Knowledge

Multitree

Source đź“ť

27: 313: 164:
In a directed acyclic graph, if there is at most one directed path between any two vertices, or equivalently if the subgraph reachable from any vertex induces an undirected tree, then its
206: 156:
may contain multiple marriages from one family to another, but does not contain marriages between any two blood relatives, then it forms a multitree.
34:, a multitree used in distributed computation, showing in red the undirected tree induced by the subgraph reachable from one of its vertices. 346: 553: 418:
Algorithms and Computation, 7th International Symposium, ISAAC '96, Osaka, Japan, December 16–18, 1996, Proceedings
130: 172:
identifies a directed acyclic graph in which the subgraph reachable from any vertex induces an undirected tree.
308:{\displaystyle 2\leq \lim _{n\to \infty }D(n){\Big /}{\binom {n}{\lfloor n/2\rfloor }}\leq 2{\frac {3}{11}}} 59: 339: 332: 142: 475:
McGuffin, Michael J.; Balakrishnan, Ravin (2005), "Interactive visualization of genealogical graphs",
246: 51: 548: 342:
rooted in the vertex, that is a polytree in which all edges are oriented away from the root.
67: 55: 529: 383: 169: 168:
relation is a diamond-free partial order. Conversely, in a diamond-free partial order, the
8: 63: 420:, Lecture Notes in Computer Science, vol. 1178, Springer-Verlag, pp. 193–202, 387: 506:
Jung, H. A. (1978), "On a class of posets and the corresponding comparability graphs",
488: 457: 373: 149: 520: 31: 492: 461: 515: 480: 447: 421: 442:; Zacks, Jeff (1994), "Multitrees: enriching and reusing hierarchical structure", 525: 181: 542: 439: 401: 39: 484: 145:
in which there is at most one computational path connecting any two states.
165: 43: 452: 153: 444:
Proc. SIGCHI conference on Human Factors in Computing Systems (CHI '94)
425: 26: 20: 196:) denotes the largest possible diamond-free family of subsets of an 335:
the edges of an undirected tree, is a special case of a multitree.
328: 16:
Directed acyclic graph with ≤1 directed paths between any two nodes
479:, Los Alamitos, California, US: IEEE Computer Society, p. 3, 378: 54:(DAG) in which there is at most one directed path between any two 188:
of sets whose inclusion ordering forms a diamond-free poset. If
159: 349:, or to other structures formed by combining multiple trees. 338:
The subgraph reachable from any vertex in a multitree is an
148:
Multitrees may be used to represent multiple overlapping
368:
Griggs, Jerrold R.; Li, Wei-Tian; Lu, Linyuan (2010),
345:
The word "multitree" has also been used to refer to a
209: 474: 50:
may describe either of two equivalent structures: a
307: 283: 254: 540: 217: 400: 160:Equivalence between DAG and poset definitions 277: 263: 477:IEEE Symposium on Information Visualization 438: 319:and it is conjectured that the limit is 2. 404:; Lange, Klaus-Jörn (1996), "StUSPACE(log 367: 122:incomparable to each other (also called a 519: 508:Journal of Combinatorial Theory, Series B 451: 377: 175: 25: 541: 70:(poset) that does not have four items 363: 361: 331:, a directed acyclic graph formed by 322: 62:reachable from any vertex induces an 505: 200:-element set, then it is known that 133:, multitrees have also been called 13: 358: 258: 227: 14: 565: 86:forming a diamond suborder with 152:over the same ground set. If a 131:computational complexity theory 58:, or equivalently in which the 499: 468: 432: 394: 241: 235: 224: 1: 352: 347:series–parallel partial order 521:10.1016/0095-8956(78)90013-8 141:; they can be used to model 7: 143:nondeterministic algorithms 135:strongly unambiguous graphs 10: 570: 18: 19:Not to be confused with 554:Directed acyclic graphs 485:10.1109/INFOVIS.2005.22 309: 52:directed acyclic graph 35: 453:10.1145/191666.191778 370:Diamond-free families 310: 176:Diamond-free families 68:partially ordered set 29: 446:, pp. 330–336, 207: 170:transitive reduction 388:2010arXiv1010.5311G 426:10.1007/BFb0009495 323:Related structures 305: 231: 124:diamond-free poset 36: 440:Furnas, George W. 303: 281: 216: 32:butterfly network 561: 534: 532: 523: 503: 497: 495: 472: 466: 464: 455: 436: 430: 428: 398: 392: 390: 381: 365: 314: 312: 311: 306: 304: 296: 288: 287: 286: 280: 273: 257: 250: 249: 230: 121: 117: 113: 99: 85: 81: 77: 73: 569: 568: 564: 563: 562: 560: 559: 558: 539: 538: 537: 504: 500: 473: 469: 437: 433: 408:) ⊆ DSPACE(log 399: 395: 366: 359: 355: 325: 295: 282: 269: 262: 253: 252: 251: 245: 244: 220: 208: 205: 204: 180:A diamond-free 178: 162: 119: 115: 101: 87: 83: 79: 75: 71: 64:undirected tree 24: 17: 12: 11: 5: 567: 557: 556: 551: 536: 535: 514:(2): 125–133, 498: 467: 431: 402:Allender, Eric 393: 356: 354: 351: 324: 321: 317: 316: 302: 299: 294: 291: 285: 279: 276: 272: 268: 265: 261: 256: 248: 243: 240: 237: 234: 229: 226: 223: 219: 215: 212: 182:family of sets 177: 174: 161: 158: 15: 9: 6: 4: 3: 2: 566: 555: 552: 550: 547: 546: 544: 531: 527: 522: 517: 513: 509: 502: 494: 490: 486: 482: 478: 471: 463: 459: 454: 449: 445: 441: 435: 427: 423: 419: 415: 411: 407: 403: 397: 389: 385: 380: 375: 371: 364: 362: 357: 350: 348: 343: 341: 336: 334: 330: 320: 300: 297: 292: 289: 274: 270: 266: 259: 238: 232: 221: 213: 210: 203: 202: 201: 199: 195: 191: 187: 183: 173: 171: 167: 157: 155: 151: 146: 144: 140: 136: 132: 127: 125: 112: 108: 104: 98: 94: 90: 69: 65: 61: 57: 53: 49: 45: 41: 40:combinatorics 33: 28: 22: 549:Order theory 511: 507: 501: 476: 470: 443: 434: 417: 413: 409: 405: 396: 369: 344: 340:arborescence 337: 326: 318: 197: 193: 189: 185: 184:is a family 179: 166:reachability 163: 147: 138: 134: 128: 123: 110: 106: 102: 96: 92: 88: 47: 44:order theory 37: 154:family tree 543:Categories 353:References 150:taxonomies 412:/log log 379:1010.5311 333:orienting 290:≤ 278:⌋ 264:⌊ 228:∞ 225:→ 214:≤ 139:mangroves 114:but with 48:multitree 21:MultiTree 493:15449409 462:18710118 329:polytree 60:subgraph 56:vertices 530:0491356 384:Bibcode 66:, or a 528:  491:  460:  82:, and 489:S2CID 458:S2CID 374:arXiv 416:)", 118:and 100:and 46:, a 42:and 30:The 516:doi 481:doi 448:doi 422:doi 218:lim 137:or 129:In 126:). 38:In 545:: 526:MR 524:, 512:24 510:, 487:, 456:, 382:, 372:, 360:^ 327:A 301:11 109:≤ 105:≤ 95:≤ 91:≤ 78:, 74:, 533:. 518:: 496:. 483:: 465:. 450:: 429:. 424:: 414:n 410:n 406:n 391:. 386:: 376:: 315:, 298:3 293:2 284:) 275:2 271:/ 267:n 260:n 255:( 247:/ 242:) 239:n 236:( 233:D 222:n 211:2 198:n 194:n 192:( 190:D 186:F 120:c 116:b 111:d 107:c 103:a 97:d 93:b 89:a 84:d 80:c 76:b 72:a 23:.

Index

MultiTree

butterfly network
combinatorics
order theory
directed acyclic graph
vertices
subgraph
undirected tree
partially ordered set
computational complexity theory
nondeterministic algorithms
taxonomies
family tree
reachability
transitive reduction
family of sets
polytree
orienting
arborescence
series–parallel partial order


arXiv
1010.5311
Bibcode
2010arXiv1010.5311G
Allender, Eric
doi
10.1007/BFb0009495

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑