Knowledge

Nuisance parameter

Source šŸ“

105:. When this partition can be achieved it may be possible to complete a Bayesian analysis for the parameters of interest by determining their joint posterior distribution algebraically. The partition allows frequentist theory to develop general estimation approaches in the presence of nuisance parameters. If the partition cannot be achieved it may still be possible to make use of an approximate partition. 85:, the unknown true location of each observation is a nuisance parameter. A parameter may also cease to be a "nuisance" if it becomes the object of study, is estimated from data, or known. 162:
over the nuisance parameters. However, this approach may not always be computationally efficient if some or all of the nuisance parameters can be eliminated on a theoretical basis.
93:
The general treatment of nuisance parameters can be broadly similar between frequentist and Bayesian approaches to theoretical statistics. It relies on an attempt to partition the
112:
provides a practically useful test because the test statistic does not depend on the unknown variance but only the sample variance. It is a case where use can be made of a
139:
for the parameters of interest which are approximately valid for moderate to large sample sizes and which take account of the presence of nuisance parameters. See
97:
into components representing information about the parameters of interest and information about the other (nuisance) parameters. This can involve ideas about
143:(1977) for some general discussion and Spall and Garner (1990) for some discussion relative to the identification of parameters in linear dynamic (i.e., 124:
Practical approaches to statistical analysis treat nuisance parameters somewhat differently in frequentist and Bayesian methodologies.
207: 154:, a generally applicable approach creates random samples from the joint posterior distribution of all the parameters: see 31:
which is unspecified but which must be accounted for in the hypothesis testing of the parameters which are of interest.
197: 279: 258: 244: 108:
In some special cases, it is possible to formulate methods that circumvent the presences of nuisance parameters. The
263:
Spall, J. C. and Garner, J. P. (1990), ā€œParameter Identification for State-Space Models with Nuisance Parameters,ā€
58:(the independent variable): its variance is a nuisance parameter that must be accounted for to derive an accurate 50:
is often not specified or known, but one desires to hypothesis test on the mean(s). Another example might be
159: 176: 294: 144: 82: 39: 155: 98: 158:. Given these, the joint distribution of only the parameters of interest can be readily found by 128: 55: 8: 136: 102: 94: 71: 35: 171: 275: 254: 240: 203: 151: 132: 59: 51: 230: 226: 113: 63: 78: 140: 288: 196:
Wackerly, Dennis; Mendenhall, William; Scheaffer, Richard L. (2014-10-27).
20: 127:
A general approach in a frequentist analysis can be based on maximum
28: 16:
Statistical parameter needed for a model but not of primary interest
67: 43: 109: 221:
Basu, D. (1977), "On the Elimination of Nuisance Parameters,"
195: 34:
The classic example of a nuisance parameter comes from the
116:. However, in other cases no such circumvention is known. 265:
IEEE Transactions on Aerospace and Electronic Systems
286: 223:Journal of the American Statistical Association 70:, hypothesis test on the slope's value; see 42:. For at least one normal distribution, the 199:Mathematical Statistics with Applications 88: 235:Bernardo, J. M., Smith, A. F. M. (2000) 119: 287: 272:Essentials of Statistical Inference 13: 270:Young, G. A., Smith, R. L. (2005) 14: 306: 81:, but not always; for example in 249:Cox, D.R., Hinkley, D.V. (1974) 267:, vol. 26(6), pp. 992ā€“998. 231:10.1080/01621459.1977.10481002 189: 77:Nuisance parameters are often 1: 225:, vol. 77, pp. 355ā€“366. 182: 54:with unknown variance in the 7: 165: 10: 311: 145:state space representation 83:errors-in-variables models 156:Markov chain Monte Carlo 251:Theoretical Statistics 129:likelihood-ratio tests 89:Theoretical statistics 131:. These provide both 99:sufficient statistics 40:locationā€“scale family 253:. Chapman and Hall. 202:. Cengage Learning. 137:confidence intervals 120:Practical statistics 103:ancillary statistics 56:explanatory variable 95:likelihood function 72:regression dilution 36:normal distribution 177:Profile likelihood 172:Adaptive estimator 133:significance tests 38:, a member of the 25:nuisance parameter 295:Estimation theory 209:978-1-111-79878-9 152:Bayesian analysis 60:interval estimate 52:linear regression 302: 214: 213: 193: 114:pivotal quantity 79:scale parameters 64:regression slope 310: 309: 305: 304: 303: 301: 300: 299: 285: 284: 237:Bayesian Theory 218: 217: 210: 194: 190: 185: 168: 122: 91: 17: 12: 11: 5: 308: 298: 297: 283: 282: 268: 261: 247: 233: 216: 215: 208: 187: 186: 184: 181: 180: 179: 174: 167: 164: 121: 118: 90: 87: 15: 9: 6: 4: 3: 2: 307: 296: 293: 292: 290: 281: 280:0-521-83971-8 277: 273: 269: 266: 262: 260: 259:0-412-12420-3 256: 252: 248: 246: 245:0-471-49464-X 242: 238: 234: 232: 228: 224: 220: 219: 211: 205: 201: 200: 192: 188: 178: 175: 173: 170: 169: 163: 161: 160:marginalizing 157: 153: 148: 146: 142: 138: 134: 130: 125: 117: 115: 111: 106: 104: 100: 96: 86: 84: 80: 75: 73: 69: 65: 61: 57: 53: 49: 45: 41: 37: 32: 30: 26: 22: 271: 264: 250: 236: 222: 198: 191: 149: 126: 123: 107: 92: 76: 66:, calculate 47: 33: 24: 18: 183:References 147:) models. 21:statistics 239:. Wiley. 29:parameter 289:Category 166:See also 68:p-values 44:variance 274:, CUP. 62:of the 27:is any 278:  257:  243:  206:  110:t-test 46:(s), 276:ISBN 255:ISBN 241:ISBN 204:ISBN 141:Basu 135:and 101:and 23:, a 227:doi 150:In 19:In 291:: 74:. 229:: 212:. 48:Ļƒ

Index

statistics
parameter
normal distribution
locationā€“scale family
variance
linear regression
explanatory variable
interval estimate
regression slope
p-values
regression dilution
scale parameters
errors-in-variables models
likelihood function
sufficient statistics
ancillary statistics
t-test
pivotal quantity
likelihood-ratio tests
significance tests
confidence intervals
Basu
state space representation
Bayesian analysis
Markov chain Monte Carlo
marginalizing
Adaptive estimator
Profile likelihood
Mathematical Statistics with Applications
ISBN

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

ā†‘