Knowledge

Nash functions

Source 📝

216:
who proved that any compact smooth manifold is diffeomorphic to some affine real algebraic manifold; actually, any Nash manifold is Nash diffeomorphic to an affine real algebraic manifold. These results exemplify the fact that the Nash category is somewhat intermediate between the smooth and the
211:
to some Nash manifold. More generally, a smooth manifold admits a Nash manifold structure if and only if it is diffeomorphic to the interior of some compact smooth manifold possibly with boundary. Nash's result was later (1973) completed by
611: 715: 162: 459: 510: 375: 351: 323: 295: 408: 736:
instead of the field of real numbers, and the above statements still hold. Abstract Nash functions can also be defined on the real spectrum of any commutative ring.
486: 526: 630: 199:. A Nash mapping between Nash manifolds is then an analytic mapping with semialgebraic graph. Nash functions and manifolds are named after 265:
was proved independently (1973) by Jean-Jacques Risler and Gustave Efroymson. Nash manifolds have properties similar to but weaker than
261:
The global properties are more difficult to obtain. The fact that the ring of Nash functions on a Nash manifold (even noncompact) is
748:
M. Coste, J.M. Ruiz and M. Shiota: Global problems on Nash functions. Revista Matemática Complutense 17 (2004), 83--115.
776: 757:
J-J. Risler: Sur l'anneau des fonctions de Nash globales. C. R. Acad. Sci. Paris Sér. A-B 276 (1973), A1513--A1516.
175:-th eigenvalue (in increasing order) is Nash on the open subset of symmetric matrices with no multiple eigenvalue. 115:
is a polynomial, by taking finite unions, finite intersections and complements). Some examples of Nash functions:
124: 421: 266: 491: 356: 332: 304: 276: 204: 17: 380: 200: 464: 8: 241:
variables (i.e., those series satisfying a nontrivial polynomial equation), which is the
763:
A. Tognoli: Su una congettura di Nash. Ann. Scuola Norm. Sup. Pisa 27 (1973), 167--185.
246: 226: 754:
J.F. Nash : Real algebraic manifolds. Annals of Mathematics 56 (1952), 405--421.
751:
G. Efroymson: A Nullstellensatz for Nash rings. Pacific J. Math. 54 (1974), 101--112.
733: 242: 180: 72: 33: 606:{\displaystyle H^{0}(M,{\mathcal {N}})\to H^{0}(M,{\mathcal {N}}/{\mathcal {I}})} 262: 213: 326: 270: 770: 208: 745:
J. Bochnak, M. Coste and M-F. Roy: Real algebraic geometry. Springer, 1998.
234: 710:{\displaystyle H^{1}(M,{\mathcal {N}})\neq 0,\ {\text{if}}\ \dim(M)>0,} 225:
The local properties of Nash functions are well understood. The ring of
377:
is finite, i.e., there exists a finite open semialgebraic covering
245:
of the ring of germs of rational functions. In particular, it is a
179:
Nash functions are those functions needed in order to have an
229:
of Nash functions at a point of a Nash manifold of dimension
171:
the function which associates to a real symmetric matrix its
119:
Polynomial and regular rational functions are Nash functions.
297:
denote the sheaf of Nash function germs on a Nash manifold
195:, which are semialgebraic analytic submanifolds of some 732:
Nash functions and manifolds can be defined over any
633: 529: 494: 467: 424: 383: 359: 335: 307: 279: 127: 709: 605: 504: 480: 453: 402: 369: 345: 317: 289: 156: 768: 79:is a subset obtained from subsets of the form { 397: 384: 47:satisfying a nontrivial polynomial equation 724:contrarily to the case of Stein manifolds. 512:is globally generated by Nash functions on 207:admits a Nash manifold structure, i.e., is 760:M. Shiota: Nash manifolds. Springer, 1987. 157:{\displaystyle x\mapsto {\sqrt {1+x^{2}}}} 454:{\displaystyle {\mathcal {I}}|_{U_{i}}} 233:is isomorphic to the ring of algebraic 769: 191:Along with Nash functions one defines 203:, who proved (1952) that any compact 256: 183:theorem in real algebraic geometry. 220: 13: 727: 655: 595: 583: 551: 497: 461:is generated by Nash functions on 427: 362: 338: 310: 282: 14: 788: 186: 24:on an open semialgebraic subset 695: 689: 660: 644: 600: 572: 559: 556: 540: 505:{\displaystyle {\mathcal {I}}} 434: 370:{\displaystyle {\mathcal {I}}} 346:{\displaystyle {\mathcal {N}}} 318:{\displaystyle {\mathcal {I}}} 290:{\displaystyle {\mathcal {N}}} 131: 1: 7: 10: 793: 739: 403:{\displaystyle \{U_{i}\}} 267:Cartan's theorems A and B 777:Real algebraic geometry 620:is surjective. However 18:real algebraic geometry 711: 607: 516:, and the natural map 506: 482: 455: 404: 371: 347: 319: 291: 217:algebraic categories. 158: 712: 608: 507: 483: 481:{\displaystyle U_{i}} 456: 405: 372: 348: 320: 292: 201:John Forbes Nash, Jr. 159: 631: 527: 492: 465: 422: 414:such that, for each 381: 357: 333: 305: 277: 125: 73:semialgebraic subset 707: 603: 502: 478: 451: 400: 367: 343: 315: 287: 247:regular local ring 154: 734:real closed field 682: 678: 674: 257:Global properties 181:implicit function 152: 111:) > 0}, where 34:analytic function 784: 716: 714: 713: 708: 680: 679: 676: 672: 659: 658: 643: 642: 612: 610: 609: 604: 599: 598: 592: 587: 586: 571: 570: 555: 554: 539: 538: 511: 509: 508: 503: 501: 500: 487: 485: 484: 479: 477: 476: 460: 458: 457: 452: 450: 449: 448: 447: 437: 431: 430: 409: 407: 406: 401: 396: 395: 376: 374: 373: 368: 366: 365: 353:-ideals. Assume 352: 350: 349: 344: 342: 341: 324: 322: 321: 316: 314: 313: 296: 294: 293: 288: 286: 285: 221:Local properties 163: 161: 160: 155: 153: 151: 150: 135: 792: 791: 787: 786: 785: 783: 782: 781: 767: 766: 742: 730: 728:Generalizations 675: 654: 653: 638: 634: 632: 629: 628: 594: 593: 588: 582: 581: 566: 562: 550: 549: 534: 530: 528: 525: 524: 496: 495: 493: 490: 489: 472: 468: 466: 463: 462: 443: 439: 438: 433: 432: 426: 425: 423: 420: 419: 391: 387: 382: 379: 378: 361: 360: 358: 355: 354: 337: 336: 334: 331: 330: 309: 308: 306: 303: 302: 281: 280: 278: 275: 274: 271:Stein manifolds 259: 223: 214:Alberto Tognoli 205:smooth manifold 189: 146: 142: 134: 126: 123: 122: 63:)) = 0 for all 12: 11: 5: 790: 780: 779: 765: 764: 761: 758: 755: 752: 749: 746: 741: 738: 729: 726: 722: 721: 720: 719: 718: 717: 706: 703: 700: 697: 694: 691: 688: 685: 671: 668: 665: 662: 657: 652: 649: 646: 641: 637: 618: 617: 616: 615: 614: 613: 602: 597: 591: 585: 580: 577: 574: 569: 565: 561: 558: 553: 548: 545: 542: 537: 533: 499: 475: 471: 446: 442: 436: 429: 399: 394: 390: 386: 364: 340: 327:coherent sheaf 312: 284: 258: 255: 222: 219: 193:Nash manifolds 188: 187:Nash manifolds 185: 177: 176: 169: 149: 145: 141: 138: 133: 130: 120: 9: 6: 4: 3: 2: 789: 778: 775: 774: 772: 762: 759: 756: 753: 750: 747: 744: 743: 737: 735: 725: 704: 701: 698: 692: 686: 683: 669: 666: 663: 650: 647: 639: 635: 627: 626: 625: 624: 623: 622: 621: 589: 578: 575: 567: 563: 546: 543: 535: 531: 523: 522: 521: 520: 519: 518: 517: 515: 473: 469: 444: 440: 417: 413: 392: 388: 328: 300: 272: 268: 264: 254: 252: 249:of dimension 248: 244: 243:henselization 240: 236: 232: 228: 218: 215: 210: 209:diffeomorphic 206: 202: 198: 194: 184: 182: 174: 170: 167: 147: 143: 139: 136: 128: 121: 118: 117: 116: 114: 110: 106: 102: 98: 94: 90: 86: 82: 78: 74: 70: 66: 62: 58: 54: 50: 46: 42: 38: 35: 31: 27: 23: 22:Nash function 19: 731: 723: 619: 513: 415: 411: 298: 260: 250: 238: 235:power series 230: 224: 196: 192: 190: 178: 172: 165: 112: 108: 104: 100: 96: 92: 88: 84: 80: 76: 68: 64: 60: 56: 52: 48: 44: 40: 36: 29: 25: 21: 15: 164:is Nash on 263:noetherian 687:⁡ 664:≠ 560:→ 132:↦ 95:)=0} or { 771:Category 103: : 87: : 740:Sources 488:. Then 681:  673:  301:, and 273:. Let 32:is an 325:be a 227:germs 699:> 20:, a 684:dim 410:of 329:of 269:on 237:in 99:in 83:in 75:of 71:(A 67:in 16:In 773:: 677:if 418:, 253:. 43:→ 39:: 28:⊂ 705:, 702:0 696:) 693:M 690:( 670:, 667:0 661:) 656:N 651:, 648:M 645:( 640:1 636:H 601:) 596:I 590:/ 584:N 579:, 576:M 573:( 568:0 564:H 557:) 552:N 547:, 544:M 541:( 536:0 532:H 514:M 498:I 474:i 470:U 445:i 441:U 435:| 428:I 416:i 412:M 398:} 393:i 389:U 385:{ 363:I 339:N 311:I 299:M 283:N 251:n 239:n 231:n 197:R 173:i 168:. 166:R 148:2 144:x 140:+ 137:1 129:x 113:P 109:x 107:( 105:P 101:R 97:x 93:x 91:( 89:P 85:R 81:x 77:R 69:U 65:x 61:x 59:( 57:f 55:, 53:x 51:( 49:P 45:R 41:U 37:f 30:R 26:U

Index

real algebraic geometry
analytic function
semialgebraic subset
implicit function
John Forbes Nash, Jr.
smooth manifold
diffeomorphic
Alberto Tognoli
germs
power series
henselization
regular local ring
noetherian
Cartan's theorems A and B
Stein manifolds
coherent sheaf
real closed field
Category
Real algebraic geometry

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.