, in the single-play 296: 283: 244: 135: 65: 826: 741: 701: 653: 602:determined in all cases, since it is a 14: 2019: 946: 930: 220: 190:-axis). Note that Figure 2 plots the 842: 665: 354: 174:that player Y plays 'Stag' (in the 24: 1014:First-player and second-player win 25: 2038: 933:Strategic Learning and Its Limits 144:Response correspondences for all 61: 29:monetary policy reaction function 1121:Coalition-proof Nash equilibrium 459:smoothed best response functions 846:(1950), "Equilibrium points in 783:The Theory of Learning in Games 735: 690:Osborne & Rubinstein (1994) 351:which are logically identical. 321:Other (payoff asymmetric) games 293:Games with dominated strategies 1131:Evolutionarily stable strategy 547: 541: 517: 511: 489: 483: 269:evolutionarily stable strategy 13: 1: 1059:Simultaneous action selection 726:Fudenberg & Levine (1998) 678:Fudenberg & Tirole (1991) 650:Fudenberg & Tirole (1991) 636: 426:refers to a way of finding a 54:best-known contribution, the 1991:List of games in game theory 1171:Quantal response equilibrium 1161:Perfect Bayesian equilibrium 1096:Bayes correlated equilibrium 923:, Cambridge, Massachusetts: 806:, Cambridge, Massachusetts: 785:, Cambridge, Massachusetts: 7: 1460:Optional prisoner's dilemma 1191:Self-confirming equilibrium 624: 444: 383: 10: 2043: 1925:Principal variation search 1641:Aumann's agreement theorem 1304:Strategy-stealing argument 1216:Trembling hand equilibrium 1146:Markov perfect equilibrium 1141:Mertens-stable equilibrium 909:Cambridge University Press 26: 1961:Combinatorial game theory 1948: 1907: 1689: 1633: 1620:Princess and monster game 1415: 1317: 1224: 1176:Quasi-perfect equilibrium 1101:Bayesian Nash equilibrium 1082: 981: 1976:Evolutionary game theory 1709:Antoine Augustin Cournot 1595:Guess 2/3 of the average 1392:Strictly determined game 1186:Satisfaction equilibrium 1004:Escalation of commitment 831:, Harvester-Wheatsheaf, 390:evolutionary game theory 1981:Glossary of game theory 1580:Stackelberg competition 1206:Strong Nash equilibrium 937:Oxford University Press 921:A Course in Game Theory 901:Algorithmic Game Theory 829:A Primer in Game Theory 241:Anti-coordination games 2006:Tragedy of the commons 1986:List of game theorists 1966:Confrontation analysis 1676:Sprague–Grundy theorem 1196:Sequential equilibrium 1116:Correlated equilibrium 567: 454: 424:best response dynamics 394:best response dynamics 380: 343: 302: 289: 275:uncorrelated asymmetry 250: 141: 71: 1779:Jean-François Mertens 931:Young, H. P. (2005), 568: 452: 374: 336: 300: 287: 248: 155:for each player in a 139: 69: 1908:Search optimizations 1784:Jennifer Tour Chayes 1671:Revelation principle 1666:Purification theorem 1605:Nash bargaining game 1570:Bertrand competition 1555:El Farol Bar problem 1520:Electronic mail game 1485:Lewis signaling game 1029:Hierarchy of beliefs 873:10.1073/pnas.36.1.48 827:Gibbons, R. (1992), 742:Ellison, G. (1993), 470: 413:myopic best response 151:can be drawn with a 126:s best responses to 1956:Bounded rationality 1575:Cournot competition 1525:Rock paper scissors 1500:Battle of the sexes 1490:Volunteer's dilemma 1362:Perfect information 1289:Dominant strategies 1126:Epsilon-equilibrium 1009:Extensive-form game 864:1950PNAS...36...48N 714:Nisan et al. (2007) 438: —  231:battle of the sexes 1935:Paranoid algorithm 1915:Alpha–beta pruning 1794:John Maynard Smith 1625:Rendezvous problem 1465:Traveler's dilemma 1455:Gift-exchange game 1450:Prisoner's dilemma 1367:Large Poisson game 1334:Bargaining problem 1239:Backward induction 1211:Subgame perfection 1166:Proper equilibrium 563: 455: 436: 381: 344: 315:prisoner's dilemma 303: 290: 253:Games such as the 251: 235:coordination games 221:Coordination games 142: 119:represents player 72: 2014: 2013: 1920:Aspiration window 1889:Suzanne Scotchmer 1844:Oskar Morgenstern 1739:Donald B. Gillies 1681:Zermelo's theorem 1610:Induction puzzles 1565:Fair cake-cutting 1540:Public goods game 1470:Coordination game 1344:Intransitive game 1274:Forward induction 1156:Pareto efficiency 1136:Gibbs equilibrium 1106:Berge equilibrium 1054:Simultaneous game 917:Rubinstein, Ariel 716:, Section 19.3.2. 656:, pp. 33–49. 561: 434: 418:In the theory of 409:on the next round 149:normal form games 16:(Redirected from 2034: 2001:Topological game 1996:No-win situation 1894:Thomas Schelling 1874:Robert B. Wilson 1834:Merrill M. Flood 1804:John von Neumann 1714:Ariel Rubinstein 1699:Albert W. Tucker 1550:War of attrition 1510:Matching pennies 1151:Nash equilibrium 1074:Mechanism design 1039:Normal-form game 994:Cooperative game 967: 960: 953: 944: 943: 939: 927: 915:Osborne, M. J.; 911: 906: 894: 885: 875: 850:-person games", 839: 820: 789: 779:Levine, David K. 773: 757:(5): 1047–1071, 748: 729: 723: 717: 711: 705: 699: 693: 687: 681: 680:, Section 1.3.B. 675: 669: 663: 657: 647: 597: 593: 589: 585: 572: 570: 569: 564: 562: 560: 559: 558: 554: 529: 528: 524: 501: 500: 496: 474: 439: 428:Nash equilibrium 377:matching pennies 367: 361:matching pennies 355:Matching pennies 349: 340: 328: 312: 280: 216: 211: 189: 185: 181: 177: 147: 132: 125: 122: 118: 101: 94: 56:Nash equilibrium 21: 2042: 2041: 2037: 2036: 2035: 2033: 2032: 2031: 2017: 2016: 2015: 2010: 1944: 1930:max^n algorithm 1903: 1899:William Vickrey 1859:Reinhard Selten 1814:Kenneth Binmore 1729:David K. Levine 1724:Daniel Kahneman 1691: 1685: 1661:Negamax theorem 1651:Minimax theorem 1629: 1590:Diner's dilemma 1445:All-pay auction 1411: 1397:Stochastic game 1349:Mean-field game 1320: 1313: 1284:Markov strategy 1220: 1086: 1078: 1049:Sequential game 1034:Information set 1019:Game complexity 989:Congestion game 977: 971: 904: 818: 794:Fudenberg, Drew 777:Fudenberg, D.; 763:10.2307/2951493 746: 738: 733: 732: 724: 720: 712: 708: 700: 696: 688: 684: 676: 672: 664: 660: 648: 644: 639: 627: 619:Nash equilibria 612:Fictitious play 606:that is also a 595: 591: 587: 576: 550: 537: 533: 520: 507: 503: 502: 492: 479: 475: 473: 471: 468: 467: 447: 442: 437: 420:potential games 386: 365: 357: 347: 338: 326: 323: 310: 295: 272: 255:game of chicken 243: 223: 214: 209: 200:Nash equilibria 187: 183: 179: 175: 145: 131: 127: 123: 120: 115: 108: 103: 100: 96: 89: 77:correspondences 64: 32: 23: 22: 15: 12: 11: 5: 2040: 2030: 2029: 2012: 2011: 2009: 2008: 2003: 1998: 1993: 1988: 1983: 1978: 1973: 1968: 1963: 1958: 1952: 1950: 1946: 1945: 1943: 1942: 1937: 1932: 1927: 1922: 1917: 1911: 1909: 1905: 1904: 1902: 1901: 1896: 1891: 1886: 1881: 1876: 1871: 1866: 1864:Robert Axelrod 1861: 1856: 1851: 1846: 1841: 1839:Olga Bondareva 1836: 1831: 1829:Melvin Dresher 1826: 1821: 1819:Leonid Hurwicz 1816: 1811: 1806: 1801: 1796: 1791: 1786: 1781: 1776: 1771: 1766: 1761: 1756: 1754:Harold W. Kuhn 1751: 1746: 1744:Drew Fudenberg 1741: 1736: 1734:David M. Kreps 1731: 1726: 1721: 1719:Claude Shannon 1716: 1711: 1706: 1701: 1695: 1693: 1687: 1686: 1684: 1683: 1678: 1673: 1668: 1663: 1658: 1656:Nash's theorem 1653: 1648: 1643: 1637: 1635: 1631: 1630: 1628: 1627: 1622: 1617: 1612: 1607: 1602: 1597: 1592: 1587: 1582: 1577: 1572: 1567: 1562: 1557: 1552: 1547: 1542: 1537: 1532: 1527: 1522: 1517: 1515:Ultimatum game 1512: 1507: 1502: 1497: 1495:Dollar auction 1492: 1487: 1482: 1480:Centipede game 1477: 1472: 1467: 1462: 1457: 1452: 1447: 1442: 1437: 1435:Infinite chess 1432: 1427: 1421: 1419: 1413: 1412: 1410: 1409: 1404: 1402:Symmetric game 1399: 1394: 1389: 1387:Signaling game 1384: 1382:Screening game 1379: 1374: 1372:Potential game 1369: 1364: 1359: 1351: 1346: 1341: 1336: 1331: 1325: 1323: 1315: 1314: 1312: 1311: 1306: 1301: 1299:Mixed strategy 1296: 1291: 1286: 1281: 1276: 1271: 1266: 1261: 1256: 1251: 1246: 1241: 1236: 1230: 1228: 1222: 1221: 1219: 1218: 1213: 1208: 1203: 1198: 1193: 1188: 1183: 1181:Risk dominance 1178: 1173: 1168: 1163: 1158: 1153: 1148: 1143: 1138: 1133: 1128: 1123: 1118: 1113: 1108: 1103: 1098: 1092: 1090: 1080: 1079: 1077: 1076: 1071: 1066: 1061: 1056: 1051: 1046: 1041: 1036: 1031: 1026: 1024:Graphical game 1021: 1016: 1011: 1006: 1001: 996: 991: 985: 983: 979: 978: 970: 969: 962: 955: 947: 941: 940: 928: 912: 895: 840: 824: 816: 790: 774: 737: 734: 731: 730: 718: 706: 702:Ellison (1993) 694: 692:, Section 2.2. 682: 670: 658: 654:Gibbons (1992) 652:, p. 29; 641: 640: 638: 635: 634: 633: 626: 623: 616:mixed strategy 604:correspondence 557: 553: 549: 546: 543: 540: 536: 532: 527: 523: 519: 516: 513: 510: 506: 499: 495: 491: 488: 485: 482: 478: 446: 443: 432: 410: 405: 404: 401: 385: 382: 356: 353: 322: 319: 294: 291: 267: 264:mixed strategy 259:hawk-dove game 242: 239: 222: 219: 129: 113: 106: 98: 82:mixed strategy 63: 62:Correspondence 60: 9: 6: 4: 3: 2: 2039: 2028: 2025: 2024: 2022: 2007: 2004: 2002: 1999: 1997: 1994: 1992: 1989: 1987: 1984: 1982: 1979: 1977: 1974: 1972: 1969: 1967: 1964: 1962: 1959: 1957: 1954: 1953: 1951: 1949:Miscellaneous 1947: 1941: 1938: 1936: 1933: 1931: 1928: 1926: 1923: 1921: 1918: 1916: 1913: 1912: 1910: 1906: 1900: 1897: 1895: 1892: 1890: 1887: 1885: 1884:Samuel Bowles 1882: 1880: 1879:Roger Myerson 1877: 1875: 1872: 1870: 1869:Robert Aumann 1867: 1865: 1862: 1860: 1857: 1855: 1852: 1850: 1847: 1845: 1842: 1840: 1837: 1835: 1832: 1830: 1827: 1825: 1824:Lloyd Shapley 1822: 1820: 1817: 1815: 1812: 1810: 1809:Kenneth Arrow 1807: 1805: 1802: 1800: 1797: 1795: 1792: 1790: 1789:John Harsanyi 1787: 1785: 1782: 1780: 1777: 1775: 1772: 1770: 1767: 1765: 1762: 1760: 1759:Herbert Simon 1757: 1755: 1752: 1750: 1747: 1745: 1742: 1740: 1737: 1735: 1732: 1730: 1727: 1725: 1722: 1720: 1717: 1715: 1712: 1710: 1707: 1705: 1702: 1700: 1697: 1696: 1694: 1688: 1682: 1679: 1677: 1674: 1672: 1669: 1667: 1664: 1662: 1659: 1657: 1654: 1652: 1649: 1647: 1644: 1642: 1639: 1638: 1636: 1632: 1626: 1623: 1621: 1618: 1616: 1613: 1611: 1608: 1606: 1603: 1601: 1598: 1596: 1593: 1591: 1588: 1586: 1583: 1581: 1578: 1576: 1573: 1571: 1568: 1566: 1563: 1561: 1560:Fair division 1558: 1556: 1553: 1551: 1548: 1546: 1543: 1541: 1538: 1536: 1535:Dictator game 1533: 1531: 1528: 1526: 1523: 1521: 1518: 1516: 1513: 1511: 1508: 1506: 1503: 1501: 1498: 1496: 1493: 1491: 1488: 1486: 1483: 1481: 1478: 1476: 1473: 1471: 1468: 1466: 1463: 1461: 1458: 1456: 1453: 1451: 1448: 1446: 1443: 1441: 1438: 1436: 1433: 1431: 1428: 1426: 1423: 1422: 1420: 1418: 1414: 1408: 1407:Zero-sum game 1405: 1403: 1400: 1398: 1395: 1393: 1390: 1388: 1385: 1383: 1380: 1378: 1377:Repeated game 1375: 1373: 1370: 1368: 1365: 1363: 1360: 1358: 1356: 1352: 1350: 1347: 1345: 1342: 1340: 1337: 1335: 1332: 1330: 1327: 1326: 1324: 1322: 1316: 1310: 1307: 1305: 1302: 1300: 1297: 1295: 1294:Pure strategy 1292: 1290: 1287: 1285: 1282: 1280: 1277: 1275: 1272: 1270: 1267: 1265: 1262: 1260: 1259:De-escalation 1257: 1255: 1252: 1250: 1247: 1245: 1242: 1240: 1237: 1235: 1232: 1231: 1229: 1227: 1223: 1217: 1214: 1212: 1209: 1207: 1204: 1202: 1201:Shapley value 1199: 1197: 1194: 1192: 1189: 1187: 1184: 1182: 1179: 1177: 1174: 1172: 1169: 1167: 1164: 1162: 1159: 1157: 1154: 1152: 1149: 1147: 1144: 1142: 1139: 1137: 1134: 1132: 1129: 1127: 1124: 1122: 1119: 1117: 1114: 1112: 1109: 1107: 1104: 1102: 1099: 1097: 1094: 1093: 1091: 1089: 1085: 1081: 1075: 1072: 1070: 1069:Succinct game 1067: 1065: 1062: 1060: 1057: 1055: 1052: 1050: 1047: 1045: 1042: 1040: 1037: 1035: 1032: 1030: 1027: 1025: 1022: 1020: 1017: 1015: 1012: 1010: 1007: 1005: 1002: 1000: 997: 995: 992: 990: 987: 986: 984: 980: 976: 968: 963: 961: 956: 954: 949: 948: 945: 938: 934: 929: 926: 922: 918: 913: 910: 903: 902: 896: 893: 889: 884: 879: 874: 869: 865: 861: 857: 853: 849: 845: 844:Nash, John F. 841: 838: 834: 830: 825: 823: 822:Book preview. 819: 817:9780262061414 813: 809: 805: 804: 799: 795: 791: 788: 784: 780: 775: 772: 768: 764: 760: 756: 752: 745: 740: 739: 727: 722: 715: 710: 703: 698: 691: 686: 679: 674: 667: 662: 655: 651: 646: 642: 632: 629: 628: 622: 620: 617: 613: 609: 605: 599: 583: 579: 573: 555: 551: 544: 538: 534: 530: 525: 521: 514: 508: 504: 497: 493: 486: 480: 476: 465: 462: 460: 451: 441: 431: 429: 425: 421: 416: 414: 408: 402: 399: 398: 397: 395: 391: 378: 373: 369: 362: 352: 335: 331: 318: 316: 308: 299: 286: 282: 276: 270: 265: 260: 256: 247: 238: 236: 233:, are called 232: 228: 218: 208: 203: 201: 197: 193: 173: 170: 166: 162: 158: 154: 150: 138: 134: 116: 109: 92: 87: 83: 79: 78: 68: 59: 57: 53: 49: 45: 41: 40:best response 37: 30: 19: 1854:Peyton Young 1849:Paul Milgrom 1764:Hervé Moulin 1704:Amos Tversky 1646:Folk theorem 1357:-player game 1354: 1279:Grim trigger 932: 920: 907:, New York: 900: 858:(1): 48–49, 855: 851: 847: 828: 802: 798:Tirole, Jean 782: 754: 751:Econometrica 750: 736:Bibliography 721: 709: 697: 685: 673: 661: 645: 600: 581: 577: 574: 466: 463: 458: 456: 433: 423: 417: 412: 406: 393: 387: 358: 345: 324: 304: 252: 224: 204: 143: 111: 104: 90: 74: 73: 39: 33: 18:Optimal play 2027:Game theory 1971:Coopetition 1774:Jean Tirole 1769:John Conway 1749:Eric Maskin 1545:Blotto game 1530:Pirate game 1339:Global game 1309:Tit for tat 1244:Bid shading 1234:Appeasement 1084:Equilibrium 1064:Solved game 999:Determinacy 982:Definitions 975:game theory 803:Game Theory 666:Nash (1950) 631:Solved game 305:Games with 192:independent 172:probability 157:unit square 52:John Nash's 36:game theory 1615:Trust game 1600:Kuhn poker 1269:Escalation 1264:Deterrence 1254:Cheap talk 1226:Strategies 1044:Preference 973:Topics of 637:References 1799:John Nash 1505:Stag hunt 1249:Collusion 925:MIT Press 808:MIT Press 787:MIT Press 556:γ 526:γ 498:γ 307:dominated 227:stag hunt 207:symmetric 165:stag hunt 159:strategy 86:functions 75:Reaction 2021:Category 1940:Lazy SMP 1634:Theorems 1585:Deadlock 1440:Checkers 1321:of games 1088:concepts 919:(1994), 892:16588946 837:10248389 800:(1991), 781:(1998), 625:See also 608:function 445:Smoothed 384:Dynamics 196:response 44:strategy 1692:figures 1475:Chicken 1329:Auction 1319:Classes 883:1063129 860:Bibcode 771:2951493 435:Theorem 169:optimal 48:outcome 42:is the 890:  880:  835:  814:  769:  590:, and 575:where 38:, the 1430:Chess 1417:Games 905:(PDF) 833:S2CID 767:JSTOR 747:(PDF) 348:2 × 2 339:2 × 2 327:2 × 2 311:2 × 2 279:ESSes 271:(ESS) 215:2 × 2 210:2 × 2 161:space 146:2 × 2 124:' 1111:Core 888:PMID 812:ISBN 257:and 229:and 194:and 153:line 1690:Key 878:PMC 868:doi 759:doi 388:In 93:(·) 34:In 2023:: 1425:Go 935:, 886:, 876:, 866:, 856:36 854:, 810:, 796:; 765:, 755:61 753:, 749:, 621:. 422:, 415:. 392:, 281:. 133:. 130:−i 114:−i 102:, 99:−i 1355:n 966:e 959:t 952:v 870:: 862:: 848:n 761:: 728:. 704:. 668:. 596:γ 592:γ 588:x 584:) 582:x 580:( 578:E 552:/ 548:) 545:2 542:( 539:E 535:e 531:+ 522:/ 518:) 515:1 512:( 509:E 505:e 494:/ 490:) 487:1 484:( 481:E 477:e 366:x 188:y 184:x 180:x 176:y 128:σ 121:i 117:) 112:σ 110:( 107:i 105:b 97:σ 91:b 31:. 20:)

Index

Optimal play
monetary policy reaction function
game theory
strategy
outcome
John Nash's
Nash equilibrium

correspondences
mixed strategy
functions

normal form games
line
unit square
space
stag hunt
optimal
probability
independent
response
Nash equilibria
symmetric
stag hunt
battle of the sexes
coordination games

game of chicken
hawk-dove game
mixed strategy

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.