Knowledge

Optics

Source 📝

777: 4461: 231: 68: 710:) in which he explored reflection and refraction and proposed a new system for explaining vision and light based on observation and experiment. He rejected the "emission theory" of Ptolemaic optics with its rays being emitted by the eye, and instead put forward the idea that light reflected in all directions in straight lines from all points of the objects being viewed and then entered the eye, although he was unable to correctly explain how the eye captured the rays. Alhazen's work was largely ignored in the Arabic world but it was anonymously translated into Latin around 1200 A.D. and further summarised and expanded on by the Polish monk 4075:
at its focal point which is adjusted to be at the focal point of an eyepiece of a much smaller focal length. The main goal of a telescope is not necessarily magnification, but rather the collection of light which is determined by the physical size of the objective lens. Thus, telescopes are normally indicated by the diameters of their objectives rather than by the magnification which can be changed by switching eyepieces. Because the magnification of a telescope is equal to the focal length of the objective divided by the focal length of the eyepiece, smaller focal-length eyepieces cause greater magnification.
4010: 807: 3702: 2865: 2850: 3493: 2334: 2835: 4084:, that is, telescopes that use a primary mirror rather than an objective lens. The same general optical considerations apply to reflecting telescopes that applied to refracting telescopes, namely, the larger the primary mirror, the more light collected, and the magnification is still equal to the focal length of the primary mirror divided by the focal length of the eyepiece. Professional telescopes generally do not have eyepieces and instead place an instrument (often a charge-coupled device) at the focal point instead. 3648: 1934: 1027: 463: 3434: 2044: 4099: 4114: 244: 655: 1199: 1710: 3216: 1000: 4389: 765:
Spectacle makers created improved types of lenses for the correction of vision based more on empirical knowledge gained from observing the effects of the lenses rather than using the rudimentary optical theory of the day (theory which for the most part could not even adequately explain how spectacles worked). This practical development, mastery, and experimentation with lenses led directly to the invention of the compound
2005:
reflected wave from the film/material interface are then exactly 180° out of phase, causing destructive interference. The waves are only exactly out of phase for one wavelength, which would typically be chosen to be near the centre of the visible spectrum, around 550 nm. More complex designs using multiple layers can achieve low reflectivity over a broad band, or extremely low reflectivity at a single wavelength.
1973: 1290: 2994: 44: 1550: 795: 1680: 639:, held an extramission-intromission theory of vision: the rays (or flux) from the eye formed a cone, the vertex being within the eye, and the base defining the visual field. The rays were sensitive, and conveyed information back to the observer's intellect about the distance and orientation of surfaces. He summarized much of Euclid and went on to describe a way to measure the 3766:. Rod cells are not present on the fovea, the area of the retina responsible for central vision, and are not as responsive as cone cells to spatial and temporal changes in light. There are, however, twenty times more rod cells than cone cells in the retina because the rod cells are present across a wider area. Because of their wider distribution, rods are responsible for 2447:. Both kinds of dispersion cause changes in the group characteristics of the wave, the features of the wave packet that change with the same frequency as the amplitude of the electromagnetic wave. "Group velocity dispersion" manifests as a spreading-out of the signal "envelope" of the radiation and can be quantified with a group dispersion delay parameter: 2737:, increasing in frequency with time. This causes the spectrum coming out of a prism to appear with red light the least refracted and blue/violet light the most refracted. Conversely, if a pulse travels through an anomalously (negatively) dispersive medium, high-frequency components travel faster than the lower ones, and the pulse becomes 1222:) location in space. Diffuse reflection describes non-glossy materials, such as paper or rock. The reflections from these surfaces can only be described statistically, with the exact distribution of the reflected light depending on the microscopic structure of the material. Many diffuse reflectors are described or can be approximated by 4052:. The objective lens is essentially a magnifying glass and was designed with a very small focal length while the eyepiece generally has a longer focal length. This has the effect of producing magnified images of close objects. Generally, an additional source of illumination is used since magnified images are dimmer due to the 3419:. Some of these fields overlap, with nebulous boundaries between the subjects' terms that mean slightly different things in different parts of the world and in different areas of industry. A professional community of researchers in nonlinear optics has developed in the last several decades due to advances in laser technology. 3511:. When first invented, they were called "a solution looking for a problem". Since then, lasers have become a multibillion-dollar industry, finding utility in thousands of highly varied applications. The first application of lasers visible in the daily lives of the general population was the supermarket 4074:
The first telescopes, called refracting telescopes, were also developed with a single objective and eyepiece lens. In contrast to the microscope, the objective lens of the telescope was designed with a large focal length to avoid optical aberrations. The objective focuses an image of a distant object
3246:
Light reflected by shiny transparent materials is partly or fully polarised, except when the light is normal (perpendicular) to the surface. It was this effect that allowed the mathematician Étienne-Louis Malus to make the measurements that allowed for his development of the first mathematical models
2093:
The first physical optics model of diffraction that relied on the Huygens–Fresnel principle was developed in 1803 by Thomas Young in his interference experiments with the interference patterns of two closely spaced slits. Young showed that his results could only be explained if the two slits acted as
1902:
effects, the superposition principle can be used to predict the shape of interacting waveforms through the simple addition of the disturbances. This interaction of waves to produce a resulting pattern is generally termed "interference" and can result in a variety of outcomes. If two waves of the same
1838:
More rigorous models, involving the modelling of both electric and magnetic fields of the light wave, are required when dealing with materials whose electric and magnetic properties affect the interaction of light with the material. For instance, the behaviour of a light wave interacting with a metal
1505:
seen on hot days: a change in index of refraction air with height causes light rays to bend, creating the appearance of specular reflections in the distance (as if on the surface of a pool of water). Optical materials with varying indexes of refraction are called gradient-index (GRIN) materials. Such
4400:
The unique optical properties of the atmosphere cause a wide range of spectacular optical phenomena. The blue colour of the sky is a direct result of Rayleigh scattering which redirects higher frequency (blue) sunlight back into the field of view of the observer. Because blue light is scattered more
3865:
of the focal length measured in metres; with a positive focal length corresponding to a converging lens and a negative focal length corresponding to a diverging lens. For lenses that correct for astigmatism as well, three numbers are given: one for the spherical power, one for the cylindrical power,
1690:
With diverging lenses, incoming parallel rays diverge after going through the lens, in such a way that they seem to have originated at a spot one focal length in front of the lens. This is the lens's front focal point. Rays from an object at a finite distance are associated with a virtual image that
1045:
of light in terms of "rays" which travel in straight lines, and whose paths are governed by the laws of reflection and refraction at interfaces between different media. These laws were discovered empirically as far back as 984 AD and have been used in the design of optical components and instruments
764:
The first wearable eyeglasses were invented in Italy around 1286. This was the start of the optical industry of grinding and polishing lenses for these "spectacles", first in Venice and Florence in the thirteenth century, and later in the spectacle making centres in both the Netherlands and Germany.
3904:
that differs from the object being imaged. Optical illusions can be the result of a variety of phenomena including physical effects that create images that are different from the objects that make them, the physiological effects on the eyes and brain of excessive stimulation (e.g. brightness, tilt,
1879:
is a simple paraxial physical optics model for the propagation of coherent radiation such as laser beams. This technique partially accounts for diffraction, allowing accurate calculations of the rate at which a laser beam expands with distance, and the minimum size to which the beam can be focused.
1793:
The wave model can be used to make predictions about how an optical system will behave without requiring an explanation of what is "waving" in what medium. Until the middle of the 19th century, most physicists believed in an "ethereal" medium in which the light disturbance propagated. The existence
1686:
Incoming parallel rays are focused by a converging lens onto a spot one focal length from the lens, on the far side of the lens. This is called the rear focal point of the lens. Rays from an object at a finite distance are focused further from the lens than the focal distance; the closer the object
1275:. Curved mirrors can form images with a magnification greater than or less than one, and the magnification can be negative, indicating that the image is inverted. An upright image formed by reflection in a mirror is always virtual, while an inverted image is real and can be projected onto a screen. 3801:
define the nearest and farthest distances from the eye at which an object can be brought into sharp focus. For a person with normal vision, the far point is located at infinity. The near point's location depends on how much the muscles can increase the curvature of the lens, and how inflexible the
3737:
called the retina, which forms the inner lining of the back of the eye. The focusing is accomplished by a series of transparent media. Light entering the eye passes first through the cornea, which provides much of the eye's optical power. The light then continues through the fluid just behind the
1914:
and an increase in the amplitude of the wave, which for light is associated with a brightening of the waveform in that location. Alternatively, if the two waves of the same wavelength and frequency are out of phase, then the wave crests will align with wave troughs and vice versa. This results in
1493:
Snell's Law can be used to predict the deflection of light rays as they pass through linear media as long as the indexes of refraction and the geometry of the media are known. For example, the propagation of light through a prism results in the light ray being deflected depending on the shape and
838:
as the actual organ that recorded images, finally being able to scientifically quantify the effects of different types of lenses that spectacle makers had been observing over the previous 300 years. After the invention of the telescope, Kepler set out the theoretical basis on how they worked and
4448:
Rainbows are the result of a combination of internal reflection and dispersive refraction of light in raindrops. A single reflection off the backs of an array of raindrops produces a rainbow with an angular size on the sky that ranges from 40° to 42° with red on the outside. Double rainbows are
2004:
use destructive interference to reduce the reflectivity of the surfaces they coat, and can be used to minimise glare and unwanted reflections. The simplest case is a single layer with a thickness of one-fourth the wavelength of incident light. The reflected wave from the top of the film and the
2886:
components of the light wave are in phase. In this case, the ratio of their strengths is constant, so the direction of the electric vector (the vector sum of these two components) is constant. Since the tip of the vector traces out a single line in the plane, this special case is called linear
2435:. In this case, the phase velocity is twice the group velocity. The red dot overtakes two green dots, when moving from the left to the right of the figure. In effect, the individual waves (which travel with the phase velocity) escape from the wave packet (which travels with the group velocity). 2283:
of the lens aperture. If the angular separation of the two points is significantly less than the Airy disk angular radius, then the two points cannot be resolved in the image, but if their angular separation is much greater than this, distinct images of the two points are formed and they can
1980:
Since the Huygens–Fresnel principle states that every point of a wavefront is associated with the production of a new disturbance, it is possible for a wavefront to interfere with itself constructively or destructively at different locations producing bright and dark fringes in regular and
3892: 2292:" that two points whose angular separation is equal to the Airy disk radius (measured to first null, that is, to the first place where no light is seen) can be considered to be resolved. It can be seen that the greater the diameter of the lens or its aperture, the finer the resolution. 1237:, a line perpendicular to the surface at the point where the ray hits. The incident and reflected rays and the normal lie in a single plane, and the angle between the reflected ray and the surface normal is the same as that between the incident ray and the normal. This is known as the 371:
that cannot be accounted for in geometric optics. Historically, the ray-based model of light was developed first, followed by the wave model of light. Progress in electromagnetic theory in the 19th century led to the discovery that light waves were in fact electromagnetic radiation.
2890:
In the middle figure, the two orthogonal components have the same amplitudes and are 90° out of phase. In this case, one component is zero when the other component is at maximum or minimum amplitude. There are two possible phase relationships that satisfy this requirement: the
1691:
is closer to the lens than the focal point, and on the same side of the lens as the object. The closer the object is to the lens, the closer the virtual image is to the lens. As with mirrors, upright images produced by a single lens are virtual, while inverted images are real.
1857:
can be used to model the propagation of light in systems which cannot be solved analytically. Such models are computationally demanding and are normally only used to solve small-scale problems that require accuracy beyond that which can be achieved with analytical solutions.
628:
qualitatively, although he questioned that a beam of light from the eye could instantaneously light up the stars every time someone blinked. Euclid stated the principle of shortest trajectory of light, and considered multiple reflections on flat and spherical mirrors.
2190:. To see diffraction patterns, x-rays with similar wavelengths to that spacing are passed through the crystal. Since crystals are three-dimensional objects rather than two-dimensional gratings, the associated diffraction pattern varies in two directions according to 3304:
encompasses the areas of optical science and engineering that became popular in the 20th century. These areas of optical science typically relate to the electromagnetic or quantum properties of light but do include other topics. A major subfield of modern optics,
2829:
components (red/left and green/right), and the path traced by the vector in the plane (purple): The same evolution would occur when looking at the electric field at a particular time while evolving the point in space, along the direction opposite to propagation.
1798:. These waves propagate at the speed of light and have varying electric and magnetic fields which are orthogonal to one another, and also to the direction of propagation of the waves. Light waves are now generally treated as electromagnetic waves except when 3825:
cannot decrease the focal length of their lens enough to allow for nearby objects to be imaged on their retina. Conversely, people who cannot increase the focal length of their lens enough to allow for distant objects to be imaged on the retina suffer from
1007:
Classical optics is divided into two main branches: geometrical (or ray) optics and physical (or wave) optics. In geometrical optics, light is considered to travel in straight lines, while in physical optics, light is considered as an electromagnetic wave.
856:, which explained a variety of optical phenomena including reflection and refraction by assuming that light was emitted by objects which produced it. This differed substantively from the ancient Greek emission theory. In the late 1660s and early 1670s, 3239:. If the polarisation is consistent across the spectrum of the source, partially polarised light can be described as a superposition of a completely unpolarised component, and a completely polarised one. One may then describe the light in terms of the 2903:
component. In this special case, the electric vector traces out a circle in the plane, so this polarisation is called circular polarisation. The rotation direction in the circle depends on which of the two-phase relationships exists and corresponds to
4432:
Mirages are optical phenomena in which light rays are bent due to thermal variations in the refraction index of air, producing displaced or heavily distorted images of distant objects. Other dramatic optical phenomena associated with this include the
4148:
In other words, the smaller the aperture (giving greater depth of focus), the less light coming in, so the length of time has to be increased (leading to possible blurriness if motion occurs). An example of the use of the law of reciprocity is the
4316:
The field of view that the lens will provide changes with the focal length of the lens. There are three basic classifications based on the relationship to the diagonal size of the film or sensor size of the camera to the focal length of the lens:
4449:
produced by two internal reflections with angular size of 50.5° to 54° with violet on the outside. Because rainbows are seen with the sun 180° away from the centre of the rainbow, rainbows are more prominent the closer the sun is to the horizon.
2958:(circular modes). If the path length in the birefringent medium is sufficient, plane waves will exit the material with a significantly different propagation direction, due to refraction. For example, this is the case with macroscopic crystals of 2915:
In all other cases, where the two components either do not have the same amplitudes and/or their phase difference is neither zero nor a multiple of 90°, the polarisation is called elliptical polarisation because the electric vector traces out an
1565:: a converging lens has positive focal length, while a diverging lens has negative focal length. Smaller focal length indicates that the lens has a stronger converging or diverging effect. The focal length of a simple lens in air is given by the 3190:
In practice, some light is lost in the polariser and the actual transmission of unpolarised light will be somewhat lower than this, around 38% for Polaroid-type polarisers but considerably higher (>49.9%) for some birefringent prism types.
3834:
results when the cornea is not spherical but instead is more curved in one direction. This causes horizontally extended objects to be focused on different parts of the retina than vertically extended objects, and results in distorted images.
4040:
is simply two plane mirrors aligned to allow for viewing around obstructions. The most famous compound optical instruments in science are the microscope and the telescope which were both invented by the Dutch in the late 16th century.
4409:. Additional particulate matter in the sky can scatter different colours at different angles creating colourful glowing skies at dusk and dawn. Scattering off of ice crystals and other particles in the atmosphere are responsible for 2523: 3309:, deals with specifically quantum mechanical properties of light. Quantum optics is not just theoretical; some modern devices, such as lasers, have principles of operation that depend on quantum mechanics. Light detectors, such as 2620: 4367:). Early photography used media that had very low light sensitivity, and so exposure times had to be long even for very bright shots. As technology has improved, so has the sensitivity through film cameras and digital cameras. 3785:
is limited to rod cells. Likewise, since cone cells are in the fovea, central vision (including the vision needed to do most reading, fine detail work such as sewing, or careful examination of objects) is done by cone cells.
2345:
which occurs when electromagnetic waves are deflected by single particles. In the limit of Thomson scattering, in which the wavelike nature of light is evident, light is dispersed independent of the frequency, in contrast to
1822:
equation is one such model. This was derived empirically by Fresnel in 1815, based on Huygens' hypothesis that each point on a wavefront generates a secondary spherical wavefront, which Fresnel combined with the principle of
905:, which is a wave-like property not predicted by Newton's corpuscle theory. This work led to a theory of diffraction for light and opened an entire area of study in physical optics. Wave optics was successfully unified with 1248:, the law of reflection implies that images of objects are upright and the same distance behind the mirror as the objects are in front of the mirror. The image size is the same as the object size. The law also implies that 2397:, in wavelength ranges where the material does not absorb light. In wavelength ranges where a medium has significant absorption, the index of refraction can increase with wavelength. This is called "anomalous dispersion". 1498:. Taking this into account, Snell's Law can be used to predict how a prism will disperse light into a spectrum. The discovery of this phenomenon when passing light through a prism is famously attributed to Isaac Newton. 1313:
Refraction occurs when light travels through an area of space that has a changing index of refraction; this principle allows for lenses and the focusing of light. The simplest case of refraction occurs when there is an
1831:, which is derived using Maxwell's equations, puts the Huygens-Fresnel equation on a firmer physical foundation. Examples of the application of Huygens–Fresnel principle can be found in the articles on diffraction and 3781:. Cone cells are highly concentrated in the fovea and have a high visual acuity meaning that they are better at spatial resolution than rod cells. Since cone cells are not as sensitive to dim light as rod cells, most 2706: 3761:
There are two types of photoreceptor cells, rods and cones, which are sensitive to different aspects of light. Rod cells are sensitive to the intensity of light over a wide frequency range, thus are responsible for
3194:
In addition to birefringence and dichroism in extended media, polarisation effects can also occur at the (reflective) interface between two materials of different refractive index. These effects are treated by the
2748:
The result of group velocity dispersion, whether negative or positive, is ultimately temporal spreading of the pulse. This makes dispersion management extremely important in optical communications systems based on
1646: 1214:. Specular reflection describes the gloss of surfaces such as mirrors, which reflect light in a simple, predictable way. This allows for the production of reflected images that can be associated with an actual ( 1124: 1011:
Geometrical optics can be viewed as an approximation of physical optics that applies when the wavelength of the light used is much smaller than the size of the optical elements in the system being modelled.
2008:
Constructive interference in thin films can create a strong reflection of light in a range of wavelengths, which can be narrow or broad depending on the design of the coating. These films are used to make
3899:
Optical illusions (also called visual illusions) are characterized by visually perceived images that differ from objective reality. The information gathered by the eye is processed in the brain to give a
2393:). The most familiar form of dispersion is a decrease in index of refraction with increasing wavelength, which is seen in most transparent materials. This is called "normal dispersion". It occurs in all 346:
description of light, however complete electromagnetic descriptions of light are often difficult to apply in practice. Practical optics is usually done using simplified models. The most common of these,
2771:
such as many electromagnetic waves, it describes the orientation of the oscillations in the plane perpendicular to the wave's direction of travel. The oscillations may be oriented in a single direction
1412: 3940:
all rely on the suggestion of the appearance of distance by using converging and diverging lines, in the same way that parallel light rays (or indeed any set of parallel lines) appear to converge at a
3105: 2726:. If a light pulse is propagated through a normally dispersive medium, the result is the higher frequency components slow down more than the lower frequency components. The pulse therefore becomes 2265: 3186: 2354:
process, involving the nature of light as particles. In a statistical sense, elastic scattering of light by numerous particles much smaller than the wavelength of the light is a process known as
3773:
In contrast, cone cells are less sensitive to the overall intensity of light, but come in three varieties that are sensitive to different frequency-ranges and thus are used in the perception of
1535:
and allows for fibre optics technology. As light travels down an optical fibre, it undergoes total internal reflection allowing for essentially no light to be lost over the length of the cable.
2978:, are frequently exploited for the purpose of identifying minerals using polarisation microscopes. Additionally, many plastics that are not normally birefringent will become so when subject to 1165:, or "small angle approximation". The mathematical behaviour then becomes linear, allowing optical components and systems to be described by simple matrices. This leads to the techniques of 3223:
on the sky in a photograph. Left picture is taken without polariser. For the right picture, filter was adjusted to eliminate certain polarisations of the scattered blue light from the sky.
4714:
Adamson, Peter (2006). "Al-Kindi¯ and the reception of Greek philosophy". In Adamson, Peter; Taylor, R.. The Cambridge companion to Arabic philosophy. Cambridge University Press. p. 45.
4340:: angle of view narrower than a normal lens. This is any lens with a focal length longer than the diagonal measure of the film or sensor. The most common type of long focus lens is the 2962:, which present the viewer with two offset, orthogonally polarised images of whatever is viewed through them. It was this effect that provided the first discovery of polarisation, by 2341:
Refractive processes take place in the physical optics limit, where the wavelength of light is similar to other distances, as a kind of scattering. The simplest type of scattering is
2168:
This equation is modified slightly to take into account a variety of situations such as diffraction through a single gap, diffraction through multiple slits, or diffraction through a
1056:
The law of refraction says that the refracted ray lies in the plane of incidence, and the sine of the angle of incidence divided by the sine of the angle of refraction is a constant:
4242: 2137: 7034: 3227:
Most sources of electromagnetic radiation contain a large number of atoms or molecules that emit light. The orientation of the electric fields produced by these emitters may not be
2094:
two unique sources of waves rather than corpuscles. In 1815 and 1818, Augustin-Jean Fresnel firmly established the mathematics of how wave interference can account for diffraction.
1271:. Other curved surfaces may also focus light, but with aberrations due to the diverging shape causing the focus to be smeared out in space. In particular, spherical mirrors exhibit 5843: 1774:
In physical optics, light is considered to propagate as waves. This model predicts phenomena such as interference and diffraction, which are not explained by geometric optics. The
647:(1st–2nd century AD) described multiple reflections on spherical mirrors and discussed the creation of magnified and reduced images, both real and imaginary, including the case of 696:
wrote the treatise "On burning mirrors and lenses", correctly describing a law of refraction equivalent to Snell's law. He used this law to compute optimum shapes for lenses and
578:
and their followers, this theory seems to have some contact with modern theories of what vision really is, but it remained only speculation lacking any experimental foundation.
1790:
of visible light waves varies between 400 and 700 nm, but the term "light" is also often applied to infrared (0.7–300 μm) and ultraviolet radiation (10–400 nm).
7077: 3199:. Part of the wave is transmitted and part is reflected, with the ratio depending on the angle of incidence and the angle of refraction. In this way, physical optics recovers 2821:. The following figures show some examples of the evolution of the electric field vector (blue), with time (the vertical axes), at a particular point in space, along with its 2452: 948:. The understanding of the interaction between light and matter that followed from these developments not only formed the basis of quantum optics but also was crucial for the 2424: 566:. The intromission approach saw vision as coming from objects casting off copies of themselves (called eidola) that were captured by the eye. With many propagators including 4370:
Other results from physical and geometrical optics apply to camera optics. For example, the maximum resolution capability of a particular camera set-up is determined by the
4015: 2541: 1919:
and a decrease in the amplitude of the wave, which for light is associated with a dimming of the waveform at that location. See below for an illustration of this effect.
3817:
Defects in vision can be explained using optical principles. As people age, the lens becomes less flexible and the near point recedes from the eye, a condition known as
688:–873) who wrote on the merits of Aristotelian and Euclidean ideas of optics, favouring the emission theory since it could better quantify optical phenomena. In 984, the 4313:
due to the lens approaching the limit of a pinhole camera which is able to focus all images perfectly, regardless of distance, but requires very long exposure times.
2784:). Circularly polarised waves can rotate rightward or leftward in the direction of travel, and which of those two rotations is present in a wave is called the wave's 7760: 2051:. The bright fringes occur along lines where black lines intersect with black lines and white lines intersect with white lines. These fringes are separated by angle 1478: 4305:
with the value. The two ways to increase the f-stop are to either decrease the diameter of the entrance pupil or change to a longer focal length (in the case of a
3240: 2097:
The simplest physical models of diffraction use equations that describe the angular separation of light and dark fringes due to light of a particular wavelength (
3969:
Another type of optical illusion exploits broken patterns to trick the mind into perceiving symmetries or asymmetries that are not present. Examples include the
1501:
Some media have an index of refraction which varies gradually with position and, therefore, light rays in the medium are curved. This effect is responsible for
4285: 4265: 4189: 2637: 1252:
are parity inverted, which we perceive as a left-right inversion. Images formed from reflection in two (or any even number of) mirrors are not parity inverted.
882:
and, at the time, partly because of his success in other areas of physics, he was generally considered to be the victor in the debate over the nature of light.
4445:
where objects on the horizon or even beyond the horizon, such as islands, cliffs, ships or icebergs, appear elongated and elevated, like "fairy tale castles".
2753:, since if dispersion is too high, a group of pulses representing information will each spread in time and merge, making it impossible to extract the signal. 1513:
For light rays travelling from a material with a high index of refraction to a material with a low index of refraction, Snell's law predicts that there is no
5381:
For a solid approach to the complexity of Planck's intellectual motivations for the quantum, for his reluctant acceptance of its implications, see H. Kragh,
5177: 4585: 2400:
The separation of colours by a prism is an example of normal dispersion. At the surfaces of the prism, Snell's law predicts that light incident at an angle
3595:
causes beams of particles to diffract as the result of meeting a standing wave of light. Light can be used to position matter using various phenomena (see
1581: 3128:
A beam of unpolarised light can be thought of as containing a uniform mixture of linear polarisations at all possible angles. Since the average value of
1059: 876:
in 1664. Hooke himself publicly criticised Newton's theories of light and the feud between the two lasted until Hooke's death. In 1704, Newton published
510:
filled glass spheres with water to make lenses. These practical developments were followed by the development of theories of light and vision by ancient
418:, in which it is called physiological optics). Practical applications of optics are found in a variety of technologies and everyday objects, including 2443:, which gives a simple measure of dispersion based on the index of refraction at three specific wavelengths. Waveguide dispersion is dependent on the 1839:
surface is quite different from what happens when it interacts with a dielectric material. A vector model must also be used to model polarised light.
4060:
have many lenses in them (typically four) to optimize the functionality and enhance image stability. A slightly different variety of microscope, the
457: 6407: 6002: 7179: 5482: 8801: 5852: 5336: 1345: 5023:(2014). "Seeing Reality in Perspective: 'The Art of Optics' and the 'Science of Painting'". In Lupacchini, Rossella; Angelini, Annarita (eds.). 776: 8796: 8110: 7061: 4328:
because this angle considered roughly equivalent to human vision) and a focal length approximately equal to the diagonal of the film or sensor.
2337:
Conceptual animation of light dispersion through a prism. High frequency (blue) light is deflected the most, and low frequency (red) the least.
6891: 8680: 7880: 6774: 3207:
on a surface, interference between the reflections from the film's surfaces can produce polarisation in the reflected and transmitted light.
3049: 2966:
in 1669. In addition, the phase shift, and thus the change in polarisation state, is usually frequency dependent, which, in combination with
2228: 1053:
The law of reflection says that the reflected ray lies in the plane of incidence, and the angle of reflection equals the angle of incidence.
6826: 3412: 2087: 987:
applied quantum theory to the electromagnetic field in the 1950s and 1960s to gain a more detailed understanding of photodetection and the
4862:
Nader El-Bizri (2007). "In Defence of the Sovereignty of Philosophy: al-Baghdadi's Critique of Ibn al-Haytham's Geometrisation of Place".
3140: 8199: 7395: 4825: 101: 7312: 7030: 5211: 5145: 4977: 4644: 2299:
For astronomical imaging, the atmosphere prevents optimal resolution from being achieved in the visible spectrum due to the atmospheric
5583: 5114: 4946: 2172:
that contains a large number of slits at equal spacing. More complicated models of diffraction require working with the mathematics of
275: 3754:, and reaches the retina. The cells in the retina line the back of the eye, except for where the optic nerve exits; this results in a 3750:, which focuses the light further and allows adjustment of focus. The light then passes through the main body of fluid in the eye—the 3477:, or can be converted into one with the help of optical components such as lenses. Because the microwave equivalent of the laser, the 7074: 6296: 5080: 4036:. Combining a number of mirrors, prisms, and lenses produces compound optical instruments which have practical uses. For example, a 2795:
as the electromagnetic wave propagates. The electric field vector of a plane wave may be arbitrarily divided into two perpendicular
1795: 4808:
G. Hatfield (1996). "Was the Scientific Revolution Really a Revolution in Science?". In F.J. Ragep; P. Sally; S.J. Livesey (eds.).
1702:
occur because the geometry of the lens does not perfectly direct rays from each object point to a single point on the image, while
4128:
The optics of photography involves both lenses and the medium in which the electromagnetic radiation is recorded, whether it be a
3912:
Cognitive illusions include some which result from the unconscious misapplication of certain optical principles. For example, the
8232: 4392:
A colourful sky is often due to scattering of light off particulates and pollution, as in this photograph of a sunset during the
745:, wrote works citing a wide range of recently translated optical and philosophical works, including those of Alhazen, Aristotle, 4811:
Tradition, Transmission, Transformation: Proceedings of Two Conferences on Pre-modern Science held at the University of Oklahoma
8078: 7841: 6916: 3989:. Related, but not strictly illusions, are patterns that occur due to the superimposition of periodic structures. For example, 3944:
at infinity in two-dimensionally rendered images with artistic perspective. This suggestion is also responsible for the famous
7549: 1263:
Mirrors with curved surfaces can be modelled by ray tracing and using the law of reflection at each point on the surface. For
7705: 7686: 7665: 7637: 7608: 7589: 7528: 7497: 7472: 7447: 7420: 7389: 7362: 7337: 7306: 7276: 7249: 7134: 7010: 6976: 6946: 6873: 6731: 6706: 6607: 6446: 6401: 6359: 6325: 6168: 6103: 5996: 5926: 5897: 5638: 5577: 5550: 5525: 5298: 5205: 5139: 5108: 5062: 5011: 4971: 4940: 4819: 4790: 4719: 4699: 4671: 4638: 4611: 4567: 4489: 3535:
relies on lasers to transmit large amounts of information at the speed of light. Other common applications of lasers include
2104: 1049:
When a ray of light hits the boundary between two transparent materials, it is divided into a reflected and a refracted ray.
4534: 4437:
where the sun appears to rise earlier than predicted with a distorted shape. A spectacular form of refraction occurs with a
2063:
Diffraction is the process by which light interference is most commonly observed. The effect was first described in 1665 by
5804: 5385: 214: 6751: 2315:
have been used to eliminate the atmospheric disruption of images and achieve results that approach the diffraction limit.
6799: 3337:, too, cannot be understood without quantum mechanics. In the study of these devices, quantum optics often overlaps with 2427:
Dispersion: two sinusoids propagating at different speeds make a moving interference pattern. The red dot moves with the
4479: 2416:. Thus, blue light, with its higher refractive index, is bent more strongly than red light, resulting in the well-known 818:
expanded on geometric optics in his writings, covering lenses, reflection by flat and curved mirrors, the principles of
8791: 3255:. This partial polarisation of scattered light can be taken advantage of using polarising filters to darken the sky in 1828: 898: 849: 1494:
orientation of the prism. In most materials, the index of refraction varies with the frequency of the light, known as
1233:
In specular reflection, the direction of the reflected ray is determined by the angle the incident ray makes with the
822:, inverse-square law governing the intensity of light, and the optical explanations of astronomical phenomena such as 7873: 5873: 5787: 5238: 4393: 2296:, with its ability to mimic extremely large baseline apertures, allows for the greatest angular resolution possible. 1810:
Many simplified approximations are available for analysing and designing optical systems. Most of these use a single
7381:
Applied Photographic Optics: Lenses and Optical Systems for Photography, Film, Video, Electronic and Digital Imaging
5263: 3854:
lens that curves more strongly in one direction than in another, compensating for the non-uniformity of the cornea.
2864: 864:, famously determining that white light was a mix of colours that can be separated into its component parts with a 7088: 5174: 4582: 4460: 4401:
easily than red light, the sun takes on a reddish hue when it is observed through a thick atmosphere, as during a
1676:
used here, the object and image distances are positive if the object and image are on opposite sides of the lens.
230: 67: 8705: 8501: 6613: 5409:(1967). "On a heuristic viewpoint concerning the production and transformation of light". In Ter Haar, D. (ed.). 5247: 5152: 3997:, while the superimposition of periodic transparent patterns comprising parallel opaque lines or curves produces 2285: 1854: 894: 3523:
player was the first laser-equipped device to become truly common in consumers' homes, beginning in 1982. These
2849: 1985:
is the science of measuring these patterns, usually as a means of making precise determinations of distances or
383:. When considering light's particle-like properties, the light is modelled as a collection of particles called " 8026: 7106: 3814:
usually consider an appropriate near point to be closer than normal reading distance—approximately 25 cm.
2217:) appear as a central spot with surrounding bright rings, separated by dark nulls; this pattern is known as an 268: 17: 2289: 8617: 8594: 4197: 3552: 2813:
indicating the direction of travel). The shape traced out in the x-y plane by the electric field vector is a
2374:
occurs when the frequency of light changes due to local changes with time and movements of a dense material.
2366:
being a commonly observed result. A small proportion of light scattering from atoms or molecules may undergo
2186:
makes use of the fact that atoms in a crystal have regular spacing at distances that are on the order of one
1819: 924:
by assuming that the exchange of energy between light and matter only occurred in discrete amounts he called
4692:
Ptolemy's theory of visual perception: an English translation of the Optics with introduction and commentary
2834: 2082:. Later that century, Robert Hooke and Isaac Newton also described phenomena now known to be diffraction in 1446: 8450: 7866: 4078:
Since crafting large lenses is much more difficult than crafting large mirrors, most modern telescopes are
3508: 2986:. Non-birefringent methods, to rotate the linear polarisation of light beams, include the use of prismatic 2358:
while the similar process for scattering by particles that are similar or larger in wavelength is known as
1256:
produce reflected rays that travel back in the direction from which the incident rays came. This is called
949: 3344:
Specialty areas of optics research include the study of how light interacts with specific materials as in
8806: 8225: 8163: 5983: 2293: 2025:
cameras. This interference effect is also what causes the colourful rainbow patterns seen in oil slicks.
1434:
are the angles between the normal (to the interface) and the incident and refracted waves, respectively.
1132:
is a constant for any two materials and a given colour of light. If the first material is air or vacuum,
956:, explains all optics and electromagnetic processes in general as the result of the exchange of real and 940:
showed that atoms could only emit discrete amounts of energy, thus explaining the discrete lines seen in
7175: 5490: 1152:
the path taken between two points by a ray of light is the path that can be traversed in the least time.
7994: 7967: 7730: 3895:
The Ponzo Illusion relies on the fact that parallel lines appear to converge as they approach infinity.
2214: 343: 8521: 4032:, corrective lenses, and magnifying glasses while single mirrors are used in parabolic reflectors and 2924:). This is shown in the above figure on the right. Detailed mathematics of polarisation is done using 2767:
Polarisation is a general property of waves that describes the orientation of their oscillations. For
1531:
is large. In this case, no transmission occurs; all the light is reflected. This phenomenon is called
8481: 8402: 8292: 4410: 4137: 3532: 2304: 1911: 1532: 861: 721:
wrote on a wide range of scientific topics, and discussed light from four different perspectives: an
324: 261: 78: 7057: 5851:
This article accompanied a December 8, 1864, presentation by Maxwell to the Royal Society. See also
3850:
provides the curvature necessary to send the far point to infinity. Astigmatism is corrected with a
3846:
provides the extra curvature necessary to bring the near point closer to the eye while for myopia a
3445:
A laser is a device that emits light, a kind of electromagnetic radiation, through a process called
8750: 8382: 8100: 7810: 7770: 6888: 6057: 3592: 3220: 3040:, says that when a perfect polariser is placed in a linear polarised beam of light, the intensity, 2887:
polarisation. The direction of this line depends on the relative amplitudes of the two components.
2791:
The typical way to consider polarisation is to keep track of the orientation of the electric field
2064: 1990: 1916: 1487: 886: 693: 659: 585: 563: 209: 7698:
Physics for Scientists and Engineers: Electricity, Magnetism, Light, and Elementary Modern Physics
7224: 7124: 6771: 6078: 3960:
that he incorrectly attributed it to atmospheric refraction when he described it in his treatise,
3519:
player, introduced in 1978, was the first successful consumer product to include a laser, but the
2990:
which use total internal reflection in a prism set designed for efficient collinear transmission.
1993:
was a famous instrument which used interference effects to accurately measure the speed of light.
8745: 8612: 8486: 5612: 5321: 4438: 3879: 3228: 2781: 2632:
is the speed of light in a vacuum. This gives a simpler form for the dispersion delay parameter:
1889: 1850: 1824: 1566: 1223: 953: 902: 754: 741:
of light, basing it on the works of Aristotle and Platonism. Grosseteste's most famous disciple,
621: 7776: 6851: 6822: 6699:
Optical Computer Architectures: The Application of Optical Concepts to Next Generation Computers
6351: 6345: 3921: 8218: 8184: 8046: 5496: 5443:"Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt" 5418: 4484: 4429:. The variation in these kinds of phenomena is due to different particle sizes and geometries. 4154: 4093: 4053: 3978: 3948:
where the moon, despite having essentially the same angular size, appears much larger near the
3862: 3789:
Ciliary muscles around the lens allow the eye's focus to be adjusted. This process is known as
3576: 3256: 3125:
is the angle between the light's initial polarisation direction and the axis of the polariser.
2195: 2177: 2144: 2001: 1832: 1162: 906: 643:, though he failed to notice the empirical relationship between it and the angle of incidence. 204: 37: 7437: 7410: 7379: 7327: 7239: 6865: 6859: 4809: 3037: 620:. He based his work on Plato's emission theory wherein he described the mathematical rules of 8554: 8362: 8189: 8158: 8021: 7942: 7520: 7514: 7296: 6095:
Micrographia: or, Some physiological descriptions of minute bodies made by magnifying glasses
5567: 5273: 5195: 5129: 4961: 4628: 4442: 4061: 3990: 3957: 3925: 3906: 3628: 3322: 3276: 3248: 2777: 1893: 1846: 1507: 1315: 1172: 1147: 988: 890: 376: 368: 5257: 5162: 5098: 4930: 3970: 3701: 2940:
Media that have different indexes of refraction for different polarisation modes are called
2143:
is the separation between two wavefront sources (in the case of Young's experiments, it was
1706:
occurs because the index of refraction of the lens varies with the wavelength of the light.
8710: 8584: 8496: 8332: 8322: 8148: 7972: 7932: 7789: 7628: 6233: 5819: 5454: 5431:
The chapter is an English translation of Einstein's 1905 paper on the photoelectric effect.
5348: 4995: 4735:
Rashed, Roshdi (1990). "A pioneer in anaclastics: Ibn Sahl on burning mirrors and lenses".
4434: 4418: 4080: 3982: 3496: 3330: 2987: 2762: 2444: 2371: 1866: 1703: 1272: 1230:
when viewed from any angle. Glossy surfaces can give both specular and diffuse reflection.
1193: 972: 933: 770: 558:
Greek philosophy on optics broke down into two opposing theories on how vision worked, the
8622: 7002: 6996: 6939:
Lasers: Principles and Applications, Prentice Hall International Series in Optoelectronics
5445:[On a heuristic viewpoint concerning the production and transformation of light]. 4009: 1557:
A device that produces converging or diverging light rays due to refraction is known as a
806: 8: 8730: 8657: 8652: 8574: 8549: 8516: 8377: 8123: 7982: 7977: 7962: 7937: 7914: 7890: 7819: 6847: 6302: 6047: 5800: 5077: 4994:(2010). "Classical Optics and the Perspectiva Traditions Leading to the Renaissance". In 4129: 4056:
and the spreading of light rays over a larger surface area. Modern microscopes, known as
4023: 3974: 3851: 3790: 3755: 3696: 3528: 3470: 3447: 3408: 3392: 3338: 3296: 3200: 2963: 2773: 2518:{\displaystyle D={\frac {1}{v_{\mathrm {g} }^{2}}}{\frac {dv_{\mathrm {g} }}{d\lambda }}} 2355: 2324: 2308: 2173: 2169: 2014: 1842: 1495: 1264: 1207: 945: 921: 910: 841: 640: 559: 304: 114: 88: 7218: 6237: 6072: 5823: 5606: 5458: 5352: 3986: 1267:, parallel rays incident on the mirror produce reflected rays that converge at a common 355:
that travel in straight lines and bend when they pass through or reflect from surfaces.
8637: 8559: 8307: 8297: 8179: 8056: 8051: 8004: 6679: 6157: 6121:"Early Scottish Relations with the Royal Society: I. James Gregory, F.R.S. (1638–1675)" 5835: 5411: 5364: 5315: 5003: 4908: 4879: 4850: 4760: 4752: 4660: 4383: 4364: 4270: 4250: 4174: 3734: 3580: 3381: 3357: 3264: 2351: 2347: 2342: 2206: 2038: 1986: 1695: 1211: 1021: 869: 766: 718: 598: 519: 198: 97: 83: 4309:, this can be done by simply adjusting the lens). Higher f-numbers also have a larger 1880:
Gaussian beam propagation thus bridges the gap between geometric and physical optics.
761:
to demonstrate that light reflects from objects rather than being released from them.
8715: 8685: 8642: 8579: 8564: 8476: 8367: 8194: 8143: 8088: 8068: 7954: 7701: 7682: 7676: 7661: 7633: 7604: 7585: 7524: 7493: 7468: 7443: 7416: 7385: 7358: 7333: 7302: 7272: 7266: 7245: 7130: 7006: 6972: 6942: 6869: 6727: 6702: 6603: 6442: 6397: 6355: 6321: 6164: 6099: 6093: 5992: 5922: 5893: 5869: 5839: 5783: 5634: 5573: 5546: 5521: 5422: 5368: 5294: 5234: 5201: 5135: 5104: 5058: 5007: 4967: 4936: 4912: 4883: 4854: 4815: 4796: 4786: 4764: 4715: 4695: 4667: 4634: 4607: 4563: 4557: 4371: 4133: 4029: 3831: 3830:
and have a far point that is considerably closer than infinity. A condition known as
3767: 3548: 3544: 3373: 3369: 3361: 3334: 3196: 2979: 2929: 2796: 2792: 2615:{\displaystyle v_{\mathrm {g} }=c\left(n-\lambda {\frac {dn}{d\lambda }}\right)^{-1}} 2386: 2213:
will experience diffraction and the best images that can be created (as described in
2183: 2083: 2022: 2010: 1976:
When oil or fuel is spilled, colourful patterns are formed by thin-film interference.
1870: 1238: 957: 941: 589: 523: 515: 451: 427: 380: 141: 6908: 3492: 2333: 1861:
All of the results from geometrical optics can be recovered using the techniques of
853: 773:
in 1608, both of which appeared in the spectacle making centres in the Netherlands.
8506: 8491: 8261: 8133: 8073: 7999: 7545: 6455: 6132: 5827: 5462: 5356: 4900: 4871: 4842: 4744: 4422: 4068: 4033: 3962: 3875: 3739: 3664: 3596: 3416: 3272: 3204: 2997:
A polariser changing the orientation of linearly polarised light. In this picture,
2955: 2951: 2367: 2191: 1997: 1899: 1815: 1811: 1253: 1139: 1042: 976: 758: 593: 511: 348: 248: 146: 30:
This article is about the branch of physics. For the book by Sir Isaac Newton, see
6205: 5052: 3994: 1176:, which are used to find basic properties of optical systems, such as approximate 8781: 8700: 8695: 8544: 8440: 8417: 8412: 8397: 8392: 8387: 8347: 8317: 8153: 8063: 8009: 7909: 7793: 7465:
The Keepers of Light: A History and Working Guide to Early Photographic Processes
7216: 7110: 7092: 7081: 6895: 6778: 6391: 5887: 5513: 5406: 5389: 5181: 5084: 4589: 4526: 4337: 4331: 3941: 3933: 3917: 3843: 3839: 3807: 3778: 3763: 3751: 3680: 3652: 3524: 3504: 3482: 3474: 3404: 3388: 3310: 3292: 2983: 2814: 2768: 2312: 1769: 1673: 1166: 929: 815: 781: 394:
Optical science is relevant to and studied in many related disciplines including
356: 166: 6298:
Lucky Exposures: Diffraction limited astronomical imaging through the atmosphere
5382: 3647: 3611:
in biology indicates the central role optics plays as the science of one of the
3531:
less than a millimetre wide to scan the surface of the disc for data retrieval.
1814:
quantity to represent the electric field of the light wave, rather than using a
1805: 8786: 8662: 8632: 8627: 8083: 8038: 8016: 7904: 6747: 5500: 5020: 4991: 4904: 4466: 4341: 4310: 4045: 3937: 3929: 3885: 3847: 3747: 3710: 3656: 3620: 3556: 3536: 3377: 3353: 3345: 3306: 2925: 2432: 2428: 2378: 2363: 2359: 2018: 1982: 1862: 1775: 1337: 1268: 1257: 1234: 984: 980: 960:
photons. Quantum optics gained practical importance with the inventions of the
865: 819: 702: 663: 507: 388: 235: 176: 161: 131: 6861:
A Century of Nature: Twenty-One Discoveries that Changed Science and the World
6791: 6620: 6570: 6244: 6021:
Cradle of Greatness: National and World Achievements of Ohio's Western Reserve
4875: 4846: 4374:
associated with the pupil size and given, roughly, by the Rayleigh criterion.
3623:, and optics are integral to the functioning of many consumer goods including 2370:, wherein the frequency changes due to excitation of the atoms and molecules. 8775: 8569: 8526: 8432: 8407: 8302: 6518: 6502: 6486: 6189: 5915: 5467: 5442: 5131:
Thinking about Life: The History and Philosophy of Biology and Other Sciences
4150: 3945: 3608: 3540: 3352:. Other research focuses on the phenomenology of electromagnetic waves as in 2942: 2750: 1906: 1876: 1544: 1219: 1181: 827: 823: 697: 531: 503: 471: 462: 423: 411: 312: 308: 8372: 7858: 7726: 5227: 4800: 4662:
The Arabic version of Euclid's optics = Kitāb Uqlīdis fī ikhtilāf al-manāẓir
4153:
which gives a rough estimate for the settings needed to estimate the proper
3998: 3433: 1933: 1865:
which apply many of the same mathematical and analytical techniques used in
1026: 872:
proposed a wave theory for light based on suggestions that had been made by
8735: 8690: 8647: 8337: 8312: 8266: 8118: 7516:
Meteorology Today: an introduction to weather, climate, and the environment
6855: 6593: 6152: 6137: 6120: 5831: 5360: 4356: 4334:: angle of view wider than 60° and focal length shorter than a normal lens. 3782: 3520: 3349: 3318: 3028:, with devices that block nearly all of the radiation in one mode known as 2218: 1562: 1249: 1245: 873: 857: 722: 674: 673:, Greek ideas about optics were resurrected and extended by writers in the 608: 439: 352: 126: 6077:. London: Longman, Rees, Orme, Brown & Green and John Taylor. p.  5426: 4959: 4833:
Nader El-Bizri (2005). "A Philosophical Perspective on Alhazen's Optics".
3391:
to distinguish it from applied optical sciences, which are referred to as
2701:{\displaystyle D=-{\frac {\lambda }{c}}\,{\frac {d^{2}n}{d\lambda ^{2}}}.} 2043: 885:
Newtonian optics was generally accepted until the early 19th century when
8760: 8725: 8445: 8327: 6272: 5565: 4321: 4302: 4098: 4065: 3803: 3676: 3672: 3314: 3024:
Media that reduce the amplitude of certain polarisation modes are called
2975: 2785: 2440: 2034: 952:
of quantum mechanics as a whole. The ultimate culmination, the theory of
742: 726: 670: 499: 475: 403: 399: 364: 316: 7751:– an open-source textbook, containing a treatment of optics in ch. 28–32 5782:
MV Klein & TE Furtak, 1986, Optics, John Wiley & Sons, New York
5674: 4113: 3905:
colour, movement), and cognitive illusions where the eye and brain make
3247:
for polarised light. Polarisation occurs when light is scattered in the
635: 8755: 8720: 8589: 8357: 8352: 8210: 8138: 8128: 7681:(6th, Illustrated ed.). Belmont, California: Thomson-Brooks/Cole. 7085: 5764: 5543:
LASER: The inventor, the Nobel laureate, and the thirty-year patent war
4474: 4360: 3884:
For the visual effects used in film, video, and computer graphics, see
3818: 3794: 3616: 3572: 3365: 3326: 2971: 2947: 2394: 2328: 2300: 1787: 1572:
Ray tracing can be used to show how images are formed by a lens. For a
1284: 1215: 968: 937: 917: 625: 567: 431: 336: 151: 136: 7766: 7290: 7288: 7126:
Energy Minimization Methods in Computer Vision and Pattern Recognition
5078:"The Galileo Project > Science > The Telescope" by Al Van Helden 4756: 2090:
recorded his observations of diffraction patterns from bird feathers.
714:
making it a standard text on optics in Europe for the next 400 years.
654: 592:
is accomplished by rays emitted by the eyes. He also commented on the
7989: 4414: 4306: 4037: 3913: 3822: 3798: 3706: 3692: 3636: 3568: 3516: 3400: 3280: 3260: 3235:. If there is partial correlation between the emitters, the light is 3033: 2967: 2377:
Dispersion occurs when different frequencies of light have different
2222: 2209:
separate light sources. In general, light that is passing through an
1641:{\displaystyle {\frac {1}{S_{1}}}+{\frac {1}{S_{2}}}={\frac {1}{f}},} 1573: 1227: 897:
of light that firmly established light's wave nature. Young's famous
730: 648: 575: 541: 415: 395: 332: 194: 156: 121: 7656:
Lipson, Stephen G.; Lipson, Henry; Tannhauser, David Stefan (1995).
7103: 6994: 6597: 3215: 1198: 1046:
from then until the present day. They can be summarised as follows:
391:
deals with the application of quantum mechanics to optical systems.
8740: 8511: 8287: 8282: 7556: 7285: 7155: 7143: 6434: 6056:] (in French). Paris: Impr. de S.A.S.; Chez E. Ganeau. p.  4963:
Representing Light Across Arts and Sciences: Theories and Practices
4748: 4161: 4049: 3811: 3721:(white surrounding area) are visible in this image, along with the 3632: 3396: 2536:
is the group velocity. For a uniform medium, the group velocity is
2280: 2210: 2187: 1709: 1119:{\displaystyle {\frac {\sin {\theta _{1}}}{\sin {\theta _{2}}}}=n,} 999: 936:
that firmly established the quantization of light itself. In 1913,
831: 787:
Ad Vitellionem paralipomena quibus astronomiae pars optica traditur
750: 746: 738: 734: 678: 644: 613: 571: 407: 320: 7173: 6027: 5960: 5948: 5936: 5716: 5662: 5025:
The Art of Science: From Perspective Drawing to Quantum Randomness
5000:
Renaissance Theories of Vision (Visual Culture in Early Modernity)
4388: 3251:. The scattered light produces the brightness and colour in clear 2970:, often gives rise to bright colours and rainbow-like effects. In 1782:
is approximately 3.0×10 m/s (exactly 299,792,458 m/s in
1576:
in air, the location of the image is given by the simple equation
8460: 7217:
Samuel Edward Sheppard & Charles Edward Kenneth Mees (1907).
5566:
Ariel Lipson; Stephen G. Lipson; Henry Lipson (28 October 2010).
4426: 4402: 4355:
The absolute value for the exposure time required depends on how
3949: 3901: 3891: 3858: 3726: 3624: 3512: 3456: 2959: 2917: 2417: 878: 630: 495: 479: 292: 59: 31: 7748: 7122: 6159:
Everything's Relative and Other Fables in Science and Technology
5691: 5689: 5652: 5650: 5127: 4160:
A camera's aperture is measured by a unitless number called the
3651:
Model of a human eye. Features mentioned in this article are 1.
2776:), or the oscillation direction may rotate as the wave travels ( 2205:
Diffraction effects limit the ability of an optical detector to
1972: 790:(1604), generally recognized as the foundation of modern optics. 700:. In the early 11th century, Alhazen (Ibn al-Haytham) wrote the 8342: 4406: 4140:
of the camera and the shot which is summarized by the relation
3953: 3827: 3774: 3722: 3718: 3684: 3668: 3387:
Today, the pure science of optics is called optical science or
1910:, both the wave crests and wave troughs align. This results in 1783: 1502: 835: 711: 689: 603: 491: 483: 419: 384: 300: 7198: 7186: 5057:. Philadelphia: American Philosophical Society. pp. 4–5. 3384:
as possible components of the "next generation" of computers.
1713:
Images of black letters in a thin convex lens of focal length
8455: 8422: 8256: 8241: 6546: 5752: 5686: 5647: 4352:
Modern zoom lenses may have some or all of these attributes.
3743: 3714: 3660: 3612: 3564: 3560: 3438: 3428: 3329:
corresponding to the statistics of individual photon events.
2946:. Well known manifestations of this effect appear in optical 2729: 2423: 2151:
is the angular separation between the central fringe and the
1806:
Modelling and design of optical systems using physical optics
1437:
The index of refraction of a medium is related to the speed,
1289: 1177: 961: 581: 535: 487: 435: 328: 296: 7845: 7754: 7435: 4928: 4136:, or charge-coupled device. Photographers must consider the 3473:, which means that the light either is emitted in a narrow, 2993: 7828: 4013:
Illustrations of various optical instruments from the 1728
3503:
The first working laser was demonstrated on 16 May 1960 by
1407:{\displaystyle n_{1}\sin \theta _{1}=n_{2}\sin \theta _{2}} 845:, using two convex lenses to produce higher magnification. 360: 43: 6389: 5628:
Field Guide to Geometrical Optics. SPIE Field Guides vol.
4044:
Microscopes were first developed with just two lenses: an
3733:
The human eye functions by focusing light onto a layer of
3627:. Rainbows and mirages are examples of optical phenomena. 1146:
The laws of reflection and refraction can be derived from
794: 490:(Archaeological Museum of Heraclion, Greece). Lenses from 7736: 6558: 6441:. Cambridge: Cambridge University Press. pp. 14–24. 5812:
Philosophical Transactions of the Royal Society of London
5341:
Philosophical Transactions of the Royal Society of London
4294:#" is treated as a single symbol, and specific values of 4071:
view that appears three dimensional when used by humans.
3866:
and one for the angle of orientation of the astigmatism.
3252: 1818:
model with orthogonal electric and magnetic vectors. The
1779: 1549: 916:
The next development in optical theory came in 1899 when
342:
Most optical phenomena can be accounted for by using the
7601:
University Physics: Extended Version With Modern Physics
7439:
Principles of Radiographic Imaging: An Art and a Science
7220:
Investigations on the Theory of the Photographic Process
6660: 6648: 6636: 6534: 6368: 1687:
is to the lens, the further the image is from the lens.
1679: 7814: 6476: 6474: 6315: 6049:
Memoires pour l'histoire des sciences et des beaux arts
4960:
Elena Agazzi; Enrico Giannetto; Franco Giudice (2010).
4287:
is the diameter of the entrance pupil. By convention, "
4144:
Exposure ∝ ApertureArea × ExposureTime × SceneLuminance
4028:
Single lenses have a variety of applications including
3481:, was developed first, devices that emit microwave and 3464:
Light Amplification by Stimulated Emission of Radiation
3259:. Optical polarisation is principally of importance in 3100:{\displaystyle I=I_{0}\cos ^{2}\theta _{\mathrm {i} },} 848:
Optical theory progressed in the mid-17th century with
834:. He was also able to correctly deduce the role of the 717:
In the 13th century in medieval Europe, English bishop
359:
is a more comprehensive model of light, which includes
327:, and other forms of electromagnetic radiation such as 7832: 7655: 6936: 4781:
Hogendijk, Jan P.; Sabra, Abdelhamid I., eds. (2003).
3993:
tissues with a grid structure produce shapes known as
3857:
The optical power of corrective lenses is measured in
2260:{\displaystyle \sin \theta =1.22{\frac {\lambda }{D}}} 1717:
are shown in red. Selected rays are shown for letters
7823: 6318:
Absorption and Scattering of Light by Small Particles
4273: 4253: 4200: 4177: 3395:. Prominent subfields of optical engineering include 3143: 3052: 2640: 2544: 2455: 2307:. Astronomers refer to this effect as the quality of 2231: 2107: 2028: 1584: 1449: 1348: 1340:
describes the resulting deflection of the light ray:
1062: 7467:. Dobbs Ferry, NY: Morgan & Morgan. p. 20. 7408: 6471: 6260: 5740: 5728: 4783:
The Enterprise of Science in Islam: New Perspectives
4456: 3181:{\displaystyle {\frac {I}{I_{0}}}={\frac {1}{2}}\,.} 6966: 5187: 5041:, (Chicago: Univ. of Chicago Pr., 1976), pp. 94–99. 4359:to light the medium being used is (measured by the 1729:in blue, green and orange, respectively. Note that 1161:Geometric optics is often simplified by making the 1030:
Geometry of reflection and refraction of light rays
470:Optics began with the development of lenses by the 7519:(5th ed.). West Publishing Company. pp.  7325: 7113:, Don McCready, University of Wisconsin-Whitewater 6301:(PhD thesis). Cambridge University. Archived from 6177: 6156: 5914: 5410: 5226: 4659: 4559:The Concise Oxford Dictionary of English Etymology 4513:McGraw-Hill Encyclopedia of Science and Technology 4279: 4259: 4236: 4183: 3243:, and the parameters of the polarisation ellipse. 3180: 3099: 2700: 2614: 2517: 2439:Material dispersion is often characterised by the 2259: 2131: 1794:of electromagnetic waves was predicted in 1865 by 1640: 1472: 1406: 1318:between a uniform medium with index of refraction 1118: 757:. Bacon was able to use parts of glass spheres as 7790:Optics and photonics: Physics enhancing our lives 7779:– a step-by-step introduction to classical optics 6995:E.R. Kandel; J.H. Schwartz; T.M. Jessell (2000). 6602:(2nd ed.). New York: CRC. pp. 117–120. 5977: 5975: 5805:"A dynamical theory of the electromagnetic field" 5337:"A Dynamical Theory of the Electromagnetic Field" 3607:Optics is part of everyday life. The ubiquity of 1883: 458:Timeline of electromagnetism and classical optics 8773: 7001:(4th ed.). New York: McGraw-Hill. pp.  6125:Notes and Records of the Royal Society of London 6054:Memoirs for the history of science and fine arts 5625: 5054:Renaissance Vision from Spectacles to Telescopes 4626: 4606:. Courier Dover Publications. pp. 181–182. 2194:, with the associated bright spots occurring in 1668:is the distance from the lens to the image, and 478:. The earliest known lenses, made from polished 7506: 7412:The New York Times Guide to Essential Knowledge 5991:(2nd ed.). San Diego, US: Academic Press. 5853:A dynamical theory of the electromagnetic field 5604: 5434: 4891:G. Simon (2006). "The Gaze in Ibn al-Haytham". 4348:to be physically shorter than its focal length. 3838:All of these conditions can be corrected using 3543:. Lasers are used in medicine in areas such as 3044:, of the light that passes through is given by 2047:Diffraction on two slits separated by distance 1759:) has a double-size, virtual and upright image. 606:(4th–3rd century BC) wrote a treatise entitled 7024: 7022: 6433: 5972: 5197:Stargazer: The Life and Times of the Telescope 4861: 4832: 4780: 2714:is less than zero, the medium is said to have 2000:is directly affected by interference effects. 1740:) has an equal-size, real and inverted image; 311:it. Optics usually describes the behaviour of 8681:Conservation and restoration of glass objects 8226: 7888: 7874: 7598: 7562: 7377: 7264: 7204: 7192: 7161: 7149: 7123:A.K. Jain; M. Figueiredo; J. Zerubia (2001). 6962: 6960: 6958: 6630: 6580: 6552: 6528: 6512: 6496: 6465: 6282: 6254: 6215: 6199: 6118: 6033: 5966: 5954: 5942: 5892:(3rd ed.). Roberts & Co Publishers. 5858: 5770: 5758: 5722: 5695: 5680: 5668: 5656: 5096: 3437:Experiments such as this one with high-power 3413:fabrication and testing of optical components 3135:is 1/2, the transmission coefficient becomes 1659:is the distance from the object to the lens, 295:that studies the behaviour and properties of 269: 7675:Serway, Raymond A.; Jewett, John W. (2004). 7674: 7174:P.E. Nothnagle; W. Chambers; M.W. Davidson. 6678: 6343: 5981: 5912: 5483:"On the Constitution of Atoms and Molecules" 5334: 4630:Visual Form Detection in 3-Dimensional Space 4507: 4505: 4064:, looks at side-by-side images to produce a 3317:, respond to individual photons. Electronic 2404:to the normal will be refracted at an angle 2350:which is frequency-dependent and strictly a 2318: 1327:and another medium with index of refraction 839:described an improved version, known as the 810:Board with optical devices, 1728 Cyclopaedia 7695: 7599:Young, Hugh D.; Freedman, Roger A. (2020). 7512: 7487: 7462: 7019: 6901: 6846: 6592: 6018: 5518:QED: The Strange Theory of Light and Matter 5291:Theories of light, from Descartes to Newton 5184:, Nobel Foundation. Retrieved April 3, 2009 5128:Paul S. Agutter; Denys N. Wheatley (2008). 4807: 2158:order fringe, where the central maximum is 2101:). In general, the equation takes the form 2068: 1553:A ray tracing diagram for a converging lens 1226:, which describes surfaces that have equal 1206:Reflections can be divided into two types: 785: 375:Some phenomena depend on light having both 8233: 8219: 7881: 7867: 7352: 7237: 6990: 6988: 6955: 5885: 5572:. Cambridge University Press. p. 48. 5512: 5489:. 26, Series 6: 1–25. 1913. Archived from 5313: 5288: 5103:. Courier Dover Publications. p. 27. 5039:Theories of Vision from al-Kindi to Kepler 4601: 2067:, who also coined the term from the Latin 486:, date from as early as 2000 BC from 276: 262: 7058:"Key to All Optical Illusions Discovered" 7055: 6393:Optical Networks: A Practical Perspective 6385: 6383: 6227: 6221: 6136: 5868:. Cambridge: Cambridge University Press. 5540: 5520:. Princeton University Press. p. 6. 5466: 5087:. Galileo.rice.edu. Retrieved 2012-06-10. 4685: 4683: 4658:Euclid (1999). Elaheh Kheirandish (ed.). 4555: 4502: 3174: 2660: 1293:Illustration of Snell's Law for the case 753:, Euclid, al-Kindi, Ptolemy, Tideus, and 47:A researcher working on an optical system 8240: 7625: 6864:. University of Chicago Press. pp.  6697:McAulay, Alastair D. (16 January 1991). 6070: 6023:. Cleveland: Shaker Savings Association. 5707: 5440: 5405: 5284: 5282: 5233:. Dover Publications. pp. 142–146. 5019: 4990: 4890: 4387: 4112: 4097: 4008: 3890: 3700: 3646: 3491: 3432: 3231:, in which case the light is said to be 3214: 2992: 2935: 2431:, and the green dots propagate with the 2422: 2332: 2042: 1971: 1708: 1678: 1672:is the focal length of the lens. In the 1548: 1288: 1197: 1025: 998: 805: 793: 775: 653: 461: 379:. Explanation of these effects requires 42: 7651:(4th ed.). Addison-Wesley Longman. 7436:R.R. Carlton; A. McKenna Adler (2000). 6985: 6820: 6696: 6339: 6337: 6316:C.F. Bohren & D.R. Huffman (1983). 6151: 5799: 5608:An Introduction to the Theory of Optics 5383:Max Planck: the reluctant revolutionary 5027:. Doredrecht: Springer. pp. 25–47. 4929:Ian P. Howard; Brian J. Rogers (1995). 4689: 4237:{\displaystyle f/\#=N={\frac {f}{D}}\ } 3586: 3441:are part of the modern optics research. 2202:being twice the spacing between atoms. 2132:{\displaystyle m\lambda =d\sin \theta } 2021:, and filters for colour separation in 798:Cover of the first edition of Newton's 662:'s manuscript showing his knowledge of 14: 8802:Atomic, molecular, and optical physics 8774: 8079:Atomic, molecular, and optical physics 7842:European Photonics Industry Consortium 7646: 7294: 7037:from the original on December 27, 2008 7028: 6937:J. Wilson & J.F.B. Hawkes (1987). 6424:. Academic Press Inc., New York (1960) 6380: 6295:Tubbs, Robert Nigel (September 2003). 6045: 5269: 5253: 5224: 5193: 5158: 5050: 4935:. Oxford University Press. p. 7. 4734: 4680: 4657: 4004: 3561:electro-optical countermeasures (EOCM) 2899:component or it can be 90° behind the 2225:. The size of such a disk is given by 377:wave-like and particle-like properties 8797:Applied and interdisciplinary physics 8214: 7862: 7696:Tipler, Paul A.; Mosca, Gene (2004). 7579: 7241:Mastering Black-and-White Photography 6666: 6654: 6642: 6626: 6576: 6564: 6540: 6524: 6508: 6492: 6480: 6461: 6390:R. Ramaswami; K.N. Sivarajan (1998). 6374: 6294: 6278: 6266: 6250: 6211: 6195: 6183: 6098:. London: J. Martyn and J. Allestry. 6091: 5746: 5734: 5279: 4966:. V&R unipress GmbH. p. 42. 4730: 4728: 4690:Ptolemy (1996). A. Mark Smith (ed.). 4592:. stanford.edu. Retrieved 2012-06-10. 4537:from the original on February 1, 2009 4490:List of textbooks in electromagnetism 4377: 4324:: angle of view of about 50° (called 3555:and in military applications such as 2982:, a phenomenon which is the basis of 2745:, decreasing in frequency with time. 2722:is greater than zero, the medium has 2381:, due either to material properties ( 1931: 1015: 518:philosophers, and the development of 7804: 7678:Physics for Scientists and Engineers 7603:(15th ed.). Pearson Education. 7543: 6721: 6334: 5320:. Harvard University Press. p.  3746:. The light then passes through the 3036:". Malus' law, which is named after 2303:and dispersion which cause stars to 2275:is the wavelength of the light, and 2221:, and the central bright lobe as an 1561:. Lenses are characterized by their 27:Branch of physics that studies light 7584:(5th ed.). Pearson Education. 6967:D. Atchison & G. Smith (2000). 6422:Wave Propagation and Group Velocity 3821:. Similarly, people suffering from 3631:provides the backbone for both the 3469:. Laser light is usually spatially 994: 780:The first treatise about optics by 677:. One of the earliest of these was 24: 8093: 7619: 7223:. Longmans, Green and Co. p.  7176:"Introduction to Stereomicroscopy" 6724:The Principles of Nonlinear Optics 6232:(2nd ed.). London: Longmans. 5545:. New York: Simon & Schuster. 4725: 4633:. Psychology Press. pp. 25–. 4515:(5th ed.). McGraw-Hill. 1993. 4209: 3842:. For presbyopia and hyperopia, a 3717:(black circle in the centre), and 3088: 2895:component can be 90° ahead of the 2878:In the leftmost figure above, the 2863: 2848: 2833: 2551: 2498: 2473: 2029:Diffraction and optical resolution 1799: 1763: 964:in 1953 and of the laser in 1960. 860:expanded Descartes's ideas into a 351:, treats light as a collection of 299:, including its interactions with 25: 8818: 7794:Institute of Physics publications 7715: 6772:Charles H. Townes – Nobel Lecture 5200:. Allen & Unwin. p. 55. 4814:. Brill Publishers. p. 500. 4394:October 2007 California wildfires 3869: 3515:scanner, introduced in 1974. The 3407:with practical applications like 2950:/retarders (linear modes) and in 1748:) has its image at infinity; and 1156: 7552:from the original on 2010-01-10. 7537: 7481: 7456: 7429: 7402: 7398:from the original on 2016-08-19. 7371: 7346: 7319: 7315:from the original on 2016-08-19. 7301:. Cengage Learning. p. 71. 7258: 7231: 7210: 7182:from the original on 2011-09-16. 7167: 7116: 7097: 7068: 7064:from the original on 2008-09-05. 7049: 6930: 6882: 6802:from the original on 3 July 2014 6726:. New York: Wiley-Interscience. 6616:from the original on 2015-04-02. 6410:from the original on 2015-10-27. 6008:from the original on 2008-04-06. 5849:from the original on 2011-07-28. 5586:from the original on 28 May 2013 5495:. The landmark paper laying the 5214:from the original on 2016-05-08. 5148:from the original on 2016-05-16. 5117:from the original on 2016-06-17. 4980:from the original on 2016-05-10. 4949:from the original on 2016-05-06. 4828:from the original on 2016-04-27. 4647:from the original on 2016-05-03. 4480:Important publications in optics 4459: 4363:, or, for digital media, by the 3709:is a living optical device. The 3286: 3210: 2906:right-hand circular polarisation 2288:defined the somewhat arbitrary " 1932: 243: 242: 229: 66: 8751:Radioactive waste vitrification 8706:Glass fiber reinforced concrete 8200:Timeline of physics discoveries 7075:Geometry of the Vanishing Point 6919:from the original on 2012-01-07 6840: 6829:from the original on 2008-05-17 6814: 6784: 6765: 6754:from the original on 2008-03-31 6740: 6715: 6690: 6672: 6586: 6427: 6414: 6350:(2nd ed.). Wiley. p.  6309: 6288: 6230:Geometrical and Physical Optics 6145: 6112: 6085: 6064: 6039: 6012: 5906: 5879: 5793: 5776: 5701: 5619: 5598: 5559: 5534: 5506: 5475: 5399: 5375: 5328: 5307: 5218: 5168: 5121: 5090: 5071: 5044: 5031: 4984: 4953: 4932:Binocular Vision and Stereopsis 4922: 4771: 4344:, a design that uses a special 4301:# are written by replacing the 4117:Photograph taken with aperture 4102:Photograph taken with aperture 3602: 3485:frequencies are usually called 2910:left-hand circular polarisation 2868:Elliptical polarisation diagram 2756: 2628:is the index of refraction and 1855:transmission-line matrix method 1265:mirrors with parabolic surfaces 901:showed that light followed the 494:date around 700 BC, as do 7763:– Melles Griot Technical Guide 7757:– Optics library and community 7700:. Vol. 2. W. H. Freeman. 7660:. Cambridge University Press. 7632:. Cambridge University Press. 7626:Born, Max; Wolf, Emil (2002). 7572: 5889:Introduction to Fourier Optics 4864:Arabic Sciences and Philosophy 4835:Arabic Sciences and Philosophy 4785:. MIT Press. pp. 85–118. 4708: 4651: 4620: 4595: 4576: 4549: 4519: 4087: 3956:. This illusion so confounded 3116:is the initial intensity, and 1884:Superposition and interference 1829:Kirchhoff diffraction equation 1278: 1202:Diagram of specular reflection 1187: 13: 1: 8618:Chemically strengthened glass 7649:Introduction to Modern Optics 7409:New York Times Staff (2004). 7357:. Amphoto Books. p. 35. 7104:"The Moon Illusion Explained" 6119:Turnbull, H. W. (1940–1941). 4998:; Carman, Charles H. (eds.). 4604:A manual of greek mathematics 4495: 3553:laser capture microdissection 3203:. When light reflects from a 2853:Circular polarisation diagram 1903:wavelength and frequency are 1443:, of light in that medium by 1309:, such as air/water interface 893:conducted experiments on the 682: 624:and described the effects of 8451:Glass-ceramic-to-metal seals 7546:"An Introduction to Mirages" 7492:. Amsterdam: North-Holland. 7384:. Focal Press. p. 294. 6998:Principles of Neural Science 5921:. University Science Books. 5864:M. Born and E. Wolf (1999). 5100:The History of the Telescope 4893:The Medieval History Journal 3642: 3509:Hughes Research Laboratories 2974:, such properties, known as 2928:and is characterised by the 932:published the theory of the 602:. Some hundred years later, 542: 339:exhibit similar properties. 7: 8164:Quantum information science 7767:Physics of Light and Optics 7563:Young & Freedman (2020) 7442:. Thomson Delmar Learning. 7326:Leslie D. Stroebel (1999). 7244:. Allworth Communications. 7205:Young & Freedman (2020) 7193:Young & Freedman (2020) 7162:Young & Freedman (2020) 7150:Young & Freedman (2020) 6792:"The VLT's Artificial Star" 6631:Young & Freedman (2020) 6581:Young & Freedman (2020) 6553:Young & Freedman (2020) 6529:Young & Freedman (2020) 6513:Young & Freedman (2020) 6497:Young & Freedman (2020) 6466:Young & Freedman (2020) 6283:Young & Freedman (2020) 6255:Young & Freedman (2020) 6216:Young & Freedman (2020) 6200:Young & Freedman (2020) 6034:Young & Freedman (2020) 5967:Young & Freedman (2020) 5955:Young & Freedman (2020) 5943:Young & Freedman (2020) 5771:Young & Freedman (2020) 5759:Young & Freedman (2020) 5723:Young & Freedman (2020) 5712:. New York: Academic Press. 5696:Young & Freedman (2020) 5683:, pp. 1142–1143, 1145. 5681:Young & Freedman (2020) 5669:Young & Freedman (2020) 5657:Young & Freedman (2020) 4527:"World's oldest telescope?" 4452: 3615:. Many people benefit from 2838:Linear polarisation diagram 2385:) or to the geometry of an 2271:is the angular resolution, 1506:materials are used to make 814:In the early 17th century, 737:or physics of light, and a 10: 8823: 7995:Classical electromagnetism 6909:"How the CD was developed" 6396:. London: Academic Press. 4905:10.1177/097194580500900105 4381: 4091: 4021: 3883: 3873: 3802:lens has become with age. 3742:, then passes through the 3690: 3567:. Lasers are also used in 3426: 3372:have taken an interest in 3364:, statistical optics, and 3290: 2760: 2322: 2215:diffraction-limited optics 2055:and are numbered as order 2032: 1887: 1800:quantum mechanical effects 1767: 1542: 1282: 1191: 1019: 658:Reproduction of a page of 612:where he linked vision to 536: 455: 449: 445: 323:light. Light is a type of 29: 8792:Electromagnetic radiation 8671: 8603: 8535: 8482:Chemical vapor deposition 8469: 8431: 8403:Ultra low expansion glass 8293:Borophosphosilicate glass 8275: 8249: 8172: 8109: 8037: 7953: 7925: 7897: 7647:Fowles, Grant R. (1975). 6825:. University of Chicago. 6682:; Milburn, G. J. (1994). 6347:Classical Electrodynamics 6228:Longhurst, R. S. (1968). 5773:, p. 1143,1163,1175. 5626:J.E. Greivenkamp (2004). 4876:10.1017/S0957423907000367 4847:10.1017/S0957423905000172 4627:William R. Uttal (1983). 4267:is the focal length, and 3533:Fibre-optic communication 3422: 2718:or normal dispersion. If 2319:Dispersion and scattering 1912:constructive interference 1877:Gaussian beam propagation 1700:Monochromatic aberrations 1538: 1533:total internal reflection 1180:and object positions and 862:corpuscle theory of light 344:classical electromagnetic 325:electromagnetic radiation 215:List of unsolved problems 8721:Glass-reinforced plastic 8383:Sodium hexametaphosphate 8101:Condensed matter physics 7811:European Optical Society 7771:Brigham Young University 7056:J. Bryner (2008-06-02). 7031:"Ophthalmic Lens Design" 5633:. SPIE. pp. 19–20. 5605:Arthur Schuster (1904). 5468:10.1002/andp.19053220607 5317:A Source Book in Physics 5134:. Springer. p. 17. 5051:Ilardi, Vincent (2007). 3397:illumination engineering 2065:Francesco Maria Grimaldi 1991:Michelson interferometer 1917:destructive interference 1488:speed of light in vacuum 303:and the construction of 8613:Anti-reflective coating 8487:Glass batch calculation 8368:Photochromic lens glass 7743:Textbooks and tutorials 6969:Optics of the Human Eye 6796:ESO Picture of the Week 5708:Marchand, E.W. (1978). 3880:Perspective (graphical) 3861:, a value equal to the 3557:missile defence systems 2873:Elliptical polarisation 2782:elliptical polarisation 2284:therefore be resolved. 2002:Antireflective coatings 1998:thin films and coatings 1890:Superposition principle 1851:boundary element method 1845:techniques such as the 1802:have to be considered. 1142:of the second material. 954:quantum electrodynamics 903:superposition principle 852:written by philosopher 755:Constantine the African 596:reversal of mirrors in 8185:Nobel Prize in Physics 8047:Relativistic mechanics 7580:Hecht, Eugene (2017). 7378:Sidney F. Ray (2002). 7295:Warren, Bruce (2001). 7265:M.J. Langford (2000). 6858:; Tim Lincoln (eds.). 6468:, pp. 1083, 1118. 6437:& E. Wolf (1999). 6138:10.1098/rsnr.1940.0003 6046:Aubert, J. L. (1760). 5985:Optical Interferometry 5832:10.1098/rstl.1865.0008 5497:Bohr model of the atom 5487:Philosophical Magazine 5413:The Old Quantum Theory 5361:10.1098/rstl.1865.0008 5175:Microscopes: Time Line 5097:Henry C. King (2003). 4666:. New York: Springer. 4485:List of optical topics 4397: 4281: 4261: 4238: 4185: 4125: 4110: 4094:Science of photography 4054:conservation of energy 4019: 3907:unconscious inferences 3896: 3764:black-and-white vision 3730: 3713:(light brown region), 3688: 3500: 3442: 3269:circular birefringence 3267:and optical rotation ( 3241:degree of polarisation 3224: 3182: 3101: 3021: 2869: 2854: 2839: 2702: 2616: 2519: 2436: 2338: 2311:. Techniques known as 2261: 2178:Fraunhofer diffraction 2133: 2069: 2060: 1981:predictable patterns. 1977: 1833:Fraunhofer diffraction 1760: 1683: 1642: 1554: 1474: 1473:{\displaystyle n=c/v,} 1408: 1336:. In such situations, 1310: 1203: 1163:paraxial approximation 1120: 1031: 1004: 967:Following the work of 907:electromagnetic theory 899:double slit experiment 811: 803: 791: 786: 666: 584:first articulated the 467: 205:List of physics awards 48: 38:Optic (disambiguation) 36:. For other uses, see 8746:Prince Rupert's drops 8595:Transparent materials 8555:Gradient-index optics 8363:Phosphosilicate glass 8190:Philosophy of physics 7565:, pp. 1117–1118. 7355:Using the View Camera 7329:View Camera Technique 7178:. Nikon MicroscopyU. 7164:, pp. 1171–1173. 7152:, pp. 1171–1175. 6633:, pp. 1119–1121. 6583:, pp. 1124–1125. 6344:J.D. Jackson (1975). 6257:, pp. 1228–1230. 6218:, pp. 1224–1225. 6163:. New Jersey: Wiley. 6071:Brewster, D. (1831). 6036:, pp. 1198–1200. 5982:P. Hariharan (2003). 5969:, pp. 1191–1192. 5945:, pp. 1187–1188. 5913:A.E. Siegman (1986). 5725:, pp. 1113–1115. 5710:Gradient Index Optics 5671:, pp. 1112–1113. 5611:. E. Arnold. p.  5516:(1985). "Chapter 1". 5441:Einstein, A. (1905). 5417:. Pergamon. pp.  5335:J.C. Maxwell (1865). 5225:Caspar, Max (1993) . 5194:Watson, Fred (2007). 4996:Hendrix, John Shannon 4439:temperature inversion 4391: 4282: 4262: 4239: 4186: 4116: 4101: 4081:reflecting telescopes 4062:comparison microscope 4012: 3894: 3729:which protect the eye 3704: 3650: 3629:Optical communication 3495: 3436: 3331:Light-emitting diodes 3218: 3183: 3102: 2996: 2988:polarisation rotators 2936:Changing polarisation 2867: 2852: 2837: 2703: 2617: 2520: 2426: 2336: 2262: 2134: 2046: 1975: 1894:Interference (optics) 1847:finite element method 1712: 1698:that distort images. 1682: 1643: 1552: 1508:gradient-index optics 1475: 1409: 1292: 1201: 1121: 1029: 1002: 891:Augustin-Jean Fresnel 809: 797: 779: 769:around 1595, and the 664:the law of refraction 657: 465: 46: 8711:Glass ionomer cement 8585:Photosensitive glass 8512:Liquidus temperature 8333:Fluorosilicate glass 8149:Mathematical physics 7721:Relevant discussions 7629:Principles of Optics 7513:C.D. Ahrens (1994). 7488:J.M. Cowley (1975). 7463:W. Crawford (1979). 6722:Shen, Y. R. (1984). 6599:Tunable Laser Optics 6567:, pp. 367, 373. 6527:, pp. 334–335; 6511:, pp. 333–334; 6495:, pp. 330–332; 6464:, pp. 333–334; 6214:, pp. 488–491; 6198:, pp. 398–399; 6074:A Treatise on Optics 6019:E.R. Hoover (1977). 5957:, p. 512, 1189. 5801:Maxwell, James Clerk 4694:. DIANE Publishing. 4583:A History Of The Eye 4435:Novaya Zemlya effect 4271: 4251: 4198: 4175: 4171:#, often notated as 4058:compound microscopes 3593:Kapitsa–Dirac effect 3587:Kapitsa–Dirac effect 3141: 3050: 2922:polarisation ellipse 2763:Polarisation (waves) 2638: 2542: 2453: 2445:propagation constant 2395:dielectric materials 2391:waveguide dispersion 2372:Brillouin scattering 2229: 2105: 2077:to break into pieces 2015:interference filters 1867:acoustic engineering 1704:chromatic aberration 1582: 1567:lensmaker's equation 1447: 1346: 1273:spherical aberration 1224:Lambert's cosine law 1194:Reflection (physics) 1060: 973:quantum field theory 934:photoelectric effect 771:refracting telescope 8731:Glass-to-metal seal 8653:Self-cleaning glass 8575:Optical lens design 8124:Atmospheric physics 7963:Classical mechanics 7891:branches of physics 7820:The Optical Society 7490:Diffraction physics 7353:S. Simmons (1992). 7238:B.J. Suess (2003). 6889:What is a bar code? 6680:Walls, Daniel Frank 6669:, pp. 353–356. 6657:, pp. 355–358. 6645:, pp. 339–342. 6543:, pp. 379–383. 6439:Principle of Optics 6377:, pp. 202–204. 6238:1967gpo..book.....L 5886:J. Goodman (2005). 5866:Principle of Optics 5824:1865RSPT..155..459C 5459:1905AnP...322..132E 5353:1865RSPT..155..459C 5314:W.F. Magie (1935). 5289:A.I. Sabra (1981). 5002:. Farnham, Surrey: 4602:T.L. Heath (2003). 4030:photographic lenses 4024:Optical instruments 4005:Optical instruments 3852:cylindrical surface 3735:photoreceptor cells 3697:Photometry (optics) 3529:semiconductor laser 3499:'s laser guide star 3475:low-divergence beam 3448:stimulated emission 3393:optical engineering 3339:quantum electronics 3297:Optical engineering 3237:partially polarised 3038:Étienne-Louis Malus 2964:Erasmus Bartholinus 2817:that describes the 2774:linear polarisation 2724:negative dispersion 2716:positive dispersion 2483: 2383:material dispersion 2356:Rayleigh scattering 2325:Dispersion (optics) 2309:astronomical seeing 2170:diffraction grating 1987:angular resolutions 1963:Two waves 180° out 1796:Maxwell's equations 1694:Lenses suffer from 1218:) or extrapolated ( 1208:specular reflection 922:blackbody radiation 920:correctly modelled 911:James Clerk Maxwell 842:Keplerian telescope 641:angle of refraction 560:intromission theory 498:lenses such as the 54:Part of a series on 8807:Natural philosophy 8716:Glass microspheres 8638:Hydrogen darkening 8560:Hydrogen darkening 8308:Chalcogenide glass 8298:Borosilicate glass 8180:History of physics 7773:Undergraduate Book 7761:Fundamental Optics 7109:2015-12-04 at the 7091:2007-07-13 at the 7080:2008-06-22 at the 7033:. OptiCampus.com. 6894:2012-04-23 at the 6777:2008-10-11 at the 6092:Hooke, R. (1665). 5541:N. Taylor (2000). 5447:Annalen der Physik 5388:2012-04-01 at the 5180:2010-01-09 at the 5083:2012-03-20 at the 5006:. pp. 11–30. 5004:Ashgate Publishing 4588:2012-01-20 at the 4556:T.F. Hoad (1996). 4398: 4384:Atmospheric optics 4378:Atmospheric optics 4365:quantum efficiency 4277: 4257: 4234: 4181: 4126: 4111: 4020: 3897: 3731: 3689: 3581:laser hair removal 3501: 3443: 3382:photonic computing 3370:computer engineers 3358:non-imaging optics 3335:photovoltaic cells 3265:circular dichroism 3225: 3178: 3097: 3030:polarising filters 3022: 2920:in the plane (the 2870: 2855: 2840: 2819:polarisation state 2739:negatively chirped 2698: 2612: 2515: 2467: 2437: 2352:quantum mechanical 2348:Compton scattering 2343:Thomson scattering 2339: 2290:Rayleigh criterion 2257: 2129: 2061: 2039:Optical resolution 2011:dielectric mirrors 1996:The appearance of 1978: 1958:Two waves in phase 1898:In the absence of 1843:Numerical modeling 1761: 1684: 1638: 1555: 1470: 1404: 1311: 1212:diffuse reflection 1204: 1150:which states that 1148:Fermat's principle 1116: 1035:Geometrical optics 1032: 1022:Geometrical optics 1016:Geometrical optics 1005: 946:absorption spectra 870:Christiaan Huygens 812: 804: 792: 767:optical microscope 759:magnifying glasses 719:Robert Grosseteste 667: 633:, in his treatise 618:geometrical optics 520:geometrical optics 468: 236:Physics portal 49: 8769: 8768: 8686:Glass-coated wire 8658:sol–gel technique 8643:Insulated glazing 8580:Photochromic lens 8565:Optical amplifier 8517:sol–gel technique 8208: 8207: 8195:Physics education 8144:Materials science 8111:Interdisciplinary 8069:Quantum mechanics 7856: 7855: 7707:978-0-7167-0810-0 7688:978-0-534-40842-8 7667:978-0-521-43631-1 7639:978-1-139-64340-5 7610:978-1-292-31473-0 7591:978-0-133-97722-6 7530:978-0-314-02779-5 7499:978-0-444-10791-6 7474:978-0-87100-158-0 7449:978-0-7668-1300-7 7422:978-0-312-31367-8 7391:978-0-240-51540-3 7364:978-0-8174-6353-3 7339:978-0-240-80345-6 7308:978-0-7668-1777-7 7278:978-0-240-51592-2 7268:Basic Photography 7251:978-1-58115-306-4 7136:978-3-540-42523-6 7012:978-0-8385-7701-1 6978:978-0-7506-3775-6 6948:978-0-13-523697-0 6941:. Prentice Hall. 6875:978-0-226-28413-2 6852:"The first laser" 6823:"The first laser" 6750:. Reference.com. 6733:978-0-471-88998-4 6708:978-0-471-63242-9 6609:978-1-4822-4529-5 6448:978-0-521-64222-4 6420:Brillouin, Léon. 6403:978-0-12-374092-2 6361:978-0-471-43132-9 6327:978-0-471-29340-8 6170:978-0-471-20257-8 6105:978-0-486-49564-4 5998:978-0-12-325220-3 5928:978-0-935702-11-8 5899:978-0-9747077-2-3 5640:978-0-8194-5294-8 5579:978-0-521-49345-1 5552:978-0-684-83515-0 5527:978-0-691-08388-9 5501:molecular bonding 5300:978-0-521-28436-3 5207:978-1-74175-383-7 5141:978-1-4020-8865-0 5110:978-0-486-43265-6 5064:978-0-87169-259-7 5013:978-1-4094-0024-0 4973:978-3-89971-735-8 4942:978-0-19-508476-4 4821:978-90-04-10119-7 4792:978-0-262-19482-2 4720:978-0-521-52069-0 4701:978-0-87169-862-9 4673:978-0-387-98523-7 4640:978-0-89859-289-4 4613:978-0-486-43231-1 4569:978-0-19-283098-2 4372:diffraction limit 4280:{\displaystyle D} 4260:{\displaystyle f} 4233: 4229: 4184:{\displaystyle N} 4034:rear-view mirrors 3987:Zöllner illusions 3840:corrective lenses 3768:peripheral vision 3577:laser light shows 3549:laser eye surgery 3545:bloodless surgery 3374:integrated optics 3362:non-linear optics 3221:polarising filter 3219:The effects of a 3197:Fresnel equations 3172: 3159: 2980:mechanical stress 2930:Stokes parameters 2693: 2658: 2596: 2513: 2484: 2387:optical waveguide 2255: 2207:optically resolve 2184:X-ray diffraction 2023:colour television 1970: 1969: 1871:signal processing 1633: 1620: 1600: 1254:Corner reflectors 1239:Law of Reflection 1105: 830:and astronomical 590:visual perception 524:Greco-Roman world 472:ancient Egyptians 452:History of optics 381:quantum mechanics 291:is the branch of 286: 285: 142:Classical physics 16:(Redirected from 8814: 8507:Ion implantation 8262:Glass transition 8235: 8228: 8221: 8212: 8211: 8134:Chemical physics 8074:Particle physics 8000:Classical optics 7883: 7876: 7869: 7860: 7859: 7805: 7749:Light and Matter 7711: 7692: 7671: 7652: 7643: 7614: 7595: 7566: 7560: 7554: 7553: 7541: 7535: 7534: 7510: 7504: 7503: 7485: 7479: 7478: 7460: 7454: 7453: 7433: 7427: 7426: 7406: 7400: 7399: 7375: 7369: 7368: 7350: 7344: 7343: 7323: 7317: 7316: 7292: 7283: 7282: 7262: 7256: 7255: 7235: 7229: 7228: 7214: 7208: 7207:, pp. 1175. 7202: 7196: 7190: 7184: 7183: 7171: 7165: 7159: 7153: 7147: 7141: 7140: 7120: 7114: 7101: 7095: 7072: 7066: 7065: 7053: 7047: 7046: 7044: 7042: 7026: 7017: 7016: 6992: 6983: 6982: 6964: 6953: 6952: 6934: 6928: 6927: 6925: 6924: 6905: 6899: 6886: 6880: 6879: 6844: 6838: 6837: 6835: 6834: 6818: 6812: 6811: 6809: 6807: 6788: 6782: 6781:. nobelprize.org 6769: 6763: 6762: 6760: 6759: 6744: 6738: 6737: 6719: 6713: 6712: 6694: 6688: 6687: 6676: 6670: 6664: 6658: 6652: 6646: 6640: 6634: 6624: 6618: 6617: 6590: 6584: 6574: 6568: 6562: 6556: 6550: 6544: 6538: 6532: 6522: 6516: 6506: 6500: 6490: 6484: 6478: 6469: 6459: 6453: 6452: 6431: 6425: 6418: 6412: 6411: 6387: 6378: 6372: 6366: 6365: 6341: 6332: 6331: 6313: 6307: 6306: 6292: 6286: 6276: 6270: 6264: 6258: 6248: 6242: 6241: 6225: 6219: 6209: 6203: 6193: 6187: 6181: 6175: 6174: 6162: 6149: 6143: 6142: 6140: 6116: 6110: 6109: 6089: 6083: 6082: 6068: 6062: 6061: 6043: 6037: 6031: 6025: 6024: 6016: 6010: 6009: 6007: 5990: 5979: 5970: 5964: 5958: 5952: 5946: 5940: 5934: 5932: 5920: 5910: 5904: 5903: 5883: 5877: 5862: 5856: 5850: 5848: 5809: 5797: 5791: 5780: 5774: 5768: 5762: 5756: 5750: 5744: 5738: 5732: 5726: 5720: 5714: 5713: 5705: 5699: 5693: 5684: 5678: 5672: 5666: 5660: 5654: 5645: 5644: 5623: 5617: 5616: 5602: 5596: 5595: 5593: 5591: 5563: 5557: 5556: 5538: 5532: 5531: 5510: 5504: 5494: 5493:on July 4, 2007. 5479: 5473: 5472: 5470: 5438: 5432: 5430: 5416: 5403: 5397: 5396:. December 2000. 5379: 5373: 5372: 5332: 5326: 5325: 5311: 5305: 5304: 5286: 5277: 5267: 5261: 5251: 5245: 5244: 5232: 5222: 5216: 5215: 5191: 5185: 5172: 5166: 5156: 5150: 5149: 5125: 5119: 5118: 5094: 5088: 5075: 5069: 5068: 5048: 5042: 5035: 5029: 5028: 5017: 4988: 4982: 4981: 4957: 4951: 4950: 4926: 4920: 4916: 4887: 4858: 4829: 4804: 4775: 4769: 4768: 4732: 4723: 4712: 4706: 4705: 4687: 4678: 4677: 4665: 4655: 4649: 4648: 4624: 4618: 4617: 4599: 4593: 4580: 4574: 4573: 4553: 4547: 4546: 4544: 4542: 4533:. July 1, 1999. 4523: 4517: 4516: 4509: 4469: 4464: 4463: 4423:rays of sunlight 4300: 4298: 4293: 4291: 4286: 4284: 4283: 4278: 4266: 4264: 4263: 4258: 4243: 4241: 4240: 4235: 4231: 4230: 4222: 4208: 4190: 4188: 4187: 4182: 4170: 4168: 4123: 4121: 4108: 4106: 3952:than it does at 3876:Optical illusion 3808:ophthalmologists 3740:anterior chamber 3665:anterior chamber 3597:optical tweezers 3468: 3465: 3462: 3417:image processing 3368:. Additionally, 3311:photomultipliers 3273:optically active 3201:Brewster's angle 3187: 3185: 3184: 3179: 3173: 3165: 3160: 3158: 3157: 3145: 3134: 3124: 3115: 3106: 3104: 3103: 3098: 3093: 3092: 3091: 3078: 3077: 3068: 3067: 3043: 3019: 2956:optical rotation 2952:Faraday rotation 2902: 2898: 2894: 2885: 2881: 2828: 2824: 2815:Lissajous figure 2812: 2806: 2802: 2769:transverse waves 2721: 2713: 2707: 2705: 2704: 2699: 2694: 2692: 2691: 2690: 2677: 2673: 2672: 2662: 2659: 2651: 2631: 2627: 2621: 2619: 2618: 2613: 2611: 2610: 2602: 2598: 2597: 2595: 2587: 2579: 2556: 2555: 2554: 2535: 2524: 2522: 2521: 2516: 2514: 2512: 2504: 2503: 2502: 2501: 2487: 2485: 2482: 2477: 2476: 2463: 2415: 2403: 2379:phase velocities 2368:Raman scattering 2278: 2274: 2270: 2266: 2264: 2263: 2258: 2256: 2248: 2201: 2192:Bragg reflection 2164: 2157: 2155: 2150: 2142: 2138: 2136: 2135: 2130: 2100: 2081: 2078: 2075: 2072: 2058: 2054: 2050: 1936: 1922: 1921: 1758: 1747: 1739: 1716: 1671: 1667: 1658: 1647: 1645: 1644: 1639: 1634: 1626: 1621: 1619: 1618: 1606: 1601: 1599: 1598: 1586: 1530: 1521: 1485: 1479: 1477: 1476: 1471: 1463: 1442: 1433: 1424: 1413: 1411: 1410: 1405: 1403: 1402: 1387: 1386: 1374: 1373: 1358: 1357: 1335: 1326: 1308: 1140:refractive index 1137: 1131: 1125: 1123: 1122: 1117: 1106: 1104: 1103: 1102: 1101: 1084: 1083: 1082: 1081: 1064: 1041:, describes the 1003:Classical optics 995:Classical optics 977:George Sudarshan 789: 708:Kitab al-manazir 687: 684: 588:, the idea that 554: 551: 550:appearance, look 548: 545: 539: 538: 363:effects such as 349:geometric optics 278: 271: 264: 251: 246: 245: 238: 234: 233: 210:List of journals 147:Electromagnetism 70: 51: 50: 21: 8822: 8821: 8817: 8816: 8815: 8813: 8812: 8811: 8772: 8771: 8770: 8765: 8701:Glass electrode 8696:Glass databases 8673: 8667: 8605: 8599: 8531: 8465: 8441:Bioactive glass 8427: 8413:Vitreous enamel 8398:Thoriated glass 8393:Tellurite glass 8378:Soda–lime glass 8348:Gold ruby glass 8318:Cranberry glass 8271: 8245: 8239: 8209: 8204: 8168: 8154:Medical physics 8105: 8064:Nuclear physics 8033: 8027:Non-equilibrium 7949: 7921: 7893: 7887: 7857: 7784:Further reading 7718: 7708: 7689: 7668: 7658:Optical Physics 7640: 7622: 7620:Further reading 7617: 7611: 7592: 7575: 7570: 7569: 7561: 7557: 7542: 7538: 7531: 7511: 7507: 7500: 7486: 7482: 7475: 7461: 7457: 7450: 7434: 7430: 7423: 7407: 7403: 7392: 7376: 7372: 7365: 7351: 7347: 7340: 7332:. Focal Press. 7324: 7320: 7309: 7293: 7286: 7279: 7271:. Focal Press. 7263: 7259: 7252: 7236: 7232: 7215: 7211: 7203: 7199: 7195:, p. 1174. 7191: 7187: 7172: 7168: 7160: 7156: 7148: 7144: 7137: 7121: 7117: 7111:Wayback Machine 7102: 7098: 7093:Wayback Machine 7082:Wayback Machine 7073: 7069: 7060:. LiveScience. 7054: 7050: 7040: 7038: 7027: 7020: 7013: 6993: 6986: 6979: 6965: 6956: 6949: 6935: 6931: 6922: 6920: 6907: 6906: 6902: 6896:Wayback Machine 6887: 6883: 6876: 6845: 6841: 6832: 6830: 6819: 6815: 6805: 6803: 6790: 6789: 6785: 6779:Wayback Machine 6770: 6766: 6757: 6755: 6746: 6745: 6741: 6734: 6720: 6716: 6709: 6695: 6691: 6677: 6673: 6665: 6661: 6653: 6649: 6641: 6637: 6629:, p. 338; 6625: 6621: 6610: 6591: 6587: 6579:, p. 372; 6575: 6571: 6563: 6559: 6555:, p. 1124. 6551: 6547: 6539: 6535: 6531:, p. 1124. 6523: 6519: 6515:, p. 1123. 6507: 6503: 6499:, p. 1123. 6491: 6487: 6479: 6472: 6460: 6456: 6449: 6432: 6428: 6419: 6415: 6404: 6388: 6381: 6373: 6369: 6362: 6342: 6335: 6328: 6314: 6310: 6293: 6289: 6285:, p. 1232. 6281:, p. 485; 6277: 6273: 6265: 6261: 6253:, p. 497; 6249: 6245: 6226: 6222: 6210: 6206: 6202:, p. 1192. 6194: 6190: 6182: 6178: 6171: 6150: 6146: 6117: 6113: 6106: 6090: 6086: 6069: 6065: 6044: 6040: 6032: 6028: 6017: 6013: 6005: 5999: 5988: 5980: 5973: 5965: 5961: 5953: 5949: 5941: 5937: 5929: 5911: 5907: 5900: 5884: 5880: 5863: 5859: 5846: 5807: 5798: 5794: 5781: 5777: 5769: 5765: 5761:, p. 1157. 5757: 5753: 5745: 5741: 5733: 5729: 5721: 5717: 5706: 5702: 5698:, p. 1116. 5694: 5687: 5679: 5675: 5667: 5663: 5659:, p. 1109. 5655: 5648: 5641: 5624: 5620: 5603: 5599: 5589: 5587: 5580: 5569:Optical Physics 5564: 5560: 5553: 5539: 5535: 5528: 5511: 5507: 5481: 5480: 5476: 5439: 5435: 5404: 5400: 5390:Wayback Machine 5380: 5376: 5333: 5329: 5312: 5308: 5301: 5293:. CUP Archive. 5287: 5280: 5268: 5264: 5252: 5248: 5241: 5223: 5219: 5208: 5192: 5188: 5182:Wayback Machine 5173: 5169: 5157: 5153: 5142: 5126: 5122: 5111: 5095: 5091: 5085:Wayback Machine 5076: 5072: 5065: 5049: 5045: 5037:D.C. Lindberg, 5036: 5032: 5021:El-Bizri, Nader 5014: 4992:El-Bizri, Nader 4989: 4985: 4974: 4958: 4954: 4943: 4927: 4923: 4919: 4822: 4793: 4776: 4772: 4733: 4726: 4713: 4709: 4702: 4688: 4681: 4674: 4656: 4652: 4641: 4625: 4621: 4614: 4600: 4596: 4590:Wayback Machine 4581: 4577: 4570: 4554: 4550: 4540: 4538: 4525: 4524: 4520: 4511: 4510: 4503: 4498: 4465: 4458: 4455: 4386: 4380: 4346:telephoto group 4338:Long focus lens 4332:Wide-angle lens 4296: 4295: 4289: 4288: 4272: 4269: 4268: 4252: 4249: 4248: 4221: 4204: 4199: 4196: 4195: 4191:, and given by 4176: 4173: 4172: 4166: 4165: 4119: 4118: 4104: 4103: 4096: 4090: 4026: 4007: 3942:vanishing point 3938:Wundt illusions 3889: 3882: 3874:Main articles: 3872: 3844:converging lens 3779:photopic vision 3752:vitreous humour 3699: 3691:Main articles: 3653:vitreous humour 3645: 3605: 3589: 3525:optical storage 3505:Theodore Maiman 3466: 3463: 3460: 3431: 3425: 3405:optoelectronics 3389:optical physics 3354:singular optics 3299: 3293:Optical physics 3291:Main articles: 3289: 3271:) exhibited by 3213: 3164: 3153: 3149: 3144: 3142: 3139: 3138: 3129: 3123: 3117: 3114: 3108: 3087: 3086: 3082: 3073: 3069: 3063: 3059: 3051: 3048: 3047: 3041: 3018: 3011: 3004: 2998: 2984:photoelasticity 2938: 2900: 2896: 2892: 2883: 2879: 2876: 2875: 2861: 2860: 2846: 2845: 2826: 2822: 2808: 2804: 2800: 2765: 2759: 2719: 2711: 2686: 2682: 2678: 2668: 2664: 2663: 2661: 2650: 2639: 2636: 2635: 2629: 2625: 2603: 2588: 2580: 2578: 2568: 2564: 2563: 2550: 2549: 2545: 2543: 2540: 2539: 2534: 2528: 2505: 2497: 2496: 2492: 2488: 2486: 2478: 2472: 2471: 2462: 2454: 2451: 2450: 2405: 2401: 2331: 2323:Main articles: 2321: 2313:adaptive optics 2276: 2272: 2268: 2247: 2230: 2227: 2226: 2199: 2196:unique patterns 2159: 2153: 2152: 2148: 2140: 2106: 2103: 2102: 2098: 2079: 2076: 2073: 2056: 2052: 2048: 2041: 2033:Main articles: 2031: 2019:heat reflectors 1964: 1927: 1896: 1888:Main articles: 1886: 1820:Huygens–Fresnel 1808: 1772: 1770:Physical optics 1766: 1764:Physical optics 1753: 1745: 1734: 1714: 1674:sign convention 1669: 1666: 1660: 1657: 1651: 1625: 1614: 1610: 1605: 1594: 1590: 1585: 1583: 1580: 1579: 1547: 1541: 1529: 1523: 1520: 1514: 1481: 1459: 1448: 1445: 1444: 1438: 1432: 1426: 1423: 1417: 1398: 1394: 1382: 1378: 1369: 1365: 1353: 1349: 1347: 1344: 1343: 1334: 1328: 1325: 1319: 1307: 1300: 1294: 1287: 1281: 1258:retroreflection 1196: 1190: 1167:Gaussian optics 1159: 1133: 1127: 1097: 1093: 1092: 1085: 1077: 1073: 1072: 1065: 1063: 1061: 1058: 1057: 1024: 1018: 997: 930:Albert Einstein 820:pinhole cameras 816:Johannes Kepler 782:Johannes Kepler 685: 651:of the images. 586:emission theory 564:emission theory 552: 549: 546: 530:comes from the 466:The Nimrud lens 460: 454: 448: 357:Physical optics 282: 241: 228: 227: 220: 219: 190: 182: 181: 167:Nuclear physics 117: 107: 93: 41: 28: 23: 22: 15: 12: 11: 5: 8820: 8810: 8809: 8804: 8799: 8794: 8789: 8784: 8767: 8766: 8764: 8763: 8758: 8753: 8748: 8743: 8738: 8733: 8728: 8723: 8718: 8713: 8708: 8703: 8698: 8693: 8688: 8683: 8677: 8675: 8669: 8668: 8666: 8665: 8663:Tempered glass 8660: 8655: 8650: 8645: 8640: 8635: 8633:DNA microarray 8630: 8628:Dealkalization 8625: 8620: 8615: 8609: 8607: 8601: 8600: 8598: 8597: 8592: 8587: 8582: 8577: 8572: 8567: 8562: 8557: 8552: 8547: 8541: 8539: 8533: 8532: 8530: 8529: 8524: 8519: 8514: 8509: 8504: 8502:Glass modeling 8499: 8494: 8489: 8484: 8479: 8473: 8471: 8467: 8466: 8464: 8463: 8458: 8453: 8448: 8443: 8437: 8435: 8433:Glass-ceramics 8429: 8428: 8426: 8425: 8420: 8415: 8410: 8405: 8400: 8395: 8390: 8385: 8380: 8375: 8373:Silicate glass 8370: 8365: 8360: 8355: 8350: 8345: 8340: 8335: 8330: 8325: 8320: 8315: 8310: 8305: 8300: 8295: 8290: 8285: 8279: 8277: 8273: 8272: 8270: 8269: 8264: 8259: 8253: 8251: 8247: 8246: 8244:science topics 8238: 8237: 8230: 8223: 8215: 8206: 8205: 8203: 8202: 8197: 8192: 8187: 8182: 8176: 8174: 8170: 8169: 8167: 8166: 8161: 8156: 8151: 8146: 8141: 8136: 8131: 8126: 8121: 8115: 8113: 8107: 8106: 8104: 8103: 8098: 8097: 8096: 8091: 8086: 8076: 8071: 8066: 8061: 8060: 8059: 8054: 8043: 8041: 8035: 8034: 8032: 8031: 8030: 8029: 8024: 8017:Thermodynamics 8014: 8013: 8012: 8007: 7997: 7992: 7987: 7986: 7985: 7980: 7975: 7970: 7959: 7957: 7951: 7950: 7948: 7947: 7946: 7945: 7935: 7929: 7927: 7923: 7922: 7920: 7919: 7918: 7917: 7907: 7901: 7899: 7895: 7894: 7886: 7885: 7878: 7871: 7863: 7854: 7853: 7849: 7848: 7837: 7836: 7835: 7826: 7817: 7803: 7802: 7801: 7797: 7796: 7786: 7785: 7781: 7780: 7774: 7764: 7758: 7752: 7745: 7744: 7740: 7739: 7723: 7722: 7717: 7716:External links 7714: 7713: 7712: 7706: 7693: 7687: 7672: 7666: 7653: 7644: 7638: 7621: 7618: 7616: 7615: 7609: 7596: 7590: 7576: 7574: 7571: 7568: 7567: 7555: 7536: 7529: 7505: 7498: 7480: 7473: 7455: 7448: 7428: 7421: 7401: 7390: 7370: 7363: 7345: 7338: 7318: 7307: 7284: 7277: 7257: 7250: 7230: 7209: 7197: 7185: 7166: 7154: 7142: 7135: 7115: 7096: 7067: 7048: 7018: 7011: 6984: 6977: 6954: 6947: 6929: 6915:. 2007-08-17. 6900: 6898:denso-wave.com 6881: 6874: 6839: 6813: 6783: 6764: 6739: 6732: 6714: 6707: 6689: 6684:Quantum Optics 6671: 6659: 6647: 6635: 6619: 6608: 6585: 6569: 6557: 6545: 6533: 6517: 6501: 6485: 6483:, p. 336. 6470: 6454: 6447: 6426: 6413: 6402: 6379: 6367: 6360: 6333: 6326: 6308: 6305:on 2008-10-05. 6287: 6271: 6269:, p. 482. 6259: 6243: 6220: 6204: 6188: 6176: 6169: 6144: 6111: 6104: 6084: 6063: 6038: 6026: 6011: 5997: 5971: 5959: 5947: 5935: 5927: 5905: 5898: 5878: 5857: 5792: 5775: 5763: 5751: 5749:, p. 165. 5739: 5737:, p. 159. 5727: 5715: 5700: 5685: 5673: 5661: 5646: 5639: 5618: 5597: 5578: 5558: 5551: 5533: 5526: 5505: 5474: 5453:(6): 132–148. 5433: 5398: 5374: 5327: 5306: 5299: 5278: 5262: 5246: 5239: 5217: 5206: 5186: 5167: 5151: 5140: 5120: 5109: 5089: 5070: 5063: 5043: 5030: 5012: 4983: 4972: 4952: 4941: 4921: 4918: 4917: 4888: 4859: 4841:(2): 189–218. 4830: 4820: 4805: 4791: 4777: 4770: 4749:10.1086/355456 4743:(3): 464–491. 4724: 4707: 4700: 4679: 4672: 4650: 4639: 4619: 4612: 4594: 4575: 4568: 4548: 4518: 4500: 4499: 4497: 4494: 4493: 4492: 4487: 4482: 4477: 4471: 4470: 4467:Physics portal 4454: 4451: 4382:Main article: 4379: 4376: 4350: 4349: 4342:telephoto lens 4335: 4329: 4311:depth of field 4276: 4256: 4245: 4244: 4228: 4225: 4220: 4217: 4214: 4211: 4207: 4203: 4180: 4146: 4145: 4092:Main article: 4089: 4086: 4046:objective lens 4022:Main article: 4006: 4003: 3995:moiré patterns 3886:visual effects 3871: 3870:Visual effects 3868: 3848:diverging lens 3657:ciliary muscle 3644: 3641: 3621:contact lenses 3609:visual systems 3604: 3601: 3588: 3585: 3541:laser pointers 3537:laser printers 3527:devices use a 3427:Main article: 3424: 3421: 3378:machine vision 3346:crystal optics 3307:quantum optics 3288: 3285: 3212: 3209: 3177: 3171: 3168: 3163: 3156: 3152: 3148: 3121: 3112: 3096: 3090: 3085: 3081: 3076: 3072: 3066: 3062: 3058: 3055: 3016: 3009: 3002: 2937: 2934: 2926:Jones calculus 2871: 2862: 2856: 2847: 2841: 2832: 2761:Main article: 2758: 2755: 2751:optical fibres 2697: 2689: 2685: 2681: 2676: 2671: 2667: 2657: 2654: 2649: 2646: 2643: 2609: 2606: 2601: 2594: 2591: 2586: 2583: 2577: 2574: 2571: 2567: 2562: 2559: 2553: 2548: 2532: 2511: 2508: 2500: 2495: 2491: 2481: 2475: 2470: 2466: 2461: 2458: 2433:group velocity 2429:phase velocity 2364:Tyndall effect 2360:Mie scattering 2320: 2317: 2294:Interferometry 2254: 2251: 2246: 2243: 2240: 2237: 2234: 2128: 2125: 2122: 2119: 2116: 2113: 2110: 2084:Newton's rings 2030: 2027: 1983:Interferometry 1968: 1967: 1960: 1955: 1952: 1951: 1945: 1944: 1938: 1937: 1930: 1885: 1882: 1863:Fourier optics 1827:of waves. The 1807: 1804: 1776:speed of light 1768:Main article: 1765: 1762: 1664: 1655: 1637: 1632: 1629: 1624: 1617: 1613: 1609: 1604: 1597: 1593: 1589: 1543:Main article: 1540: 1537: 1527: 1518: 1469: 1466: 1462: 1458: 1455: 1452: 1430: 1421: 1401: 1397: 1393: 1390: 1385: 1381: 1377: 1372: 1368: 1364: 1361: 1356: 1352: 1332: 1323: 1305: 1298: 1283:Main article: 1280: 1277: 1235:surface normal 1192:Main article: 1189: 1186: 1182:magnifications 1158: 1157:Approximations 1155: 1144: 1143: 1115: 1112: 1109: 1100: 1096: 1091: 1088: 1080: 1076: 1071: 1068: 1054: 1020:Main article: 1017: 1014: 996: 993: 985:Leonard Mandel 981:Roy J. Glauber 913:in the 1860s. 854:René Descartes 828:solar eclipses 703:Book of Optics 698:curved mirrors 692:mathematician 504:ancient Romans 450:Main article: 447: 444: 410:(particularly 389:Quantum optics 284: 283: 281: 280: 273: 266: 258: 255: 254: 253: 252: 239: 222: 221: 218: 217: 212: 207: 202: 191: 188: 187: 184: 183: 180: 179: 177:Thermodynamics 174: 169: 164: 162:Modern physics 159: 154: 149: 144: 139: 134: 132:Atomic physics 129: 124: 118: 113: 112: 109: 108: 106: 105: 94: 92: 91: 86: 81: 75: 72: 71: 63: 62: 56: 55: 26: 18:Optical device 9: 6: 4: 3: 2: 8819: 8808: 8805: 8803: 8800: 8798: 8795: 8793: 8790: 8788: 8785: 8783: 8780: 8779: 8777: 8762: 8759: 8757: 8754: 8752: 8749: 8747: 8744: 8742: 8739: 8737: 8734: 8732: 8729: 8727: 8724: 8722: 8719: 8717: 8714: 8712: 8709: 8707: 8704: 8702: 8699: 8697: 8694: 8692: 8689: 8687: 8684: 8682: 8679: 8678: 8676: 8670: 8664: 8661: 8659: 8656: 8654: 8651: 8649: 8646: 8644: 8641: 8639: 8636: 8634: 8631: 8629: 8626: 8624: 8621: 8619: 8616: 8614: 8611: 8610: 8608: 8602: 8596: 8593: 8591: 8588: 8586: 8583: 8581: 8578: 8576: 8573: 8571: 8570:Optical fiber 8568: 8566: 8563: 8561: 8558: 8556: 8553: 8551: 8548: 8546: 8543: 8542: 8540: 8538: 8534: 8528: 8527:Vitrification 8525: 8523: 8520: 8518: 8515: 8513: 8510: 8508: 8505: 8503: 8500: 8498: 8497:Glass melting 8495: 8493: 8492:Glass forming 8490: 8488: 8485: 8483: 8480: 8478: 8475: 8474: 8472: 8468: 8462: 8459: 8457: 8454: 8452: 8449: 8447: 8444: 8442: 8439: 8438: 8436: 8434: 8430: 8424: 8421: 8419: 8416: 8414: 8411: 8409: 8408:Uranium glass 8406: 8404: 8401: 8399: 8396: 8394: 8391: 8389: 8388:Soluble glass 8386: 8384: 8381: 8379: 8376: 8374: 8371: 8369: 8366: 8364: 8361: 8359: 8356: 8354: 8351: 8349: 8346: 8344: 8341: 8339: 8336: 8334: 8331: 8329: 8326: 8324: 8321: 8319: 8316: 8314: 8311: 8309: 8306: 8304: 8303:Ceramic glaze 8301: 8299: 8296: 8294: 8291: 8289: 8286: 8284: 8281: 8280: 8278: 8274: 8268: 8265: 8263: 8260: 8258: 8255: 8254: 8252: 8248: 8243: 8236: 8231: 8229: 8224: 8222: 8217: 8216: 8213: 8201: 8198: 8196: 8193: 8191: 8188: 8186: 8183: 8181: 8178: 8177: 8175: 8171: 8165: 8162: 8160: 8159:Ocean physics 8157: 8155: 8152: 8150: 8147: 8145: 8142: 8140: 8137: 8135: 8132: 8130: 8127: 8125: 8122: 8120: 8117: 8116: 8114: 8112: 8108: 8102: 8099: 8095: 8094:Modern optics 8092: 8090: 8087: 8085: 8082: 8081: 8080: 8077: 8075: 8072: 8070: 8067: 8065: 8062: 8058: 8055: 8053: 8050: 8049: 8048: 8045: 8044: 8042: 8040: 8036: 8028: 8025: 8023: 8020: 8019: 8018: 8015: 8011: 8008: 8006: 8003: 8002: 8001: 7998: 7996: 7993: 7991: 7988: 7984: 7981: 7979: 7976: 7974: 7971: 7969: 7966: 7965: 7964: 7961: 7960: 7958: 7956: 7952: 7944: 7943:Computational 7941: 7940: 7939: 7936: 7934: 7931: 7930: 7928: 7924: 7916: 7913: 7912: 7911: 7908: 7906: 7903: 7902: 7900: 7896: 7892: 7884: 7879: 7877: 7872: 7870: 7865: 7864: 7861: 7852: 7847: 7843: 7840: 7839: 7838: 7834: 7830: 7827: 7825: 7821: 7818: 7816: 7812: 7809: 7808: 7807: 7806: 7799: 7798: 7795: 7791: 7788: 7787: 7783: 7782: 7778: 7777:Optics for PV 7775: 7772: 7768: 7765: 7762: 7759: 7756: 7753: 7750: 7747: 7746: 7742: 7741: 7738: 7734: 7733: 7728: 7725: 7724: 7720: 7719: 7709: 7703: 7699: 7694: 7690: 7684: 7680: 7679: 7673: 7669: 7663: 7659: 7654: 7650: 7645: 7641: 7635: 7631: 7630: 7624: 7623: 7612: 7606: 7602: 7597: 7593: 7587: 7583: 7578: 7577: 7564: 7559: 7551: 7547: 7540: 7532: 7526: 7522: 7518: 7517: 7509: 7501: 7495: 7491: 7484: 7476: 7470: 7466: 7459: 7451: 7445: 7441: 7440: 7432: 7424: 7418: 7415:. Macmillan. 7414: 7413: 7405: 7397: 7393: 7387: 7383: 7382: 7374: 7366: 7360: 7356: 7349: 7341: 7335: 7331: 7330: 7322: 7314: 7310: 7304: 7300: 7299: 7291: 7289: 7280: 7274: 7270: 7269: 7261: 7253: 7247: 7243: 7242: 7234: 7226: 7222: 7221: 7213: 7206: 7201: 7194: 7189: 7181: 7177: 7170: 7163: 7158: 7151: 7146: 7138: 7132: 7128: 7127: 7119: 7112: 7108: 7105: 7100: 7094: 7090: 7087: 7083: 7079: 7076: 7071: 7063: 7059: 7052: 7036: 7032: 7025: 7023: 7014: 7008: 7004: 7000: 6999: 6991: 6989: 6980: 6974: 6970: 6963: 6961: 6959: 6950: 6944: 6940: 6933: 6918: 6914: 6910: 6904: 6897: 6893: 6890: 6885: 6877: 6871: 6867: 6863: 6862: 6857: 6853: 6849: 6843: 6828: 6824: 6821:C.H. Townes. 6817: 6801: 6797: 6793: 6787: 6780: 6776: 6773: 6768: 6753: 6749: 6743: 6735: 6729: 6725: 6718: 6710: 6704: 6700: 6693: 6685: 6681: 6675: 6668: 6663: 6656: 6651: 6644: 6639: 6632: 6628: 6623: 6615: 6611: 6605: 6601: 6600: 6595: 6589: 6582: 6578: 6573: 6566: 6561: 6554: 6549: 6542: 6537: 6530: 6526: 6521: 6514: 6510: 6505: 6498: 6494: 6489: 6482: 6477: 6475: 6467: 6463: 6458: 6450: 6444: 6440: 6436: 6430: 6423: 6417: 6409: 6405: 6399: 6395: 6394: 6386: 6384: 6376: 6371: 6363: 6357: 6353: 6349: 6348: 6340: 6338: 6329: 6323: 6319: 6312: 6304: 6300: 6299: 6291: 6284: 6280: 6275: 6268: 6263: 6256: 6252: 6247: 6239: 6235: 6231: 6224: 6217: 6213: 6208: 6201: 6197: 6192: 6185: 6180: 6172: 6166: 6161: 6160: 6154: 6148: 6139: 6134: 6130: 6126: 6122: 6115: 6107: 6101: 6097: 6096: 6088: 6080: 6076: 6075: 6067: 6059: 6055: 6051: 6050: 6042: 6035: 6030: 6022: 6015: 6004: 6000: 5994: 5987: 5986: 5978: 5976: 5968: 5963: 5956: 5951: 5944: 5939: 5930: 5924: 5919: 5918: 5909: 5901: 5895: 5891: 5890: 5882: 5875: 5874:0-521-64222-1 5871: 5867: 5861: 5854: 5845: 5841: 5837: 5833: 5829: 5825: 5821: 5817: 5813: 5806: 5802: 5796: 5789: 5788:0-471-87297-0 5785: 5779: 5772: 5767: 5760: 5755: 5748: 5743: 5736: 5731: 5724: 5719: 5711: 5704: 5697: 5692: 5690: 5682: 5677: 5670: 5665: 5658: 5653: 5651: 5642: 5636: 5632: 5631: 5622: 5614: 5610: 5609: 5601: 5585: 5581: 5575: 5571: 5570: 5562: 5554: 5548: 5544: 5537: 5529: 5523: 5519: 5515: 5509: 5502: 5498: 5492: 5488: 5484: 5478: 5469: 5464: 5460: 5456: 5452: 5449:(in German). 5448: 5444: 5437: 5428: 5424: 5420: 5415: 5414: 5408: 5402: 5395: 5394:Physics World 5391: 5387: 5384: 5378: 5370: 5366: 5362: 5358: 5354: 5350: 5346: 5342: 5338: 5331: 5323: 5319: 5318: 5310: 5302: 5296: 5292: 5285: 5283: 5275: 5271: 5270:Caspar (1993) 5266: 5259: 5255: 5254:Ilardi (2007) 5250: 5242: 5240:0-486-67605-6 5236: 5231: 5230: 5221: 5213: 5209: 5203: 5199: 5198: 5190: 5183: 5179: 5176: 5171: 5164: 5160: 5159:Ilardi (2007) 5155: 5147: 5143: 5137: 5133: 5132: 5124: 5116: 5112: 5106: 5102: 5101: 5093: 5086: 5082: 5079: 5074: 5066: 5060: 5056: 5055: 5047: 5040: 5034: 5026: 5022: 5015: 5009: 5005: 5001: 4997: 4993: 4987: 4979: 4975: 4969: 4965: 4964: 4956: 4948: 4944: 4938: 4934: 4933: 4925: 4914: 4910: 4906: 4902: 4898: 4894: 4889: 4885: 4881: 4877: 4873: 4869: 4865: 4860: 4856: 4852: 4848: 4844: 4840: 4836: 4831: 4827: 4823: 4817: 4813: 4812: 4806: 4802: 4798: 4794: 4788: 4784: 4779: 4778: 4774: 4766: 4762: 4758: 4754: 4750: 4746: 4742: 4738: 4731: 4729: 4721: 4717: 4711: 4703: 4697: 4693: 4686: 4684: 4675: 4669: 4664: 4663: 4654: 4646: 4642: 4636: 4632: 4631: 4623: 4615: 4609: 4605: 4598: 4591: 4587: 4584: 4579: 4571: 4565: 4561: 4560: 4552: 4536: 4532: 4528: 4522: 4514: 4508: 4506: 4501: 4491: 4488: 4486: 4483: 4481: 4478: 4476: 4473: 4472: 4468: 4462: 4457: 4450: 4446: 4444: 4440: 4436: 4430: 4428: 4424: 4420: 4416: 4412: 4408: 4404: 4395: 4390: 4385: 4375: 4373: 4368: 4366: 4362: 4358: 4353: 4347: 4343: 4339: 4336: 4333: 4330: 4327: 4323: 4320: 4319: 4318: 4314: 4312: 4308: 4304: 4274: 4254: 4226: 4223: 4218: 4215: 4212: 4205: 4201: 4194: 4193: 4192: 4178: 4163: 4158: 4157:in daylight. 4156: 4152: 4151:Sunny 16 rule 4143: 4142: 4141: 4139: 4135: 4131: 4115: 4100: 4095: 4085: 4083: 4082: 4076: 4072: 4070: 4067: 4063: 4059: 4055: 4051: 4047: 4042: 4039: 4035: 4031: 4025: 4018: 4017: 4011: 4002: 4000: 3996: 3992: 3988: 3984: 3980: 3979:Fraser spiral 3976: 3972: 3967: 3965: 3964: 3959: 3955: 3951: 3947: 3946:moon illusion 3943: 3939: 3935: 3931: 3927: 3923: 3919: 3915: 3910: 3908: 3903: 3893: 3887: 3881: 3877: 3867: 3864: 3860: 3855: 3853: 3849: 3845: 3841: 3836: 3833: 3829: 3824: 3820: 3815: 3813: 3809: 3805: 3800: 3796: 3792: 3791:accommodation 3787: 3784: 3780: 3776: 3771: 3769: 3765: 3759: 3757: 3753: 3749: 3745: 3741: 3736: 3728: 3724: 3720: 3716: 3712: 3708: 3703: 3698: 3694: 3686: 3682: 3678: 3674: 3670: 3666: 3662: 3658: 3654: 3649: 3640: 3638: 3634: 3630: 3626: 3622: 3618: 3614: 3610: 3600: 3598: 3594: 3584: 3582: 3578: 3574: 3570: 3566: 3562: 3558: 3554: 3550: 3546: 3542: 3538: 3534: 3530: 3526: 3522: 3518: 3514: 3510: 3506: 3498: 3494: 3490: 3488: 3484: 3480: 3476: 3472: 3458: 3454: 3450: 3449: 3440: 3435: 3430: 3420: 3418: 3414: 3410: 3406: 3402: 3398: 3394: 3390: 3385: 3383: 3379: 3375: 3371: 3367: 3363: 3359: 3355: 3351: 3350:metamaterials 3347: 3342: 3340: 3336: 3332: 3328: 3324: 3320: 3319:image sensors 3316: 3312: 3308: 3303: 3302:Modern optics 3298: 3294: 3287:Modern optics 3284: 3282: 3278: 3274: 3270: 3266: 3262: 3258: 3254: 3250: 3244: 3242: 3238: 3234: 3230: 3222: 3217: 3211:Natural light 3208: 3206: 3202: 3198: 3192: 3188: 3175: 3169: 3166: 3161: 3154: 3150: 3146: 3136: 3133: 3126: 3120: 3111: 3094: 3083: 3079: 3074: 3070: 3064: 3060: 3056: 3053: 3045: 3039: 3035: 3031: 3027: 3015: 3008: 3001: 2995: 2991: 2989: 2985: 2981: 2977: 2973: 2969: 2965: 2961: 2957: 2953: 2949: 2945: 2944: 2933: 2931: 2927: 2923: 2919: 2913: 2911: 2907: 2888: 2874: 2866: 2859: 2851: 2844: 2836: 2831: 2820: 2816: 2811: 2798: 2794: 2789: 2787: 2783: 2779: 2775: 2770: 2764: 2757:Polarisation 2754: 2752: 2746: 2744: 2740: 2736: 2732: 2731: 2725: 2717: 2708: 2695: 2687: 2683: 2679: 2674: 2669: 2665: 2655: 2652: 2647: 2644: 2641: 2633: 2622: 2607: 2604: 2599: 2592: 2589: 2584: 2581: 2575: 2572: 2569: 2565: 2560: 2557: 2546: 2537: 2531: 2525: 2509: 2506: 2493: 2489: 2479: 2468: 2464: 2459: 2456: 2448: 2446: 2442: 2434: 2430: 2425: 2421: 2419: 2413: 2409: 2398: 2396: 2392: 2388: 2384: 2380: 2375: 2373: 2369: 2365: 2361: 2357: 2353: 2349: 2344: 2335: 2330: 2326: 2316: 2314: 2310: 2306: 2302: 2297: 2295: 2291: 2287: 2282: 2252: 2249: 2244: 2241: 2238: 2235: 2232: 2224: 2220: 2216: 2212: 2208: 2203: 2197: 2193: 2189: 2185: 2181: 2179: 2175: 2171: 2166: 2162: 2146: 2126: 2123: 2120: 2117: 2114: 2111: 2108: 2095: 2091: 2089: 2088:James Gregory 2085: 2071: 2066: 2045: 2040: 2036: 2026: 2024: 2020: 2016: 2012: 2006: 2003: 1999: 1994: 1992: 1988: 1984: 1974: 1966: 1961: 1959: 1956: 1954: 1953: 1950: 1947: 1946: 1943: 1940: 1939: 1935: 1929: 1924: 1923: 1920: 1918: 1913: 1909: 1908: 1901: 1895: 1891: 1881: 1878: 1874: 1872: 1868: 1864: 1859: 1856: 1852: 1848: 1844: 1840: 1836: 1834: 1830: 1826: 1825:superposition 1821: 1817: 1813: 1803: 1801: 1797: 1791: 1789: 1785: 1781: 1777: 1771: 1756: 1751: 1743: 1738: 1732: 1728: 1724: 1720: 1711: 1707: 1705: 1701: 1697: 1692: 1688: 1681: 1677: 1675: 1663: 1654: 1648: 1635: 1630: 1627: 1622: 1615: 1611: 1607: 1602: 1595: 1591: 1587: 1577: 1575: 1570: 1568: 1564: 1560: 1551: 1546: 1545:Lens (optics) 1536: 1534: 1526: 1517: 1511: 1509: 1504: 1499: 1497: 1491: 1489: 1484: 1467: 1464: 1460: 1456: 1453: 1450: 1441: 1435: 1429: 1420: 1414: 1399: 1395: 1391: 1388: 1383: 1379: 1375: 1370: 1366: 1362: 1359: 1354: 1350: 1341: 1339: 1331: 1322: 1317: 1304: 1297: 1291: 1286: 1276: 1274: 1270: 1266: 1261: 1259: 1255: 1251: 1250:mirror images 1247: 1242: 1240: 1236: 1231: 1229: 1225: 1221: 1217: 1213: 1209: 1200: 1195: 1185: 1183: 1179: 1175: 1174: 1168: 1164: 1154: 1153: 1149: 1141: 1136: 1130: 1113: 1110: 1107: 1098: 1094: 1089: 1086: 1078: 1074: 1069: 1066: 1055: 1052: 1051: 1050: 1047: 1044: 1040: 1036: 1028: 1023: 1013: 1009: 1001: 992: 990: 986: 982: 978: 974: 970: 965: 963: 959: 955: 951: 947: 943: 939: 935: 931: 927: 923: 919: 914: 912: 908: 904: 900: 896: 892: 888: 883: 881: 880: 875: 871: 867: 863: 859: 855: 851: 846: 844: 843: 837: 833: 829: 825: 821: 817: 808: 801: 796: 788: 783: 778: 774: 772: 768: 762: 760: 756: 752: 748: 744: 740: 736: 733:of light, an 732: 728: 724: 720: 715: 713: 709: 705: 704: 699: 695: 691: 680: 676: 672: 665: 661: 656: 652: 650: 646: 642: 638: 637: 632: 627: 623: 619: 615: 611: 610: 605: 601: 600: 595: 591: 587: 583: 579: 577: 573: 569: 565: 561: 556: 544: 533: 532:ancient Greek 529: 525: 521: 517: 513: 509: 505: 501: 497: 493: 489: 485: 481: 477: 476:Mesopotamians 473: 464: 459: 453: 443: 441: 437: 433: 429: 425: 421: 417: 413: 412:ophthalmology 409: 405: 401: 397: 392: 390: 386: 382: 378: 373: 370: 366: 362: 358: 354: 350: 345: 340: 338: 334: 330: 326: 322: 318: 314: 310: 306: 302: 298: 294: 290: 279: 274: 272: 267: 265: 260: 259: 257: 256: 250: 240: 237: 232: 226: 225: 224: 223: 216: 213: 211: 208: 206: 203: 200: 196: 193: 192: 186: 185: 178: 175: 173: 170: 168: 165: 163: 160: 158: 155: 153: 150: 148: 145: 143: 140: 138: 135: 133: 130: 128: 125: 123: 120: 119: 116: 111: 110: 103: 99: 96: 95: 90: 87: 85: 82: 80: 77: 76: 74: 73: 69: 65: 64: 61: 58: 57: 53: 52: 45: 39: 35: 34: 19: 8736:Porous glass 8691:Safety glass 8648:Porous glass 8606:modification 8536: 8418:Wood's glass 8338:Fused quartz 8313:Cobalt glass 8267:Supercooling 8119:Astrophysics 7933:Experimental 7850: 7731: 7697: 7677: 7657: 7648: 7627: 7600: 7581: 7558: 7539: 7515: 7508: 7489: 7483: 7464: 7458: 7438: 7431: 7411: 7404: 7380: 7373: 7354: 7348: 7328: 7321: 7297: 7267: 7260: 7240: 7233: 7219: 7212: 7200: 7188: 7169: 7157: 7145: 7129:. Springer. 7125: 7118: 7099: 7070: 7051: 7041:November 12, 7039:. Retrieved 7029:D. Meister. 6997: 6971:. Elsevier. 6968: 6938: 6932: 6921:. Retrieved 6912: 6903: 6884: 6860: 6856:Laura Garwin 6842: 6831:. Retrieved 6816: 6804:. Retrieved 6795: 6786: 6767: 6756:. Retrieved 6742: 6723: 6717: 6698: 6692: 6683: 6674: 6667:Hecht (2017) 6662: 6655:Hecht (2017) 6650: 6643:Hecht (2017) 6638: 6627:Hecht (2017) 6622: 6598: 6588: 6577:Hecht (2017) 6572: 6565:Hecht (2017) 6560: 6548: 6541:Hecht (2017) 6536: 6525:Hecht (2017) 6520: 6509:Hecht (2017) 6504: 6493:Hecht (2017) 6488: 6481:Hecht (2017) 6462:Hecht (2017) 6457: 6438: 6429: 6421: 6416: 6392: 6375:Hecht (2017) 6370: 6346: 6317: 6311: 6303:the original 6297: 6290: 6279:Hecht (2017) 6274: 6267:Hecht (2017) 6262: 6251:Hecht (2017) 6246: 6229: 6223: 6212:Hecht (2017) 6207: 6196:Hecht (2017) 6191: 6186:, p. 5. 6184:Hecht (2017) 6179: 6158: 6147: 6128: 6124: 6114: 6094: 6087: 6073: 6066: 6053: 6048: 6041: 6029: 6020: 6014: 5984: 5962: 5950: 5938: 5916: 5908: 5888: 5881: 5865: 5860: 5815: 5811: 5795: 5778: 5766: 5754: 5747:Hecht (2017) 5742: 5735:Hecht (2017) 5730: 5718: 5709: 5703: 5676: 5664: 5629: 5627: 5621: 5607: 5600: 5588:. Retrieved 5568: 5561: 5542: 5536: 5517: 5508: 5491:the original 5486: 5477: 5450: 5446: 5436: 5412: 5407:Einstein, A. 5401: 5393: 5377: 5344: 5340: 5330: 5316: 5309: 5290: 5265: 5249: 5228: 5220: 5196: 5189: 5170: 5154: 5130: 5123: 5099: 5092: 5073: 5053: 5046: 5038: 5033: 5024: 4999: 4986: 4962: 4955: 4931: 4924: 4896: 4892: 4867: 4863: 4838: 4834: 4810: 4782: 4773: 4740: 4736: 4710: 4691: 4661: 4653: 4629: 4622: 4603: 4597: 4578: 4558: 4551: 4539:. Retrieved 4530: 4521: 4512: 4447: 4443:Fata Morgana 4431: 4399: 4369: 4354: 4351: 4345: 4325: 4315: 4246: 4159: 4147: 4127: 4079: 4077: 4073: 4066:stereoscopic 4057: 4043: 4027: 4014: 3968: 3961: 3911: 3898: 3856: 3837: 3816: 3804:Optometrists 3788: 3783:night vision 3772: 3760: 3732: 3606: 3603:Applications 3590: 3521:compact disc 3502: 3486: 3478: 3452: 3446: 3444: 3386: 3343: 3315:channeltrons 3301: 3300: 3268: 3245: 3236: 3232: 3226: 3193: 3189: 3137: 3131: 3127: 3118: 3109: 3046: 3029: 3025: 3023: 3013: 3006: 2999: 2943:birefringent 2941: 2939: 2921: 2914: 2909: 2905: 2889: 2877: 2872: 2857: 2842: 2818: 2809: 2790: 2766: 2747: 2743:down-chirped 2742: 2738: 2734: 2727: 2723: 2715: 2709: 2634: 2623: 2538: 2529: 2526: 2449: 2438: 2411: 2407: 2406:arcsin(sin ( 2399: 2390: 2382: 2376: 2340: 2298: 2219:Airy pattern 2204: 2182: 2167: 2160: 2096: 2092: 2062: 2007: 1995: 1979: 1962: 1957: 1948: 1941: 1925: 1904: 1897: 1875: 1860: 1841: 1837: 1809: 1792: 1773: 1754: 1749: 1741: 1736: 1730: 1726: 1722: 1718: 1699: 1693: 1689: 1685: 1661: 1652: 1649: 1578: 1571: 1563:focal length 1558: 1556: 1524: 1515: 1512: 1500: 1492: 1482: 1439: 1436: 1427: 1418: 1415: 1342: 1329: 1320: 1312: 1302: 1295: 1262: 1246:flat mirrors 1243: 1232: 1205: 1170: 1160: 1151: 1145: 1134: 1128: 1048: 1038: 1034: 1033: 1010: 1006: 966: 925: 915: 895:interference 887:Thomas Young 884: 877: 874:Robert Hooke 858:Isaac Newton 847: 840: 813: 799: 763: 725:of light, a 723:epistemology 716: 707: 701: 675:Muslim world 668: 634: 617: 607: 597: 580: 557: 527: 469: 440:fibre optics 393: 374: 369:interference 341: 307:that use or 288: 287: 171: 127:Astrophysics 32: 8761:Glass fiber 8726:Glass cloth 8470:Preparation 8446:CorningWare 8328:Flint glass 8323:Crown glass 8276:Formulation 8022:Statistical 7938:Theoretical 7915:Engineering 7732:In Our Time 7573:Works cited 7298:Photography 7086:Convergence 6848:C.H. Townes 6686:. Springer. 6594:F.J. Duarte 6153:Rothman, T. 5933:Chapter 16. 5347:: 459–512. 5272:, pp.  4441:called the 4322:Normal lens 4303:number sign 4164:or f-stop, 4138:reciprocity 4088:Photography 4016:Cyclopaedia 3991:transparent 3983:Poggendorff 3922:Müller-Lyer 3832:astigmatism 3738:cornea—the 3677:optic nerve 3673:lens cortex 3635:and modern 3613:five senses 3573:bubblegrams 3451:. The term 3409:lens design 3257:photographs 3233:unpolarised 3032:or simply " 2976:pleochroism 2948:wave plates 2728:positively 2441:Abbe number 2070:diffringere 2035:Diffraction 1696:aberrations 1338:Snell's Law 1279:Refractions 1188:Reflections 1173:ray tracing 1043:propagation 950:development 928:. In 1905, 868:. In 1690, 743:Roger Bacon 727:metaphysics 671:Middle Ages 669:During the 622:perspective 616:, creating 526:. The word 500:Nimrud lens 432:microscopes 404:photography 400:engineering 365:diffraction 337:radio waves 317:ultraviolet 305:instruments 8776:Categories 8756:Windshield 8590:Refraction 8550:Dispersion 8358:Milk glass 8353:Lead glass 8139:Geophysics 8129:Biophysics 7973:Analytical 7926:Approaches 7755:Optics2001 7544:A. Young. 6923:2007-08-17 6833:2008-05-15 6758:2008-05-15 5514:R. Feynman 5256:, p.  5161:, p.  4496:References 4475:Ion optics 4415:afterglows 4361:film speed 4001:patterns. 3999:line moiré 3975:Ehrenstein 3863:reciprocal 3819:presbyopia 3795:near point 3756:blind spot 3617:eyeglasses 3366:radiometry 3327:shot noise 3325:, exhibit 3321:, such as 3249:atmosphere 3229:correlated 3034:polarisers 2972:mineralogy 2797:components 2735:up-chirped 2329:Scattering 2301:scattering 1788:wavelength 1496:dispersion 1285:Refraction 1039:ray optics 991:of light. 989:statistics 969:Paul Dirac 938:Niels Bohr 918:Max Planck 686: 801 626:refraction 568:Democritus 456:See also: 428:telescopes 398:, various 333:microwaves 152:Geophysics 137:Biophysics 8623:Corrosion 8522:Viscosity 8477:Annealing 8089:Molecular 7990:Acoustics 7983:Continuum 7978:Celestial 7968:Newtonian 7955:Classical 7898:Divisions 7800:Societies 6701:. Wiley. 6320:. Wiley. 6131:: 22–38. 5840:186207827 5369:186207827 4913:170628785 4899:: 89–98. 4884:170960993 4870:: 57–80. 4855:123057532 4765:144361526 4357:sensitive 4307:zoom lens 4210:# 4069:binocular 4038:periscope 3971:café wall 3914:Ames room 3823:hyperopia 3812:opticians 3799:far point 3727:eyelashes 3707:human eye 3693:Human eye 3643:Human eye 3637:telephony 3569:holograms 3517:laserdisc 3401:photonics 3281:molecules 3261:chemistry 3205:thin film 3084:θ 3080:⁡ 2968:dichroism 2786:chirality 2684:λ 2653:λ 2648:− 2605:− 2593:λ 2576:λ 2573:− 2510:λ 2420:pattern. 2362:with the 2250:λ 2239:θ 2236:⁡ 2223:Airy disk 2145:two slits 2127:θ 2124:⁡ 2112:λ 1900:nonlinear 1778:waves in 1574:thin lens 1396:θ 1392:⁡ 1367:θ 1363:⁡ 1316:interface 1228:luminance 1171:paraxial 1095:θ 1090:⁡ 1075:θ 1070:⁡ 850:treatises 731:cosmogony 649:chirality 576:Aristotle 416:optometry 396:astronomy 195:Physicist 157:Mechanics 122:Acoustics 8741:Pre-preg 8545:Achromat 8288:Bioglass 8283:AgInSbTe 7822:(OSA) – 7550:Archived 7396:Archived 7313:Archived 7180:Archived 7107:Archived 7089:Archived 7078:Archived 7062:Archived 7035:Archived 6917:Archived 6913:BBC News 6892:Archived 6850:(2003). 6827:Archived 6800:Archived 6775:Archived 6752:Archived 6614:Archived 6596:(2015). 6408:Archived 6155:(2003). 6003:Archived 5844:Archived 5803:(1865). 5584:Archived 5386:Archived 5212:Archived 5178:Archived 5146:Archived 5115:Archived 5081:Archived 4978:Archived 4947:Archived 4826:Archived 4801:50252039 4645:Archived 4586:Archived 4535:Archived 4531:BBC News 4453:See also 4427:sun dogs 4162:f-number 4155:exposure 4050:eyepiece 3859:diopters 3633:Internet 3471:coherent 3026:dichroic 2858:Circular 2799:labeled 2778:circular 2286:Rayleigh 2281:diameter 2211:aperture 2188:angstrom 1965:of phase 1928:waveform 1926:combined 1853:and the 942:emission 832:parallax 751:Averroes 747:Avicenna 739:theology 735:etiology 694:Ibn Sahl 679:Al-Kindi 660:Ibn Sahl 645:Plutarch 614:geometry 572:Epicurus 562:and the 496:Assyrian 482:, often 408:medicine 402:fields, 321:infrared 249:Category 189:Research 115:Branches 102:timeline 89:Glossary 8672:Diverse 8604:Surface 8461:Zerodur 8173:Related 8057:General 8052:Special 7910:Applied 7735:at the 7003:507–513 6866:107–112 6806:25 June 6748:"laser" 6435:M. Born 6234:Bibcode 5820:Bibcode 5818:: 499. 5590:12 July 5455:Bibcode 5349:Bibcode 5274:192–202 4419:coronas 4403:sunrise 4048:and an 3958:Ptolemy 3950:horizon 3926:Orbison 3902:percept 3723:eyelids 3625:cameras 3513:barcode 3457:acronym 3263:due to 2960:calcite 2918:ellipse 2730:chirped 2418:rainbow 2305:twinkle 2279:is the 2174:Fresnel 1786:). The 1503:mirages 1486:is the 1220:virtual 1138:is the 958:virtual 879:Opticks 800:Opticks 690:Persian 631:Ptolemy 599:Timaeus 522:in the 480:crystal 446:History 420:mirrors 385:photons 313:visible 293:physics 98:History 84:Outline 60:Physics 33:Opticks 8782:Optics 8674:topics 8537:Optics 8343:GeSbTe 8250:Basics 8084:Atomic 8039:Modern 7889:Major 7851: 7727:Optics 7704:  7685:  7664:  7636:  7607:  7588:  7582:Optics 7527:  7496:  7471:  7446:  7419:  7388:  7361:  7336:  7305:  7275:  7248:  7133:  7009:  6975:  6945:  6872:  6730:  6705:  6606:  6445:  6400:  6358:  6324:  6167:  6102:  5995:  5925:  5917:Lasers 5896:  5872:  5838:  5786:  5637:  5576:  5549:  5524:  5427:534625 5425:  5419:91–107 5367:  5297:  5237:  5229:Kepler 5204:  5138:  5107:  5061:  5010:  4970:  4939:  4911:  4882:  4853:  4818:  4799:  4789:  4763:  4757:233423 4755:  4718:  4698:  4670:  4637:  4610:  4566:  4541:Jan 3, 4425:, and 4407:sunset 4326:normal 4247:where 4232:  3985:, and 3963:Optics 3954:zenith 3936:, and 3934:Sander 3918:Hering 3828:myopia 3810:, and 3793:. The 3775:colour 3719:sclera 3685:retina 3683:, 30. 3679:, 26. 3675:, 22. 3671:, 10. 3669:cornea 3579:, and 3563:, and 3551:, and 3487:masers 3455:is an 3439:lasers 3423:Lasers 3415:, and 3403:, and 3380:, and 3277:chiral 3107:where 2843:Linear 2807:(with 2793:vector 2624:where 2527:where 2267:where 2139:where 2086:while 1989:. The 1949:wave 2 1942:wave 1 1849:, the 1816:vector 1812:scalar 1784:vacuum 1650:where 1539:Lenses 1480:where 1416:where 1126:where 983:, and 926:quanta 836:retina 802:(1704) 712:Witelo 636:Optics 609:Optics 604:Euclid 594:parity 543:optikē 537:ὀπτική 528:optics 516:Indian 508:Greeks 502:. The 492:Rhodes 484:quartz 438:, and 436:lasers 424:lenses 406:, and 335:, and 329:X-rays 319:, and 309:detect 301:matter 289:Optics 247:  172:Optics 8787:Light 8456:Macor 8423:ZBLAN 8257:Glass 8242:Glass 7521:88–89 6854:. In 6052:[ 6006:(PDF) 5989:(PDF) 5847:(PDF) 5836:S2CID 5808:(PDF) 5365:S2CID 4909:S2CID 4880:S2CID 4851:S2CID 4761:S2CID 4753:JSTOR 4411:halos 4130:plate 3930:Ponzo 3744:pupil 3715:pupil 3681:fovea 3667:, 8. 3663:, 7. 3661:pupil 3659:, 6. 3565:lidar 3483:radio 3479:maser 3453:laser 3429:Laser 3253:skies 2741:, or 2733:, or 1907:phase 1522:when 1301:< 1269:focus 1178:image 1037:, or 962:maser 866:prism 824:lunar 582:Plato 534:word 512:Greek 488:Crete 297:light 79:Index 8010:Wave 7905:Pure 7846:link 7833:link 7829:SPIE 7824:link 7815:link 7702:ISBN 7683:ISBN 7662:ISBN 7634:ISBN 7605:ISBN 7586:ISBN 7525:ISBN 7494:ISBN 7469:ISBN 7444:ISBN 7417:ISBN 7386:ISBN 7359:ISBN 7334:ISBN 7303:ISBN 7273:ISBN 7246:ISBN 7131:ISBN 7043:2008 7007:ISBN 6973:ISBN 6943:ISBN 6870:ISBN 6808:2014 6728:ISBN 6703:ISBN 6604:ISBN 6443:ISBN 6398:ISBN 6356:ISBN 6322:ISBN 6165:ISBN 6100:ISBN 5993:ISBN 5923:ISBN 5894:ISBN 5870:ISBN 5784:ISBN 5635:ISBN 5630:FG01 5592:2012 5574:ISBN 5547:ISBN 5522:ISBN 5499:and 5423:OCLC 5295:ISBN 5235:ISBN 5202:ISBN 5136:ISBN 5105:ISBN 5059:ISBN 5008:ISBN 4968:ISBN 4937:ISBN 4816:ISBN 4797:OCLC 4787:ISBN 4737:Isis 4716:ISBN 4696:ISBN 4668:ISBN 4635:ISBN 4608:ISBN 4564:ISBN 4543:2010 4134:film 3878:and 3797:and 3777:and 3748:lens 3725:and 3711:iris 3705:The 3695:and 3591:The 3539:and 3459:for 3348:and 3333:and 3323:CCDs 3313:and 3295:and 3130:cos 2908:and 2882:and 2825:and 2803:and 2410:) / 2327:and 2245:1.22 2198:and 2037:and 1892:and 1869:and 1752:(at 1744:(at 1733:(at 1725:and 1559:lens 1425:and 1244:For 1216:real 1210:and 1169:and 944:and 889:and 826:and 514:and 506:and 474:and 414:and 367:and 361:wave 353:rays 199:list 8005:Ray 7792:by 7737:BBC 7729:on 7225:214 7084:at 6352:286 6133:doi 6058:149 5828:doi 5816:155 5463:doi 5451:322 5357:doi 5345:155 5322:309 5258:244 5163:210 4901:doi 4872:doi 4843:doi 4745:doi 4405:or 3655:3. 3619:or 3599:). 3507:at 3497:VLT 3071:cos 2780:or 2710:If 2233:sin 2176:or 2163:= 0 2156:-th 2147:), 2121:sin 1905:in 1780:air 1389:sin 1360:sin 1087:sin 1067:sin 971:in 909:by 729:or 387:". 8778:: 7844:– 7831:– 7813:– 7769:– 7548:. 7523:. 7394:. 7311:. 7287:^ 7021:^ 7005:. 6987:^ 6957:^ 6911:. 6868:. 6798:. 6794:. 6612:. 6473:^ 6406:. 6382:^ 6354:. 6336:^ 6127:. 6123:. 6079:95 6001:. 5974:^ 5842:. 5834:. 5826:. 5814:. 5810:. 5688:^ 5649:^ 5613:41 5582:. 5485:. 5461:. 5421:. 5392:, 5363:. 5355:. 5343:. 5339:. 5281:^ 5210:. 5144:. 5113:. 5018:; 4976:. 4945:. 4907:. 4895:. 4878:. 4868:17 4866:. 4849:. 4839:15 4837:. 4824:. 4795:. 4759:. 4751:. 4741:81 4739:. 4727:^ 4682:^ 4643:. 4562:. 4529:. 4504:^ 4421:, 4417:, 4413:, 4132:, 4109:32 3981:, 3977:, 3973:, 3966:. 3932:, 3928:, 3924:, 3920:, 3916:, 3909:. 3806:, 3770:. 3758:. 3639:. 3583:. 3575:, 3571:, 3559:, 3547:, 3489:. 3411:, 3399:, 3376:, 3360:, 3356:, 3341:. 3283:. 3279:) 3012:= 3005:– 2932:. 2912:. 2788:. 2180:. 2165:. 2017:, 2013:, 1873:. 1835:. 1757:/2 1721:, 1569:. 1510:. 1490:. 1260:. 1241:. 1184:. 979:, 975:, 784:, 749:, 683:c. 574:, 570:, 555:. 540:, 442:. 434:, 430:, 426:, 422:, 331:, 315:, 8234:e 8227:t 8220:v 7882:e 7875:t 7868:v 7710:. 7691:. 7670:. 7642:. 7613:. 7594:. 7533:. 7502:. 7477:. 7452:. 7425:. 7367:. 7342:. 7281:. 7254:. 7227:. 7139:. 7045:. 7015:. 6981:. 6951:. 6926:. 6878:. 6836:. 6810:. 6761:. 6736:. 6711:. 6451:. 6364:. 6330:. 6240:. 6236:: 6173:. 6141:. 6135:: 6129:3 6108:. 6081:. 6060:. 5931:. 5902:. 5876:. 5855:. 5830:: 5822:: 5790:. 5643:. 5615:. 5594:. 5555:. 5530:. 5503:. 5471:. 5465:: 5457:: 5429:. 5371:. 5359:: 5351:: 5324:. 5303:. 5276:. 5260:. 5243:. 5165:. 5067:. 5016:. 4915:. 4903:: 4897:9 4886:. 4874:: 4857:. 4845:: 4803:. 4767:. 4747:: 4722:. 4704:. 4676:. 4616:. 4572:. 4545:. 4396:. 4299:/ 4297:f 4292:/ 4290:f 4275:D 4255:f 4227:D 4224:f 4219:= 4216:N 4213:= 4206:/ 4202:f 4179:N 4169:/ 4167:f 4124:5 4122:/ 4120:f 4107:/ 4105:f 3888:. 3687:. 3467:' 3461:' 3275:( 3176:. 3170:2 3167:1 3162:= 3155:0 3151:I 3147:I 3132:θ 3122:i 3119:θ 3113:0 3110:I 3095:, 3089:i 3075:2 3065:0 3061:I 3057:= 3054:I 3042:I 3020:. 3017:i 3014:θ 3010:0 3007:θ 3003:1 3000:θ 2954:/ 2901:y 2897:y 2893:x 2884:y 2880:x 2827:y 2823:x 2810:z 2805:y 2801:x 2772:( 2720:D 2712:D 2696:. 2688:2 2680:d 2675:n 2670:2 2666:d 2656:c 2645:= 2642:D 2630:c 2626:n 2608:1 2600:) 2590:d 2585:n 2582:d 2570:n 2566:( 2561:c 2558:= 2552:g 2547:v 2533:g 2530:v 2507:d 2499:g 2494:v 2490:d 2480:2 2474:g 2469:v 2465:1 2460:= 2457:D 2414:) 2412:n 2408:θ 2402:θ 2389:( 2277:D 2273:λ 2269:θ 2253:D 2242:= 2200:d 2161:m 2154:m 2149:θ 2141:d 2118:d 2115:= 2109:m 2099:λ 2080:' 2074:' 2059:. 2057:n 2053:θ 2049:d 1755:f 1750:K 1746:f 1742:I 1737:f 1735:2 1731:E 1727:K 1723:I 1719:E 1715:f 1670:f 1665:2 1662:θ 1656:1 1653:S 1636:, 1631:f 1628:1 1623:= 1616:2 1612:S 1608:1 1603:+ 1596:1 1592:S 1588:1 1528:1 1525:θ 1519:2 1516:θ 1483:c 1468:, 1465:v 1461:/ 1457:c 1454:= 1451:n 1440:v 1431:2 1428:θ 1422:1 1419:θ 1400:2 1384:2 1380:n 1376:= 1371:1 1355:1 1351:n 1333:2 1330:n 1324:1 1321:n 1306:2 1303:n 1299:1 1296:n 1135:n 1129:n 1114:, 1111:n 1108:= 1099:2 1079:1 706:( 681:( 553:' 547:' 277:e 270:t 263:v 201:) 197:( 104:) 100:( 40:. 20:)

Index

Optical device
Opticks
Optic (disambiguation)

Physics

Index
Outline
Glossary
History
timeline
Branches
Acoustics
Astrophysics
Atomic physics
Biophysics
Classical physics
Electromagnetism
Geophysics
Mechanics
Modern physics
Nuclear physics
Optics
Thermodynamics
Physicist
list
List of physics awards
List of journals
List of unsolved problems
icon

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.