Knowledge

Maximum disjoint set

Source 📝

448: 485: 353: 2676: 2800:
using a divide-and-conquer algorithm. Start with a quadtree cell that contains all objects. Then recursively divide it to smaller quadtree cells, find the maximum in each smaller cell, and combine the results to get the maximum in the larger cell. Since the number of disjoint fat objects intersecting
3764: 2312:
Gálvez, Khan, Mari, Mömke, Pittu, and Wiese presented an algorithm partitioning the plane into a more general class of polygons. This simplifies the analysis and improves the approximation to 6-factor. Additionally, they improved the approximation to 3-factor and then to
4267:
is a set of objects in which the boundaries of every pair of objects intersect at most twice (Note that this definition relates to a whole collection, and does not say anything about the shapes of the specific objects in the collection). A pseudo-disks-set has a bounded
539:
The main challenge with this approach is to find a geometric way to divide the set into subsets. This may require to discard a small number of shapes that do not fit into any one of the subsets, as explained in the following subsections.
4181: 2601: 3596: 3607: 2257:
For a long time, it was not known whether a constant-factor approximation exists for axis-parallel rectangles of different lengths and heights. It was conjectured that such an approximation could be found using
4272:, i.e., the number of intersection points on the boundary of the union of all objects is linear in the number of objects. For example, a set of squares or circles of arbitrary sizes is a pseudo-disks-set. 3115:
theorem. A geometric separator is a line or shape that separates a given set of shapes to two smaller subsets, such that the number of shapes lost during the division is relatively small. This allows both
3056: 2048: 1944: 1717: 4366: 5287:
Gálvez, Waldo; Khan, Arindam; Mari, Mathieu; Mömke, Tobias; Reddy, Madhusudhan; Wiese, Andreas (2021-09-26). "A (2+\epsilon)-Approximation Algorithm for Maximum Independent Set of Rectangles".
3482: 439:
In contrast to the 1-dimensional case, in 2 or more dimensions the MDS problem becomes NP-complete, and thus has either exact super-polynomial algorithms or approximate polynomial algorithms.
4248: 336: 4752: 2147: 1051: 912: 864: 4021: 3900: 3823: 1870: 1652: 1573: 1532: 1404: 1290: 1211: 466:
coordinate) intersects at most 3 other disjoint disks (see figure). Therefore the greedy algorithm yields a 3-approximation, i.e., it finds a disjoint set with a size of at least
1611: 1491: 1453: 1363: 1249: 662: 2243: 2195: 2083: 1979: 1829: 1794: 1759: 1325: 1163: 529:
Divide the given set of shapes into two or more subsets, such that the shapes in each subset cannot overlap the shapes in other subsets because of geometric considerations.
57:
For the general MIS problem, the best known exact algorithms are exponential. In some geometric intersection graphs, there are sub-exponential algorithms for finding a MDS.
1091: 4588: 4408: 3832:
This PTAS is more space-efficient than the PTAS based on quadtrees, and can handle a generalization where the objects may slide, but it cannot handle the weighted case.
2293: 4788: 4638: 935:
axis-parallel rectangles in the plane, all with the same height but with varying lengths. There is an algorithm that finds a disjoint set with a size of at least |MDS(
4434: 815: 782: 4077: 4085: 749: 719: 692: 4513: 4487: 2380:
for finding an MDS based on multi-level grid alignment. It has been discovered by two groups in approximately the same time, and described in two different ways.
4458: 3906: 2488: 3759:{\displaystyle E(m)=({\frac {0}{b}}+{\frac {c}{{\sqrt {b}}({\sqrt {a}}+{\sqrt {1-a}}-1)}})\cdot m-{\frac {c}{{\sqrt {a}}+{\sqrt {1-a}}-1}}\cdot {\sqrt {m}}.} 3412:
the number of labels intersected by the separator. The worst case for the algorithm is when the split in each step is in the maximum possible ratio which is
2298:
To date, it is not known whether such a guillotine separation exists. However, there are constant-factor approximation algorithms using non-guillotine cuts:
157:
Of all of the shapes xi that intersect xj (including xj itself), select the shape x that touches the fewest other shapes, i.e. x such that. N(x) is a minimum
3488: 219:
later on. However, some of these shapes themselves intersect each other, and thus in any case it is not possible that they all be in the optimal solution
4269: 60:
The general MIS problem is hard to approximate and doesn't even have a constant-factor approximation. In some geometric intersection graphs, there are
2434: + 1) apart from each other. By construction, every disk can intersect at most one horizontal line and one vertical line from its level. 3139:, such as squares or circles, of arbitrary sizes. Chan described an algorithm finds a disjoint set with a size of at least (1 −  2805:, we can simply "guess" which objects intersect the boundary in the optimal solution, and then apply divide-and-conquer to the objects inside. 83:
The MDS problem can be generalized by assigning a different weight to each shape and searching for a disjoint set with a maximum total weight.
2407:
Scale the disks so that the smallest disk has diameter 1. Partition the disks to levels, based on the logarithm of their size. I.e., the
4790:, or a deterministic algorithm with a slower run time (but still polynomial). This algorithm can be generalized to the weighted case. 969:
dimensions. If the labels have the same size in all dimensions except one, it is possible to find a similar approximation by applying
614:, it is not possible that a rectangle is intersected by more than one line. Therefore the lines partition the set of rectangles into 2295:
rectangles are separated, then it can be used in a dynamic programming approach to find a constant-factor approximation to the MDS.
5179:
Abed, Fidaa; Chalermsook, Parinya; Correa, José; Karrenbauer, Andreas; Pérez-Lantero, Pablo; Soto, José A.; Wiese, Andreas (2015).
2952: 2341:
for finding an MDS using a simple shifted-grid strategy. It finds a solution within (1 − ε) of the maximum in time
1988: 1884: 1657: 4290: 525:
The most common approach to finding a MDS is divide-and-conquer. A typical algorithm in this approach looks like the following:
5497: 5258: 5200: 5156: 5111: 4891: 367:=1, and thus the greedy algorithm finds the exact MDS. To see this, assume w.l.o.g. that the intervals are vertical, and let 5386: 3117: 3093: 2377: 2338: 61: 4964:
Marathe, M. V.; Breu, H.; Hunt, H. B.; Ravi, S. S.; Rosenkrantz, D. J. (1995). "Simple heuristics for unit disk graphs".
5308:
Erlebach, T.; Jansen, K.; Seidel, E. (2005). "Polynomial-Time Approximation Schemes for Geometric Intersection Graphs".
3426: 429: 4192: 2899: − 1}, consider a shift of the grid in (j/k,j/k). It is possible to prove that every label will be 2 5440: 5237:
Gálvez, Waldo; Khan, Arindam; Mari, Mathieu; Mömke, Tobias; Pittu, Madhusudhan Reddy; Wiese, Andreas (2022-01-01),
4924: 271: 5127:
Chalermsook, Parinya; Walczak, Bartosz (2021-01-01), "Coloring and Maximum Weight Independent Set of Rectangles",
4699: 2088: 992: 5527: 871: 823: 77: 2388:
An algorithm of Erlebach, Jansen and Seidel finds a disjoint set with a size of at least (1 − 1/
3980: 3859: 35: 4922:
Agarwal, P. K.; Van Kreveld, M.; Suri, S. (1998). "Label placement by maximum independent set in rectangles".
1872:, this computation is equivalent to finding an MDS from a set of intervals, and can be solved exactly in time 4693: 989:
axis-parallel rectangles in the plane. The following algorithm finds a disjoint set with a size of at least
3772: 5216:
Mitchell, Joseph S. B. (2021-06-25). "Approximating Maximum Independent Set for Rectangles in the Plane".
4754:. This is possible either with a randomized algorithm that has a high probability of success and run time 1834: 1616: 1537: 1496: 1368: 1254: 1175: 5438:
Agarwal, P. K.; Mustafa, N. H. (2006). "Independent set of intersection graphs of convex objects in 2D".
1578: 1458: 1420: 1330: 1216: 621: 4850:
Ravi, S. S.; Hunt, H. B. (1987). "An application of the planar separator theorem to counting problems".
2203: 2155: 2053: 1949: 1799: 1764: 1729: 1295: 1133: 3289:
as low as 2/3 by a proper selection of the separator rectangle. But since we can only approximate MDS(
3167:
The algorithm is based on the following geometric separator theorem, which can be proved similarly to
499:=5, because the disk with the smallest radius intersects at most 5 other disjoint disks (see figure). 31:) is a largest set of non-overlapping geometric shapes selected from a given set of candidate shapes. 2305:
presented a 10-factor approximation algorithm. His algorithm is based on partitioning the plane into
69: 5480: 560:
but with varying lengths. The following algorithm finds a disjoint set with a size of at least |MDS(
5067: 5053:
Chan, T. M. (2003). "Polynomial-time approximation schemes for packing and piercing fat objects".
2349:
of roughly the same size (i.e., when the maximum-to-minimum size ratio is bounded by a constant).
1056: 154:
Choose any xj such that N(xj) is a maximum, i.e. a shape that touches as many shapes as any other.
44: 4547: 4371: 2855:). First, scale the objects such that they are all contained in the unit square. Then, consider 2269: 5475: 5062: 4284: 3168: 20: 4757: 4605: 4176:{\displaystyle T(n)=2^{O(r\cdot {\sqrt {n}})}T\left({\frac {2n}{3}}\right){\text{ if }}n>1} 2781:; hence the number of disjoint fat objects intersecting the boundary of that cell is at most 4 4413: 3136: 2365: 2346: 2302: 2263: 787: 754: 4871: 4047: 3335: + 1 labels are not disjoint) then just return that MDS and exit. This step takes 2461:) as the subset of disks that are not intersected by any horizontal line whose index modulo 2478: 727: 697: 670: 421:
Add an interval with the highest bottom endpoint, and delete all intervals intersecting it.
8: 5470:
Fox, J.; Pach, J. N. (2011). "Computing the Independence Number of Intersection Graphs".
4819: 4492: 4466: 3848:
disks, such that the ratio between the largest radius and the smallest radius is at most
3112: 2683:
An algorithm of Chan finds a disjoint set with a size of at least (1 − 2/
2656: 2596:{\displaystyle |\mathrm {MDS} (D(r,s))|\geq (1-{\frac {1}{k}})^{2}\cdot |\mathrm {MDS} |} 1172:
Partition the input rectangles into three groups according to their relation to the line
970: 959: 433: 5238: 5191: 4876:
Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)
5503: 5415: 5395: 5288: 5264: 5217: 5162: 5132: 5030: 4973: 4897: 4443: 39: 5180: 5076: 5009:"Approximation schemes for covering and packing problems in image processing and VLSI" 4937: 4664:
The algorithm is very simple; the difficult part is to prove the approximation ratio.
3591:{\displaystyle E(m)=E(a\cdot m)+E((1-a)\cdot m)+c\cdot {\sqrt {m}}{\text{ if }}m>b} 5493: 5268: 5254: 5196: 5166: 5152: 5107: 5004: 4887: 4863: 958:
The algorithm is an improvement of the above-mentioned 2-approximation, by combining
5507: 5419: 4901: 3825:. We can make the approximation factor as small as we want by a proper selection of 3123: 2245:-approximation algorithm to the more general setting, in which each rectangle has a 5485: 5449: 5405: 5377: 5348: 5317: 5246: 5186: 5142: 5099: 5072: 5034: 5020: 4983: 4941: 4933: 4879: 4859: 4823: 3835: 111: 5472:
Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms
5453: 5373: 5245:, Proceedings, Society for Industrial and Applied Mathematics, pp. 894–905, 5131:, Proceedings, Society for Industrial and Applied Mathematics, pp. 860–868, 2935:) shift, and find a maximum disjoint set of the remaining objects. Call that set 543: 514: 406:
Sort the intervals in ascending order of their bottom endpoints (this takes time
5489: 5353: 5336: 5250: 5243:
Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)
5147: 5103: 918:
Return the largest of these two unions. Its size must be at least |MDS|/2.
5410: 5381: 5321: 3392:, the error is 0 because the maximum disjoint set is calculated exactly; when 2722: ≥ 1 is a constant) if it is inside a quadtree cell of size at most 5521: 5096:
Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms
5091: 4883: 4803: 4793: 3420:). Therefore the error function satisfies the following recurrence relation: 976: 4041:
The run time of this algorithm satisfies the following recurrence relation:
4987: 3103:
dimensions (with different approximation ratios) and to the weighted case.
2820:-aligned, and find a maximum disjoint set of the remaining objects in time 1097:
INITIALIZATION: sort the horizontal edges of the given rectangles by their
390:
Therefore, in the 1-dimensional case, the MDS can be found exactly in time
2252: 3092:. We can make the approximation factor as small as we want, so this is a 50: 5129:
Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA)
5025: 5008: 4830:
Javascript code for calculating exact maximum disjoint set of rectangles
4829: 3917:. This separator theorem allows to build the following exact algorithm: 2796:-aligned, it is possible to find the exact maximum disjoint set in time 447: 5239:"A 3-Approximation Algorithm for Maximum Independent Set of Rectangles" 3376:) be the error of the above algorithm when the optimal MDS size is MDS( 2741:-aligned object that intersects the boundary of a quatree cell of size 2615:) and miss only a small fraction of the disks in the optimal solution: 5382:"Approximation Algorithms for Maximum Independent Set of Pseudo-Disks" 4946: 3169:
the proof of the existence of geometric separator for disjoint squares
2249:, and the goal is to find an independent set of maximum total weight. 922: 462:=3, because the leftmost disk (the disk whose center has the smallest 347: 53:, but finding a MDS may be easier than finding a MIS in two respects: 4978: 2345:
time and linear space. The strategy generalizes to any collection of
973:
along one of the dimensions. This also reduces the time to n^O(1/e).
664:) – each subset includes the rectangles intersected by a single line. 4820:
Approximation Algorithms for Maximum Independent Set of Pseudo-Disks
484: 352: 5293: 5222: 5137: 4023:
such subsets. For each such subset, recursively compute the MDS of
3360:
separately, and return their combination as the approximate MDS in
2703: 42:
of the shapes. Therefore, the MDS problem is a special case of the
5400: 817:. Therefore, each of the following two unions is a disjoint sets: 3124:
Fat objects with arbitrary sizes: PTAS using geometric separators
2828:) approximation, where e is the fraction of objects that are not 2675: 2373: 2334: 1575:), and calculate their union. By construction, the rectangles in 5178: 3836:
Disks with a bounded size-ratio: exact sub-exponential algorithm
556:
axis-parallel rectangles in the plane, all with the same height
2369: 2330: 5337:"Theory and application of width bounded geometric separators" 2430:, impose a grid on the plane that consists of lines that are ( 544:
Axis-parallel rectangles with the same height: 2-approximation
3111:
Several divide-and-conquer algorithms are based on a certain
3051:{\displaystyle \sum _{j=0,\ldots ,k-1}{|A(j)|}\geq (k-2)|A*|} 442: 4287:
by Chan and Har-Peled finds a disjoint set of size at least
2043:{\displaystyle M_{\mathrm {left} }\cup M_{\mathrm {right} }} 1939:{\displaystyle M_{\mathrm {left} }\cup M_{\mathrm {right} }} 1712:{\displaystyle M_{\mathrm {left} }\cup M_{\mathrm {right} }} 379:
must cross its bottom endpoint. Therefore, all intervals in
4670: 4361:{\displaystyle (1-O({\frac {1}{\sqrt {b}}}))\cdot |MDS(C)|} 3308:
This separator theorem allows to build the following PTAS:
1985:
It is provable by induction that, at the last step, either
1124: ≤ 2 shapes, compute the MDS directly and return. 73: 4794:
Other classes of shapes for which approximations are known
3120:
and sub-exponential exact algorithms, as explained below.
977:
Axis-parallel rectangles: Logarithmic-factor approximation
4696:, it is possible to find a disjoint set of size at least 2352: 2317: 4653:
Every exchange in the search step increases the size of
4526:
itself is independent (otherwise go to the next subset);
2816:-aligned, we can just discard the objects that are not 2253:
Axis-parallel rectangles: constant-factor approximation
721:
using the one-dimensional greedy algorithm (see above).
587:
The separation between two lines is strictly more than
4921: 3084:); the approximation factor is (1 − 2/ 4760: 4702: 4608: 4550: 4495: 4469: 4446: 4416: 4374: 4293: 4195: 4088: 4050: 3983: 3862: 3775: 3610: 3491: 3429: 3181:
of fat objects, there is a rectangle that partitions
3076:*|. The return value of the algorithm is the largest 2955: 2491: 2272: 2206: 2158: 2091: 2056: 1991: 1952: 1887: 1837: 1802: 1767: 1732: 1660: 1619: 1581: 1540: 1499: 1461: 1423: 1371: 1333: 1298: 1257: 1219: 1178: 1136: 1059: 995: 874: 826: 790: 757: 730: 700: 673: 624: 274: 5307: 4809:
Curves with a bounded number of intersection points.
2789:
is a constant measuring the fatness of the objects.
2411:-th level contains all disks with diameter between ( 2152:
Chalermsookk and Chuzoy have improved the factor to
250:
In particular, if we can guarantee that there is an
68:
Finding an MDS is important in applications such as
5368: 5366: 5364: 5286: 5236: 4999: 4997: 4963: 2801:
the boundary of every quadtree cell is bounded by 4
962:with the shifting technique of Hochbaum and Maass. 923:
Axis-parallel rectangles with the same height: PTAS
594:Each line intersects at least one rectangle (hence 532:
Recursively find the MDS in each subset separately.
348:
1-dimensional intervals: exact polynomial algorithm
5126: 5089: 4782: 4746: 4632: 4582: 4507: 4481: 4452: 4428: 4402: 4360: 4242: 4175: 4071: 4015: 3894: 3817: 3758: 3590: 3477:{\displaystyle E(m)=0\ \ \ \ {\text{ if }}m\leq b} 3476: 3050: 2595: 2423: ≤ 0 (the smallest disk is in level 0). 2404: > 1. It works in the following way. 2337:of identical size. Hochbaum and Maass presented a 2287: 2237: 2189: 2141: 2077: 2042: 1973: 1938: 1864: 1823: 1788: 1753: 1711: 1646: 1605: 1567: 1526: 1485: 1447: 1398: 1357: 1319: 1284: 1243: 1205: 1157: 1085: 1045: 906: 858: 809: 776: 743: 713: 686: 656: 605:Each rectangle is intersected by exactly one line. 506:is a set of arbitrary-size axis-parallel squares, 330: 5094:(2009). "Maximum Independent Set of Rectangles". 3970:Consider all possible non-overlapping subsets of 3342:Otherwise, use a geometric separator to separate 3106: 3068:) has a size of at least: (1 − 2/ 266:-factor approximation, as we can guarantee that: 151:Assign N(xi) equal to the number shapes in J(xi). 5519: 5361: 4994: 520: 262:), then this greedy algorithm yields a constant 4872:"Geometric separator theorems and applications" 5437: 4243:{\displaystyle T(n)=2^{O(r\cdot {\sqrt {n}})}} 2943:). Call the real maximum disjoint set is  2469:, nor by any vertical line whose index modulu 535:Return the union of the MDSs from all subsets. 5372: 5003: 4959: 4957: 4917: 4915: 4913: 4911: 1101:-coordinate, and the vertical edges by their 331:{\displaystyle |S|\geq {\frac {|MDS(C)|}{M}}} 136:Calculate J(xi), the subset of all shapes in 5301: 4869: 4747:{\displaystyle {\frac {n}{u}}\cdot |MDS(C)|} 3346:to two subsets. Find the approximate MDS in 2142:{\displaystyle {\frac {|MDS(C)|}{\log {n}}}} 1046:{\displaystyle {\frac {|MDS(C)|}{\log {n}}}} 513:Other constants can be calculated for other 90:) denotes the maximum disjoint set in a set 4799:Line segments in the two-dimensional plane. 4657:by at least 1, and thus can happen at most 3315:. Check all possible combinations of up to 907:{\displaystyle M_{2}\cup M_{4}\cup \cdots } 859:{\displaystyle M_{1}\cup M_{3}\cup \cdots } 5048: 5046: 5044: 4954: 4908: 4253: 2200:Chalermsook and Walczak have presented an 443:Fat shapes: constant-factor approximations 34:Every set of non-overlapping shapes is an 5479: 5409: 5399: 5352: 5292: 5221: 5190: 5146: 5136: 5066: 5024: 4977: 4945: 4675: 4440:INITIALIZATION: Initialize an empty set, 4016:{\displaystyle 2^{O(r\cdot {\sqrt {n}})}} 3956:) centers are at a distance of less than 3921:Find a separator line such that at most 2 3895:{\displaystyle 2^{O(r\cdot {\sqrt {n}})}} 3281:are constants. If we could calculate MDS( 2824:. This results in a (1 −  1327:). By construction, the cardinalities of 118:INITIALIZATION: Initialize an empty set, 5215: 4849: 4671:Linear programming relaxation algorithms 2710:to the quadtree grid. An object of size 2674: 477:is a set of axis-parallel unit squares, 5469: 5465: 5463: 5433: 5431: 5429: 5341:Journal of Computer and System Sciences 5041: 4258: 5520: 4037:, and return the largest combined set. 3285:) exactly, we could make the constant 2792:Therefore, if all objects are fat and 2706:. The key concept of the algorithm is 2353:Fat objects with arbitrary sizes: PTAS 2318:Fat objects with identical sizes: PTAS 610:Since the height of all rectangles is 387:has a size of at most 1 (see figure). 344:exists for several interesting cases: 5387:Discrete & Computational Geometry 4870:Smith, W. D.; Wormald, N. C. (1998). 4463:SEARCH: Loop over all the subsets of 3818:{\displaystyle E(m)=O(m/{\sqrt {b}})} 3293:) by a constant factor, the constant 2383: 2266:of axes-parallel rectangles in which 1120:STOP CONDITION: If there are at most 965:This algorithm can be generalized to 375:. All other intervals intersected by 62:polynomial-time approximation schemes 5460: 5426: 5052: 4186:The solution to this recurrence is: 3852:. The following algorithm finds MDS( 3601:The solution to this recurrence is: 3099:Both versions can be generalized to 2907: − 2 values of  2670: 2603:, i.e., we can find the MDS only in 2339:polynomial-time approximation scheme 1865:{\displaystyle x=x_{\mathrm {med} }} 1647:{\displaystyle M_{\mathrm {right} }} 1568:{\displaystyle M_{\mathrm {right} }} 1527:{\displaystyle R_{\mathrm {right} }} 1399:{\displaystyle R_{\mathrm {right} }} 1285:{\displaystyle R_{\mathrm {right} }} 1206:{\displaystyle x=x_{\mathrm {med} }} 724:By construction, the rectangles in ( 223:. The largest subset of shapes that 97: 5192:10.4230/LIPIcs.APPROX-RANDOM.2015.1 3301:remains a constant independent of | 2915:, discard the objects that are not 1606:{\displaystyle M_{\mathrm {left} }} 1486:{\displaystyle M_{\mathrm {left} }} 1448:{\displaystyle R_{\mathrm {left} }} 1358:{\displaystyle R_{\mathrm {left} }} 1244:{\displaystyle R_{\mathrm {left} }} 751:) can intersect only rectangles in 657:{\displaystyle R_{i},\ldots ,R_{m}} 428:This algorithm is analogous to the 424:Continue until no intervals remain. 106:of shapes, an approximation to MDS( 13: 5334: 5328: 2839:-aligned, we can try to make them 2765:). The boundary of a cell of size 2584: 2581: 2578: 2504: 2501: 2498: 2273: 2262:. Particularly, if there exists a 2238:{\displaystyle O(\log {\log {n}})} 2190:{\displaystyle O(\log {\log {n}})} 2078:{\displaystyle M_{\mathrm {int} }} 2069: 2066: 2063: 2034: 2031: 2028: 2025: 2022: 2007: 2004: 2001: 1998: 1974:{\displaystyle M_{\mathrm {int} }} 1965: 1962: 1959: 1930: 1927: 1924: 1921: 1918: 1903: 1900: 1897: 1894: 1856: 1853: 1850: 1824:{\displaystyle R_{\mathrm {int} }} 1815: 1812: 1809: 1789:{\displaystyle M_{\mathrm {int} }} 1780: 1777: 1774: 1754:{\displaystyle R_{\mathrm {int} }} 1745: 1742: 1739: 1703: 1700: 1697: 1694: 1691: 1676: 1673: 1670: 1667: 1638: 1635: 1632: 1629: 1626: 1597: 1594: 1591: 1588: 1559: 1556: 1553: 1550: 1547: 1518: 1515: 1512: 1509: 1506: 1477: 1474: 1471: 1468: 1439: 1436: 1433: 1430: 1390: 1387: 1384: 1381: 1378: 1349: 1346: 1343: 1340: 1320:{\displaystyle R_{\mathrm {int} }} 1311: 1308: 1305: 1276: 1273: 1270: 1267: 1264: 1235: 1232: 1229: 1226: 1197: 1194: 1191: 1158:{\displaystyle x_{\mathrm {med} }} 1149: 1146: 1143: 1105:-coordinate (this step takes time 495:is a set of arbitrary-size disks, 483: 446: 430:earliest deadline first scheduling 351: 227:all be in the optimal solution is 211:, because they are intersected by 14: 5539: 4813: 3907:width-bounded geometric separator 3400:, the error increases by at most 2679:A region quadtree with point data 2376:, of arbitrary sizes. There is a 1831:intersect a single vertical line 363:is a set of intervals on a line, 16:Concept in computational geometry 3185:into three subsets of objects – 1292:), and those intersected by it ( 1251:), those entirely to its right ( 110:) can be found by the following 5280: 5230: 5182:On Guillotine Cutting Sequences 3913:of the centers of all disks in 2085:have a cardinality of at least 258:is bounded by a constant (say, 239:minimizes the loss from adding 78:frequency division multiplexing 5209: 5172: 5120: 5083: 4852:Information Processing Letters 4843: 4777: 4764: 4740: 4736: 4730: 4717: 4576: 4568: 4560: 4552: 4397: 4378: 4354: 4350: 4344: 4331: 4324: 4321: 4306: 4294: 4235: 4219: 4205: 4199: 4128: 4112: 4098: 4092: 4060: 4054: 4008: 3992: 3887: 3871: 3812: 3794: 3785: 3779: 3693: 3687: 3655: 3626: 3620: 3614: 3555: 3546: 3534: 3531: 3522: 3510: 3501: 3495: 3439: 3433: 3107:Geometric separator algorithms 3044: 3033: 3029: 3017: 3009: 3005: 2999: 2992: 2859:shifts of the grid: (0,0), (1/ 2589: 2573: 2560: 2540: 2533: 2529: 2526: 2514: 2508: 2493: 2282: 2276: 2232: 2210: 2184: 2162: 2119: 2115: 2109: 2096: 1981:– whichever of them is larger. 1213:: those entirely to its left ( 1080: 1063: 1023: 1019: 1013: 1000: 318: 314: 308: 295: 284: 276: 1: 5077:10.1016/s0196-6774(02)00294-8 4938:10.1016/s0925-7721(98)00028-5 4694:linear programming relaxation 4688:objects and union complexity 4410:, for every integer constant 3925:/3 centers are to its right ( 3297:must be larger. Fortunately, 2745:must have a size of at least 2481:, there is at least one pair 584:horizontal lines, such that: 521:Divide-and-conquer algorithms 76:circuit design, and cellular 5454:10.1016/j.comgeo.2005.12.001 4864:10.1016/0020-0190(87)90206-7 4489:whose size is between 1 and 3936:/3 centers are to its left ( 3905:The algorithm is based on a 2847:the grid in multiples of (1/ 2662:Return the largest of these 1086:{\displaystyle O(n\log {n})} 215:and thus cannot be added to 7: 4684:be a pseudo-disks-set with 4279:be a pseudo-disks-set with 2702:The algorithm uses shifted 1796:). Since all rectangles in 86:In the following text, MDS( 49:problem. Both problems are 10: 5544: 5490:10.1137/1.9781611973082.87 5354:10.1016/j.jcss.2010.05.003 5251:10.1137/1.9781611977073.38 5148:10.1137/1.9781611976465.54 5104:10.1137/1.9781611973068.97 4802:Arbitrary two-dimensional 4583:{\displaystyle |Y|<|X|} 4403:{\displaystyle O(n^{b+3})} 2288:{\displaystyle \Omega (n)} 383:intersect each other, and 231:. Therefore, selecting an 5411:10.1007/s00454-012-9417-5 5322:10.1137/s0097539702402676 5310:SIAM Journal on Computing 3327:)| has a size of at most 2392:) ⋅ |MDS( 2307:corner-clipped rectangles 371:be the interval with the 70:automatic label placement 64:(PTAS) for finding a MDS. 4884:10.1109/sfcs.1998.743449 4836: 4783:{\displaystyle O(n^{3})} 4633:{\displaystyle S:=S-Y+X} 2835:If most objects are not 458:is a set of unit disks, 207:, we lose the shapes in 181:and delete J(x) and N(x) 125:SEARCH: For every shape 4515:. For each such subset 4429:{\displaystyle b\geq 0} 4254:Local search algorithms 3319: + 1 labels. 3088:), and the run time is 3060:Therefore, the largest 1413:Recursively compute an 810:{\displaystyle R_{i-1}} 777:{\displaystyle R_{i+1}} 694:, compute an exact MDS 373:highest bottom endpoint 184:If there are shapes in 45:maximum independent set 5528:Computational geometry 5441:Computational Geometry 4988:10.1002/net.3230250205 4925:Computational Geometry 4784: 4748: 4634: 4584: 4509: 4483: 4454: 4430: 4404: 4362: 4285:local search algorithm 4244: 4177: 4073: 4072:{\displaystyle T(1)=1} 4017: 3896: 3819: 3760: 3592: 3478: 3416::(1 −  3052: 2903:-aligned for at least 2887: − 1)/ 2879: − 1)/ 2680: 2597: 2289: 2239: 2191: 2143: 2079: 2044: 1975: 1940: 1866: 1825: 1790: 1755: 1713: 1648: 1607: 1569: 1528: 1487: 1449: 1400: 1359: 1321: 1286: 1245: 1207: 1159: 1087: 1047: 951:), for every constant 908: 860: 811: 778: 745: 715: 688: 658: 488: 451: 356: 332: 21:computational geometry 5055:Journal of Algorithms 4785: 4749: 4635: 4585: 4510: 4484: 4455: 4431: 4405: 4363: 4245: 4178: 4074: 4018: 3897: 3820: 3761: 3593: 3479: 3160:, for every constant 3053: 2695:, for every constant 2678: 2598: 2419: + 1), for 2415: + 1) and ( 2400:, for every constant 2303:Joseph S. B. Mitchell 2290: 2264:guillotine separation 2240: 2192: 2144: 2080: 2045: 1976: 1941: 1867: 1826: 1791: 1756: 1714: 1654:are all disjoint, so 1649: 1608: 1570: 1529: 1488: 1450: 1401: 1360: 1322: 1287: 1246: 1208: 1160: 1088: 1048: 909: 861: 812: 779: 746: 744:{\displaystyle R_{i}} 716: 714:{\displaystyle M_{i}} 689: 687:{\displaystyle R_{i}} 659: 487: 450: 355: 333: 5007:; Maass, W. (1985). 4758: 4700: 4676:Pseudo-disks: a PTAS 4645:END: return the set 4606: 4548: 4493: 4467: 4444: 4414: 4372: 4291: 4259:Pseudo-disks: a PTAS 4193: 4086: 4048: 3981: 3977:. There are at most 3860: 3773: 3608: 3489: 3427: 2953: 2489: 2479:pigeonhole principle 2270: 2204: 2156: 2089: 2054: 1989: 1950: 1885: 1835: 1800: 1765: 1730: 1658: 1617: 1579: 1538: 1497: 1459: 1421: 1369: 1331: 1296: 1255: 1217: 1176: 1134: 1057: 993: 939:)|/(1 + 1/ 872: 868:Union of even MDSs: 824: 788: 755: 728: 698: 671: 622: 340:Such an upper bound 272: 191:END: return the set 188:, go back to Search. 25:maximum disjoint set 5026:10.1145/2455.214106 4508:{\displaystyle b+1} 4482:{\displaystyle C-S} 3164: > 1. 3113:geometric separator 2769:can be covered by 4 2699: > 1. 2657:dynamic programming 2623:possible values of 971:dynamic programming 960:dynamic programming 955: > 1. 820:Union of odd MDSs: 434:interval scheduling 5013:Journal of the ACM 4822:- presentation by 4780: 4744: 4630: 4580: 4529:Calculate the set 4505: 4479: 4450: 4426: 4400: 4358: 4240: 4173: 4069: 4013: 3960:/2 from the line ( 3892: 3856:) exactly in time 3815: 3756: 3588: 3474: 3331:(i.e. all sets of 3311:Select a constant 3048: 2989: 2891:). I.e., for each 2681: 2593: 2384:Level partitioning 2285: 2235: 2187: 2139: 2075: 2040: 1971: 1936: 1862: 1821: 1786: 1751: 1719:is a disjoint set. 1709: 1644: 1603: 1565: 1524: 1483: 1445: 1396: 1355: 1317: 1282: 1241: 1203: 1155: 1083: 1043: 904: 856: 807: 774: 741: 711: 684: 654: 489: 452: 357: 328: 40:intersection graph 5499:978-0-89871-993-2 5260:978-1-61197-707-3 5202:978-3-939897-89-7 5185:. pp. 1–19. 5158:978-1-61197-646-5 5113:978-0-89871-680-1 5090:Chalermsook, P.; 4893:978-0-8186-9172-0 4711: 4453:{\displaystyle S} 4319: 4318: 4233: 4162: 4153: 4126: 4006: 3885: 3810: 3751: 3741: 3732: 3716: 3691: 3679: 3663: 3653: 3637: 3577: 3572: 3463: 3459: 3456: 3453: 3450: 2956: 2919:-aligned in the ( 2911:. Now, for every 2737:By definition, a 2671:Shifted quadtrees 2557: 2137: 1041: 326: 98:Greedy algorithms 5535: 5512: 5511: 5483: 5474:. p. 1161. 5467: 5458: 5457: 5435: 5424: 5423: 5413: 5403: 5370: 5359: 5358: 5356: 5332: 5326: 5325: 5305: 5299: 5298: 5296: 5284: 5278: 5277: 5276: 5275: 5234: 5228: 5227: 5225: 5213: 5207: 5206: 5194: 5176: 5170: 5169: 5150: 5140: 5124: 5118: 5117: 5087: 5081: 5080: 5070: 5050: 5039: 5038: 5028: 5001: 4992: 4991: 4981: 4961: 4952: 4951: 4949: 4919: 4906: 4905: 4867: 4847: 4824:Sariel Har-Peled 4789: 4787: 4786: 4781: 4776: 4775: 4753: 4751: 4750: 4745: 4743: 4720: 4712: 4704: 4639: 4637: 4636: 4631: 4589: 4587: 4586: 4581: 4579: 4571: 4563: 4555: 4514: 4512: 4511: 4506: 4488: 4486: 4485: 4480: 4459: 4457: 4456: 4451: 4435: 4433: 4432: 4427: 4409: 4407: 4406: 4401: 4396: 4395: 4367: 4365: 4364: 4359: 4357: 4334: 4320: 4314: 4310: 4270:union complexity 4265:pseudo-disks-set 4249: 4247: 4246: 4241: 4239: 4238: 4234: 4229: 4182: 4180: 4179: 4174: 4163: 4160: 4158: 4154: 4149: 4141: 4132: 4131: 4127: 4122: 4078: 4076: 4075: 4070: 4022: 4020: 4019: 4014: 4012: 4011: 4007: 4002: 3955: 3954: 3901: 3899: 3898: 3893: 3891: 3890: 3886: 3881: 3824: 3822: 3821: 3816: 3811: 3806: 3804: 3765: 3763: 3762: 3757: 3752: 3747: 3742: 3740: 3733: 3722: 3717: 3712: 3706: 3692: 3690: 3680: 3669: 3664: 3659: 3654: 3649: 3643: 3638: 3630: 3597: 3595: 3594: 3589: 3578: 3575: 3573: 3568: 3483: 3481: 3480: 3475: 3464: 3461: 3457: 3454: 3451: 3448: 3411: 3410: 3396: >  3265: 3264: 3262: 3151: 3150: 3057: 3055: 3054: 3049: 3047: 3036: 3013: 3012: 2995: 2988: 2812:all objects are 2773:squares of size 2639: <  2602: 2600: 2599: 2594: 2592: 2587: 2576: 2568: 2567: 2558: 2550: 2536: 2507: 2496: 2294: 2292: 2291: 2286: 2244: 2242: 2241: 2236: 2231: 2230: 2196: 2194: 2193: 2188: 2183: 2182: 2148: 2146: 2145: 2140: 2138: 2136: 2135: 2123: 2122: 2099: 2093: 2084: 2082: 2081: 2076: 2074: 2073: 2072: 2049: 2047: 2046: 2041: 2039: 2038: 2037: 2012: 2011: 2010: 1980: 1978: 1977: 1972: 1970: 1969: 1968: 1945: 1943: 1942: 1937: 1935: 1934: 1933: 1908: 1907: 1906: 1871: 1869: 1868: 1863: 1861: 1860: 1859: 1830: 1828: 1827: 1822: 1820: 1819: 1818: 1795: 1793: 1792: 1787: 1785: 1784: 1783: 1760: 1758: 1757: 1752: 1750: 1749: 1748: 1718: 1716: 1715: 1710: 1708: 1707: 1706: 1681: 1680: 1679: 1653: 1651: 1650: 1645: 1643: 1642: 1641: 1612: 1610: 1609: 1604: 1602: 1601: 1600: 1574: 1572: 1571: 1566: 1564: 1563: 1562: 1533: 1531: 1530: 1525: 1523: 1522: 1521: 1492: 1490: 1489: 1484: 1482: 1481: 1480: 1454: 1452: 1451: 1446: 1444: 1443: 1442: 1405: 1403: 1402: 1397: 1395: 1394: 1393: 1364: 1362: 1361: 1356: 1354: 1353: 1352: 1326: 1324: 1323: 1318: 1316: 1315: 1314: 1291: 1289: 1288: 1283: 1281: 1280: 1279: 1250: 1248: 1247: 1242: 1240: 1239: 1238: 1212: 1210: 1209: 1204: 1202: 1201: 1200: 1164: 1162: 1161: 1156: 1154: 1153: 1152: 1127:RECURSIVE PART: 1092: 1090: 1089: 1084: 1079: 1052: 1050: 1049: 1044: 1042: 1040: 1039: 1027: 1026: 1003: 997: 913: 911: 910: 905: 897: 896: 884: 883: 865: 863: 862: 857: 849: 848: 836: 835: 816: 814: 813: 808: 806: 805: 783: 781: 780: 775: 773: 772: 750: 748: 747: 742: 740: 739: 720: 718: 717: 712: 710: 709: 693: 691: 690: 685: 683: 682: 667:For each subset 663: 661: 660: 655: 653: 652: 634: 633: 515:regular polygons 502:Similarly, when 473:Similarly, when 432:solution to the 337: 335: 334: 329: 327: 322: 321: 298: 292: 287: 279: 199:For every shape 112:greedy algorithm 5543: 5542: 5538: 5537: 5536: 5534: 5533: 5532: 5518: 5517: 5516: 5515: 5500: 5481:10.1.1.700.4445 5468: 5461: 5436: 5427: 5371: 5362: 5335:Fu, B. (2011). 5333: 5329: 5306: 5302: 5285: 5281: 5273: 5271: 5261: 5235: 5231: 5214: 5210: 5203: 5177: 5173: 5159: 5125: 5121: 5114: 5098:. p. 892. 5088: 5084: 5051: 5042: 5005:Hochbaum, D. S. 5002: 4995: 4962: 4955: 4920: 4909: 4894: 4878:. p. 232. 4848: 4844: 4839: 4816: 4796: 4771: 4767: 4759: 4756: 4755: 4739: 4716: 4703: 4701: 4698: 4697: 4678: 4673: 4607: 4604: 4603: 4575: 4567: 4559: 4551: 4549: 4546: 4545: 4537:that intersect 4494: 4491: 4490: 4468: 4465: 4464: 4445: 4442: 4441: 4415: 4412: 4411: 4385: 4381: 4373: 4370: 4369: 4353: 4330: 4309: 4292: 4289: 4288: 4261: 4256: 4228: 4215: 4211: 4194: 4191: 4190: 4159: 4142: 4140: 4136: 4121: 4108: 4104: 4087: 4084: 4083: 4049: 4046: 4045: 4036: 4030:and the MDS of 4029: 4001: 3988: 3984: 3982: 3979: 3978: 3976: 3966: 3950: 3948: 3943:), and at most 3942: 3931: 3880: 3867: 3863: 3861: 3858: 3857: 3838: 3805: 3800: 3774: 3771: 3770: 3746: 3721: 3711: 3710: 3705: 3668: 3658: 3648: 3647: 3642: 3629: 3609: 3606: 3605: 3574: 3567: 3490: 3487: 3486: 3460: 3428: 3425: 3424: 3406: 3404: 3359: 3352: 3256: 3254: 3252: 3247: 3233: 3215: 3205: 3197: 3190: 3146: 3144: 3126: 3109: 3043: 3032: 3008: 2991: 2990: 2960: 2954: 2951: 2950: 2673: 2631:(0 ≤  2588: 2577: 2572: 2563: 2559: 2549: 2532: 2497: 2492: 2490: 2487: 2486: 2426:For each level 2386: 2355: 2320: 2271: 2268: 2267: 2260:guillotine cuts 2255: 2226: 2219: 2205: 2202: 2201: 2178: 2171: 2157: 2154: 2153: 2131: 2124: 2118: 2095: 2094: 2092: 2090: 2087: 2086: 2062: 2061: 2057: 2055: 2052: 2051: 2021: 2020: 2016: 1997: 1996: 1992: 1990: 1987: 1986: 1958: 1957: 1953: 1951: 1948: 1947: 1917: 1916: 1912: 1893: 1892: 1888: 1886: 1883: 1882: 1849: 1848: 1844: 1836: 1833: 1832: 1808: 1807: 1803: 1801: 1798: 1797: 1773: 1772: 1768: 1766: 1763: 1762: 1738: 1737: 1733: 1731: 1728: 1727: 1690: 1689: 1685: 1666: 1665: 1661: 1659: 1656: 1655: 1625: 1624: 1620: 1618: 1615: 1614: 1587: 1586: 1582: 1580: 1577: 1576: 1546: 1545: 1541: 1539: 1536: 1535: 1505: 1504: 1500: 1498: 1495: 1494: 1467: 1466: 1462: 1460: 1457: 1456: 1429: 1428: 1424: 1422: 1419: 1418: 1377: 1376: 1372: 1370: 1367: 1366: 1339: 1338: 1334: 1332: 1329: 1328: 1304: 1303: 1299: 1297: 1294: 1293: 1263: 1262: 1258: 1256: 1253: 1252: 1225: 1224: 1220: 1218: 1215: 1214: 1190: 1189: 1185: 1177: 1174: 1173: 1142: 1141: 1137: 1135: 1132: 1131: 1113: log  1075: 1058: 1055: 1054: 1035: 1028: 1022: 999: 998: 996: 994: 991: 990: 979: 925: 892: 888: 879: 875: 873: 870: 869: 844: 840: 831: 827: 825: 822: 821: 795: 791: 789: 786: 785: 762: 758: 756: 753: 752: 735: 731: 729: 726: 725: 705: 701: 699: 696: 695: 678: 674: 672: 669: 668: 648: 644: 629: 625: 623: 620: 619: 572: log  546: 523: 445: 414: log  398: log  350: 317: 294: 293: 291: 283: 275: 273: 270: 269: 235:that minimizes 203:that we add to 140:that intersect 100: 36:independent set 17: 12: 11: 5: 5541: 5531: 5530: 5514: 5513: 5498: 5459: 5425: 5360: 5347:(2): 379–392. 5327: 5300: 5279: 5259: 5229: 5208: 5201: 5171: 5157: 5119: 5112: 5082: 5068:10.1.1.21.5344 5061:(2): 178–189. 5040: 4993: 4953: 4907: 4892: 4841: 4840: 4838: 4835: 4834: 4833: 4827: 4815: 4814:External links 4812: 4811: 4810: 4807: 4804:convex objects 4800: 4795: 4792: 4779: 4774: 4770: 4766: 4763: 4742: 4738: 4735: 4732: 4729: 4726: 4723: 4719: 4715: 4710: 4707: 4677: 4674: 4672: 4669: 4651: 4650: 4643: 4642: 4641: 4629: 4626: 4623: 4620: 4617: 4614: 4611: 4590:, then remove 4578: 4574: 4570: 4566: 4562: 4558: 4554: 4542: 4533:of objects in 4527: 4504: 4501: 4498: 4478: 4475: 4472: 4461: 4449: 4425: 4422: 4419: 4399: 4394: 4391: 4388: 4384: 4380: 4377: 4356: 4352: 4349: 4346: 4343: 4340: 4337: 4333: 4329: 4326: 4323: 4317: 4313: 4308: 4305: 4302: 4299: 4296: 4260: 4257: 4255: 4252: 4251: 4250: 4237: 4232: 4227: 4224: 4221: 4218: 4214: 4210: 4207: 4204: 4201: 4198: 4184: 4183: 4172: 4169: 4166: 4161: if  4157: 4152: 4148: 4145: 4139: 4135: 4130: 4125: 4120: 4117: 4114: 4111: 4107: 4103: 4100: 4097: 4094: 4091: 4080: 4079: 4068: 4065: 4062: 4059: 4056: 4053: 4039: 4038: 4034: 4027: 4010: 4005: 4000: 3997: 3994: 3991: 3987: 3974: 3968: 3964: 3940: 3929: 3889: 3884: 3879: 3876: 3873: 3870: 3866: 3837: 3834: 3814: 3809: 3803: 3799: 3796: 3793: 3790: 3787: 3784: 3781: 3778: 3767: 3766: 3755: 3750: 3745: 3739: 3736: 3731: 3728: 3725: 3720: 3715: 3709: 3704: 3701: 3698: 3695: 3689: 3686: 3683: 3678: 3675: 3672: 3667: 3662: 3657: 3652: 3646: 3641: 3636: 3633: 3628: 3625: 3622: 3619: 3616: 3613: 3599: 3598: 3587: 3584: 3581: 3576: if  3571: 3566: 3563: 3560: 3557: 3554: 3551: 3548: 3545: 3542: 3539: 3536: 3533: 3530: 3527: 3524: 3521: 3518: 3515: 3512: 3509: 3506: 3503: 3500: 3497: 3494: 3484: 3473: 3470: 3467: 3462: if  3447: 3444: 3441: 3438: 3435: 3432: 3380:) =  3366: 3365: 3357: 3350: 3340: 3271: 3270: 3269: 3268: 3267: 3266: 3245: 3239: 3231: 3225: 3213: 3203: 3195: 3188: 3177:For every set 3152:))⋅|MDS( 3125: 3122: 3108: 3105: 3046: 3042: 3039: 3035: 3031: 3028: 3025: 3022: 3019: 3016: 3011: 3007: 3004: 3001: 2998: 2994: 2987: 2984: 2981: 2978: 2975: 2972: 2969: 2966: 2963: 2959: 2672: 2669: 2668: 2667: 2660: 2591: 2586: 2583: 2580: 2575: 2571: 2566: 2562: 2556: 2553: 2548: 2545: 2542: 2539: 2535: 2531: 2528: 2525: 2522: 2519: 2516: 2513: 2510: 2506: 2503: 2500: 2495: 2445:between 0 and 2385: 2382: 2354: 2351: 2319: 2316: 2315: 2314: 2310: 2284: 2281: 2278: 2275: 2254: 2251: 2234: 2229: 2225: 2222: 2218: 2215: 2212: 2209: 2186: 2181: 2177: 2174: 2170: 2167: 2164: 2161: 2134: 2130: 2127: 2121: 2117: 2114: 2111: 2108: 2105: 2102: 2098: 2071: 2068: 2065: 2060: 2036: 2033: 2030: 2027: 2024: 2019: 2015: 2009: 2006: 2003: 2000: 1995: 1983: 1982: 1967: 1964: 1961: 1956: 1932: 1929: 1926: 1923: 1920: 1915: 1911: 1905: 1902: 1899: 1896: 1891: 1881:Return either 1879: 1878: 1877: 1858: 1855: 1852: 1847: 1843: 1840: 1817: 1814: 1811: 1806: 1782: 1779: 1776: 1771: 1747: 1744: 1741: 1736: 1720: 1705: 1702: 1699: 1696: 1693: 1688: 1684: 1678: 1675: 1672: 1669: 1664: 1640: 1637: 1634: 1631: 1628: 1623: 1599: 1596: 1593: 1590: 1585: 1561: 1558: 1555: 1552: 1549: 1544: 1520: 1517: 1514: 1511: 1508: 1503: 1479: 1476: 1473: 1470: 1465: 1441: 1438: 1435: 1432: 1427: 1411: 1392: 1389: 1386: 1383: 1380: 1375: 1351: 1348: 1345: 1342: 1337: 1313: 1310: 1307: 1302: 1278: 1275: 1272: 1269: 1266: 1261: 1237: 1234: 1231: 1228: 1223: 1199: 1196: 1193: 1188: 1184: 1181: 1170: 1165:be the median 1151: 1148: 1145: 1140: 1125: 1118: 1082: 1078: 1074: 1071: 1068: 1065: 1062: 1038: 1034: 1031: 1025: 1021: 1018: 1015: 1012: 1009: 1006: 1002: 978: 975: 924: 921: 920: 919: 916: 915: 914: 903: 900: 895: 891: 887: 882: 878: 866: 855: 852: 847: 843: 839: 834: 830: 804: 801: 798: 794: 771: 768: 765: 761: 738: 734: 722: 708: 704: 681: 677: 665: 651: 647: 643: 640: 637: 632: 628: 608: 607: 606: 603: 592: 545: 542: 537: 536: 533: 530: 522: 519: 444: 441: 426: 425: 422: 419: 349: 346: 325: 320: 316: 313: 310: 307: 304: 301: 297: 290: 286: 282: 278: 197: 196: 189: 182: 171: 160: 159: 158: 155: 152: 149: 123: 99: 96: 66: 65: 58: 15: 9: 6: 4: 3: 2: 5540: 5529: 5526: 5525: 5523: 5509: 5505: 5501: 5495: 5491: 5487: 5482: 5477: 5473: 5466: 5464: 5455: 5451: 5447: 5443: 5442: 5434: 5432: 5430: 5421: 5417: 5412: 5407: 5402: 5397: 5393: 5389: 5388: 5383: 5379: 5378:Har-Peled, S. 5375: 5369: 5367: 5365: 5355: 5350: 5346: 5342: 5338: 5331: 5323: 5319: 5315: 5311: 5304: 5295: 5290: 5283: 5270: 5266: 5262: 5256: 5252: 5248: 5244: 5240: 5233: 5224: 5219: 5212: 5204: 5198: 5193: 5188: 5184: 5183: 5175: 5168: 5164: 5160: 5154: 5149: 5144: 5139: 5134: 5130: 5123: 5115: 5109: 5105: 5101: 5097: 5093: 5086: 5078: 5074: 5069: 5064: 5060: 5056: 5049: 5047: 5045: 5036: 5032: 5027: 5022: 5018: 5014: 5010: 5006: 5000: 4998: 4989: 4985: 4980: 4975: 4971: 4967: 4960: 4958: 4948: 4943: 4939: 4935: 4931: 4927: 4926: 4918: 4916: 4914: 4912: 4903: 4899: 4895: 4889: 4885: 4881: 4877: 4873: 4865: 4861: 4857: 4853: 4846: 4842: 4831: 4828: 4825: 4821: 4818: 4817: 4808: 4805: 4801: 4798: 4797: 4791: 4772: 4768: 4761: 4733: 4727: 4724: 4721: 4713: 4708: 4705: 4695: 4691: 4687: 4683: 4668: 4665: 4662: 4660: 4656: 4648: 4644: 4627: 4624: 4621: 4618: 4615: 4612: 4609: 4601: 4597: 4593: 4572: 4564: 4556: 4543: 4540: 4536: 4532: 4528: 4525: 4521: 4520: 4518: 4502: 4499: 4496: 4476: 4473: 4470: 4462: 4447: 4439: 4438: 4437: 4423: 4420: 4417: 4392: 4389: 4386: 4382: 4375: 4347: 4341: 4338: 4335: 4327: 4315: 4311: 4303: 4300: 4297: 4286: 4283:objects. A 4282: 4278: 4273: 4271: 4266: 4230: 4225: 4222: 4216: 4212: 4208: 4202: 4196: 4189: 4188: 4187: 4170: 4167: 4164: 4155: 4150: 4146: 4143: 4137: 4133: 4123: 4118: 4115: 4109: 4105: 4101: 4095: 4089: 4082: 4081: 4066: 4063: 4057: 4051: 4044: 4043: 4042: 4033: 4026: 4003: 3998: 3995: 3989: 3985: 3973: 3969: 3963: 3959: 3953: 3946: 3939: 3935: 3928: 3924: 3920: 3919: 3918: 3916: 3912: 3908: 3903: 3882: 3877: 3874: 3868: 3864: 3855: 3851: 3847: 3843: 3833: 3830: 3828: 3807: 3801: 3797: 3791: 3788: 3782: 3776: 3753: 3748: 3743: 3737: 3734: 3729: 3726: 3723: 3718: 3713: 3707: 3702: 3699: 3696: 3684: 3681: 3676: 3673: 3670: 3665: 3660: 3650: 3644: 3639: 3634: 3631: 3623: 3617: 3611: 3604: 3603: 3602: 3585: 3582: 3579: 3569: 3564: 3561: 3558: 3552: 3549: 3543: 3540: 3537: 3528: 3525: 3519: 3516: 3513: 3507: 3504: 3498: 3492: 3485: 3471: 3468: 3465: 3445: 3442: 3436: 3430: 3423: 3422: 3421: 3419: 3415: 3409: 3403: 3399: 3395: 3391: 3388: ≤  3387: 3383: 3379: 3375: 3371: 3363: 3356: 3349: 3345: 3341: 3338: 3334: 3330: 3326: 3322: 3321: 3320: 3318: 3314: 3309: 3306: 3304: 3300: 3296: 3292: 3288: 3284: 3280: 3276: 3260: 3251: 3244: 3240: 3237: 3230: 3226: 3223: 3219: 3212: 3208: 3207: 3206:, such that: 3202: 3198: 3191: 3184: 3180: 3176: 3175: 3174: 3173: 3172: 3170: 3165: 3163: 3159: 3155: 3149: 3142: 3138: 3135: 3131: 3121: 3119: 3114: 3104: 3102: 3097: 3095: 3091: 3087: 3083: 3079: 3075: 3071: 3067: 3063: 3058: 3040: 3037: 3026: 3023: 3020: 3014: 3002: 2996: 2985: 2982: 2979: 2976: 2973: 2970: 2967: 2964: 2961: 2957: 2948: 2946: 2942: 2938: 2934: 2930: 2926: 2922: 2918: 2914: 2910: 2906: 2902: 2898: 2894: 2890: 2886: 2882: 2878: 2874: 2870: 2866: 2862: 2858: 2854: 2850: 2846: 2842: 2838: 2833: 2831: 2827: 2823: 2819: 2815: 2811: 2806: 2804: 2799: 2795: 2790: 2788: 2784: 2780: 2776: 2772: 2768: 2764: 2760: 2756: 2752: 2748: 2744: 2740: 2735: 2733: 2730: ≤  2729: 2725: 2721: 2717: 2713: 2709: 2705: 2700: 2698: 2694: 2690: 2687:)⋅|MDS( 2686: 2677: 2665: 2661: 2658: 2654: 2650: 2646: 2643:), calculate 2642: 2638: 2634: 2630: 2626: 2622: 2618: 2617: 2616: 2614: 2610: 2606: 2569: 2564: 2554: 2551: 2546: 2543: 2537: 2523: 2520: 2517: 2511: 2484: 2480: 2476: 2472: 2468: 2464: 2460: 2456: 2452: 2448: 2444: 2440: 2435: 2433: 2429: 2424: 2422: 2418: 2414: 2410: 2405: 2403: 2399: 2395: 2391: 2381: 2379: 2375: 2371: 2367: 2364: 2360: 2350: 2348: 2344: 2340: 2336: 2332: 2329: 2325: 2313:(2+ε)-factor. 2311: 2308: 2304: 2301: 2300: 2299: 2296: 2279: 2265: 2261: 2250: 2248: 2227: 2223: 2220: 2216: 2213: 2207: 2198: 2179: 2175: 2172: 2168: 2165: 2159: 2150: 2132: 2128: 2125: 2112: 2106: 2103: 2100: 2058: 2017: 2013: 1993: 1954: 1913: 1909: 1889: 1880: 1875: 1845: 1841: 1838: 1804: 1769: 1734: 1725: 1721: 1686: 1682: 1662: 1621: 1583: 1542: 1501: 1463: 1425: 1416: 1412: 1409: 1373: 1335: 1300: 1259: 1221: 1186: 1182: 1179: 1171: 1168: 1138: 1129: 1128: 1126: 1123: 1119: 1116: 1112: 1108: 1104: 1100: 1096: 1095: 1094: 1076: 1072: 1069: 1066: 1060: 1036: 1032: 1029: 1016: 1010: 1007: 1004: 988: 984: 974: 972: 968: 963: 961: 956: 954: 950: 946: 942: 938: 934: 930: 917: 901: 898: 893: 889: 885: 880: 876: 867: 853: 850: 845: 841: 837: 832: 828: 819: 818: 802: 799: 796: 792: 769: 766: 763: 759: 736: 732: 723: 706: 702: 679: 675: 666: 649: 645: 641: 638: 635: 630: 626: 617: 613: 609: 604: 601: 598: ≤  597: 593: 590: 586: 585: 583: 579: 578: 577: 575: 571: 567: 564:)|/2 in time 563: 559: 555: 551: 541: 534: 531: 528: 527: 526: 518: 516: 511: 509: 505: 500: 498: 494: 486: 482: 480: 476: 471: 469: 465: 461: 457: 449: 440: 437: 435: 431: 423: 420: 417: 413: 409: 405: 404: 403: 401: 397: 393: 388: 386: 382: 378: 374: 370: 366: 362: 354: 345: 343: 338: 323: 311: 305: 302: 299: 288: 280: 267: 265: 261: 257: 253: 248: 246: 242: 238: 234: 230: 226: 222: 218: 214: 210: 206: 202: 194: 190: 187: 183: 180: 176: 172: 169: 165: 161: 156: 153: 150: 147: 143: 139: 135: 134: 132: 128: 124: 121: 117: 116: 115: 113: 109: 105: 95: 93: 89: 84: 81: 79: 75: 71: 63: 59: 56: 55: 54: 52: 48: 46: 41: 37: 32: 30: 26: 22: 5471: 5445: 5439: 5391: 5385: 5344: 5340: 5330: 5313: 5309: 5303: 5282: 5272:, retrieved 5242: 5232: 5211: 5181: 5174: 5128: 5122: 5095: 5085: 5058: 5054: 5016: 5012: 4979:math/9409226 4969: 4965: 4932:(3–4): 209. 4929: 4923: 4875: 4855: 4851: 4845: 4689: 4685: 4681: 4679: 4666: 4663: 4658: 4654: 4652: 4646: 4599: 4595: 4591: 4538: 4534: 4530: 4523: 4522:Verify that 4516: 4280: 4276: 4274: 4264: 4262: 4185: 4040: 4031: 4024: 3971: 3961: 3957: 3951: 3944: 3937: 3933: 3932:), at most 2 3926: 3922: 3914: 3910: 3904: 3853: 3849: 3845: 3844:be a set of 3841: 3839: 3831: 3826: 3768: 3600: 3417: 3413: 3407: 3401: 3397: 3393: 3389: 3385: 3381: 3377: 3373: 3369: 3367: 3361: 3354: 3347: 3343: 3336: 3332: 3328: 3324: 3316: 3312: 3310: 3307: 3302: 3298: 3294: 3290: 3286: 3282: 3278: 3274: 3272: 3258: 3249: 3242: 3235: 3228: 3221: 3217: 3210: 3200: 3193: 3186: 3182: 3178: 3166: 3161: 3157: 3153: 3147: 3140: 3133: 3132:be a set of 3129: 3127: 3110: 3100: 3098: 3089: 3085: 3081: 3077: 3073: 3069: 3065: 3061: 3059: 2949: 2944: 2940: 2936: 2932: 2928: 2924: 2920: 2916: 2912: 2908: 2904: 2900: 2896: 2892: 2888: 2884: 2880: 2876: 2872: 2868: 2864: 2860: 2856: 2852: 2848: 2844: 2843:-aligned by 2840: 2836: 2834: 2829: 2825: 2821: 2817: 2813: 2809: 2807: 2802: 2797: 2793: 2791: 2786: 2782: 2778: 2774: 2770: 2766: 2762: 2758: 2754: 2750: 2746: 2742: 2738: 2736: 2731: 2727: 2723: 2719: 2715: 2711: 2707: 2701: 2696: 2692: 2688: 2684: 2682: 2663: 2652: 2648: 2644: 2640: 2636: 2632: 2628: 2624: 2620: 2612: 2608: 2604: 2482: 2474: 2470: 2466: 2462: 2458: 2454: 2450: 2446: 2442: 2438: 2436: 2431: 2427: 2425: 2420: 2416: 2412: 2408: 2406: 2401: 2397: 2393: 2389: 2387: 2362: 2361:be a set of 2358: 2356: 2342: 2327: 2326:be a set of 2323: 2321: 2306: 2297: 2259: 2256: 2246: 2199: 2151: 1984: 1876:(see above). 1873: 1723: 1414: 1407: 1406:are at most 1169:-coordinate. 1166: 1121: 1114: 1110: 1106: 1102: 1098: 986: 985:be a set of 982: 980: 966: 964: 957: 952: 948: 944: 940: 936: 932: 931:be a set of 928: 926: 615: 611: 599: 595: 588: 581: 573: 569: 565: 561: 557: 553: 552:be a set of 549: 547: 538: 524: 512: 507: 503: 501: 496: 492: 490: 478: 474: 472: 467: 463: 459: 455: 453: 438: 427: 415: 411: 407: 399: 395: 391: 389: 384: 380: 376: 372: 368: 364: 360: 358: 341: 339: 268: 263: 259: 255: 251: 249: 244: 240: 236: 232: 228: 224: 220: 216: 212: 208: 204: 200: 198: 192: 185: 178: 174: 167: 163: 145: 141: 137: 130: 126: 119: 107: 103: 102:Given a set 101: 91: 87: 85: 82: 67: 43: 33: 28: 24: 18: 5374:Chan, T. M. 5316:(6): 1302. 5092:Chuzhoy, J. 5019:: 130–136. 4598:and insert 3909:on the set 3234:)| ≤ a|MDS( 3156:)| in time 3137:fat objects 2691:)| in time 2396:)| in time 2366:fat objects 2347:fat objects 1722:Compute an 1415:approximate 256:|MDS(N(x))| 237:|MDS(N(x))| 144:(including 51:NP complete 5394:(2): 373. 5294:2106.00623 5274:2022-09-29 5223:2101.00326 5138:2007.07880 4947:1874/18908 4858:(5): 317. 4667:See also. 2895:in {0,..., 2875:), ..., (( 2832:-aligned. 2714:is called 2485:such that 2437:For every 2368:, such as 1874:O(n log n) 943:) in time 254:for which 5476:CiteSeerX 5448:(2): 83. 5401:1103.1431 5269:235265867 5167:220525811 5063:CiteSeerX 4972:(2): 59. 4714:⋅ 4619:− 4474:− 4421:≥ 4328:⋅ 4301:− 4226:⋅ 4119:⋅ 3999:⋅ 3878:⋅ 3744:⋅ 3735:− 3727:− 3703:− 3697:⋅ 3682:− 3674:− 3565:⋅ 3550:⋅ 3541:− 3517:⋅ 3469:≤ 3041:∗ 3024:− 3015:≥ 2983:− 2974:… 2958:∑ 2947:*. Then: 2716:k-aligned 2708:alignment 2704:quadtrees 2570:⋅ 2547:− 2538:≥ 2477:. By the 2449:, define 2274:Ω 2224:⁡ 2217:⁡ 2176:⁡ 2169:⁡ 2129:⁡ 2014:∪ 1910:∪ 1683:∪ 1493:) and in 1073:⁡ 1053:in time 1033:⁡ 902:⋯ 899:∪ 886:∪ 854:⋯ 851:∪ 838:∪ 800:− 639:… 618:subsets ( 436:problem. 385:MDS(N(x)) 289:≥ 229:MDS(N(x)) 5522:Category 5508:15850862 5420:38183751 5380:(2012). 4966:Networks 4902:17962961 4692:. Using 4368:in time 3323:If |MDS( 3246:boundary 3204:boundary 2845:shifting 2785:, where 2655:) using 2619:For all 148:itself). 5035:2383627 4661:times. 3949:√ 3405:√ 3384:. When 3358:outside 3253:√ 3232:outside 3196:outside 3145:√ 2718:(where 2374:circles 2370:squares 2335:circles 2331:squares 1726:MDS in 1417:MDS in 173:Remove 38:in the 5506:  5496:  5478:  5418:  5267:  5257:  5199:  5165:  5155:  5110:  5065:  5033:  4900:  4890:  3769:i.e., 3458:  3455:  3452:  3449:  3351:inside 3273:where 3263:| 3255:| 3214:inside 3189:inside 2867:), (2/ 2810:almost 2247:weight 784:or in 468:MDS(C) 221:MDS(S) 5504:S2CID 5416:S2CID 5396:arXiv 5289:arXiv 5265:S2CID 5218:arXiv 5163:S2CID 5133:arXiv 5031:S2CID 4974:arXiv 4898:S2CID 4837:Notes 4594:from 4035:right 3930:right 3339:time. 3241:|MDS( 3227:|MDS( 3220:|MDS( 3216:)| ≤ 3209:|MDS( 3118:PTASs 2757:> 2666:sets. 2483:(r,s) 1724:exact 580:Draw 491:When 454:When 359:When 177:from 47:(MIS) 5494:ISBN 5255:ISBN 5197:ISBN 5153:ISBN 5108:ISBN 4888:ISBN 4680:Let 4565:< 4275:Let 4168:> 4028:left 3941:left 3840:Let 3583:> 3368:Let 3353:and 3277:and 3257:MDS( 3248:)| 3199:and 3128:Let 3094:PTAS 2378:PTAS 2357:Let 2322:Let 1613:and 1365:and 1130:Let 981:Let 927:Let 548:Let 510:=4. 481:=2. 470:/3. 402:): 381:N(x) 209:N(x) 162:Add 74:VLSI 23:, a 5486:doi 5450:doi 5406:doi 5349:doi 5318:doi 5247:doi 5187:doi 5143:doi 5100:doi 5073:doi 5021:doi 4984:doi 4942:hdl 4934:doi 4880:doi 4860:doi 4544:If 3975:int 3965:int 3305:|. 2871:,2/ 2863:,1/ 2851:,1/ 2808:If 2734:). 2473:is 2465:is 2372:or 2333:or 2221:log 2214:log 2173:log 2166:log 2126:log 2050:or 1946:or 1410:/2. 1117:)). 1070:log 1030:log 576:): 418:)). 243:to 225:can 166:to 129:in 29:MDS 19:In 5524:: 5502:. 5492:. 5484:. 5462:^ 5446:34 5444:. 5428:^ 5414:. 5404:. 5392:48 5390:. 5384:. 5376:; 5363:^ 5345:77 5343:. 5339:. 5314:34 5312:. 5263:, 5253:, 5241:, 5195:. 5161:, 5151:, 5141:, 5106:. 5071:. 5059:46 5057:. 5043:^ 5029:. 5017:32 5015:. 5011:. 4996:^ 4982:. 4970:25 4968:. 4956:^ 4940:. 4930:11 4928:. 4910:^ 4896:. 4886:. 4874:. 4868:, 4856:25 4854:. 4613::= 4602:: 4519:: 4436:: 4263:A 3967:). 3902:. 3829:. 3238:)| 3224:)| 3192:, 3171:: 3096:. 3072:)| 2883:,( 2803:kc 2783:kc 2732:kr 2724:kr 2441:, 2197:. 2149:. 1093:: 602:). 517:. 247:. 179:C, 146:xi 142:xi 133:: 127:xi 114:: 94:. 80:. 72:, 5510:. 5488:: 5456:. 5452:: 5422:. 5408:: 5398:: 5357:. 5351:: 5324:. 5320:: 5297:. 5291:: 5249:: 5226:. 5220:: 5205:. 5189:: 5145:: 5135:: 5116:. 5102:: 5079:. 5075:: 5037:. 5023:: 4990:. 4986:: 4976:: 4950:. 4944:: 4936:: 4904:. 4882:: 4866:. 4862:: 4832:. 4826:. 4806:. 4778:) 4773:3 4769:n 4765:( 4762:O 4741:| 4737:) 4734:C 4731:( 4728:S 4725:D 4722:M 4718:| 4709:u 4706:n 4690:u 4686:n 4682:C 4659:n 4655:S 4649:. 4647:S 4640:. 4628:X 4625:+ 4622:Y 4616:S 4610:S 4600:X 4596:S 4592:Y 4577:| 4573:X 4569:| 4561:| 4557:Y 4553:| 4541:. 4539:X 4535:S 4531:Y 4524:X 4517:X 4503:1 4500:+ 4497:b 4477:S 4471:C 4460:. 4448:S 4424:0 4418:b 4398:) 4393:3 4390:+ 4387:b 4383:n 4379:( 4376:O 4355:| 4351:) 4348:C 4345:( 4342:S 4339:D 4336:M 4332:| 4325:) 4322:) 4316:b 4312:1 4307:( 4304:O 4298:1 4295:( 4281:n 4277:C 4236:) 4231:n 4223:r 4220:( 4217:O 4213:2 4209:= 4206:) 4203:n 4200:( 4197:T 4171:1 4165:n 4156:) 4151:3 4147:n 4144:2 4138:( 4134:T 4129:) 4124:n 4116:r 4113:( 4110:O 4106:2 4102:= 4099:) 4096:n 4093:( 4090:T 4067:1 4064:= 4061:) 4058:1 4055:( 4052:T 4032:C 4025:C 4009:) 4004:n 3996:r 3993:( 3990:O 3986:2 3972:C 3962:C 3958:r 3952:n 3947:( 3945:O 3938:C 3934:n 3927:C 3923:n 3915:C 3911:Q 3888:) 3883:n 3875:r 3872:( 3869:O 3865:2 3854:C 3850:r 3846:n 3842:C 3827:b 3813:) 3808:b 3802:/ 3798:m 3795:( 3792:O 3789:= 3786:) 3783:m 3780:( 3777:E 3754:. 3749:m 3738:1 3730:a 3724:1 3719:+ 3714:a 3708:c 3700:m 3694:) 3688:) 3685:1 3677:a 3671:1 3666:+ 3661:a 3656:( 3651:b 3645:c 3640:+ 3635:b 3632:0 3627:( 3624:= 3621:) 3618:m 3615:( 3612:E 3586:b 3580:m 3570:m 3562:c 3559:+ 3556:) 3553:m 3547:) 3544:a 3538:1 3535:( 3532:( 3529:E 3526:+ 3523:) 3520:m 3514:a 3511:( 3508:E 3505:= 3502:) 3499:m 3496:( 3493:E 3472:b 3466:m 3446:0 3443:= 3440:) 3437:m 3434:( 3431:E 3418:a 3414:a 3408:m 3402:c 3398:b 3394:m 3390:b 3386:m 3382:m 3378:C 3374:m 3372:( 3370:E 3364:. 3362:C 3355:C 3348:C 3344:C 3337:n 3333:b 3329:b 3325:C 3317:b 3313:b 3303:C 3299:a 3295:a 3291:C 3287:a 3283:C 3279:c 3275:a 3261:) 3259:C 3250:c 3243:C 3236:C 3229:C 3222:C 3218:a 3211:C 3201:C 3194:C 3187:C 3183:C 3179:C 3162:b 3158:n 3154:C 3148:b 3143:( 3141:O 3134:n 3130:C 3101:d 3090:n 3086:k 3082:j 3080:( 3078:A 3074:A 3070:k 3066:j 3064:( 3062:A 3045:| 3038:A 3034:| 3030:) 3027:2 3021:k 3018:( 3010:| 3006:) 3003:j 3000:( 2997:A 2993:| 2986:1 2980:k 2977:, 2971:, 2968:0 2965:= 2962:j 2945:A 2941:j 2939:( 2937:A 2933:k 2931:/ 2929:j 2927:, 2925:k 2923:/ 2921:j 2917:k 2913:j 2909:j 2905:k 2901:k 2897:k 2893:j 2889:k 2885:k 2881:k 2877:k 2873:k 2869:k 2865:k 2861:k 2857:k 2853:k 2849:k 2841:k 2837:k 2830:k 2826:e 2822:n 2818:k 2814:k 2798:n 2794:k 2787:c 2779:k 2777:/ 2775:R 2771:k 2767:R 2763:k 2761:/ 2759:R 2755:r 2753:( 2751:k 2749:/ 2747:R 2743:R 2739:k 2728:R 2726:( 2720:k 2712:r 2697:k 2693:n 2689:C 2685:k 2664:k 2659:. 2653:s 2651:, 2649:r 2647:( 2645:D 2641:k 2637:s 2635:, 2633:r 2629:s 2627:, 2625:r 2621:k 2613:s 2611:, 2609:r 2607:( 2605:D 2590:| 2585:S 2582:D 2579:M 2574:| 2565:2 2561:) 2555:k 2552:1 2544:1 2541:( 2534:| 2530:) 2527:) 2524:s 2521:, 2518:r 2515:( 2512:D 2509:( 2505:S 2502:D 2499:M 2494:| 2475:s 2471:k 2467:r 2463:k 2459:s 2457:, 2455:r 2453:( 2451:D 2447:k 2443:s 2439:r 2432:k 2428:j 2421:j 2417:k 2413:k 2409:j 2402:k 2398:n 2394:C 2390:k 2363:n 2359:C 2343:n 2328:n 2324:C 2309:. 2283:) 2280:n 2277:( 2233:) 2228:n 2211:( 2208:O 2185:) 2180:n 2163:( 2160:O 2133:n 2120:| 2116:) 2113:C 2110:( 2107:S 2104:D 2101:M 2097:| 2070:t 2067:n 2064:i 2059:M 2035:t 2032:h 2029:g 2026:i 2023:r 2018:M 2008:t 2005:f 2002:e 1999:l 1994:M 1966:t 1963:n 1960:i 1955:M 1931:t 1928:h 1925:g 1922:i 1919:r 1914:M 1904:t 1901:f 1898:e 1895:l 1890:M 1857:d 1854:e 1851:m 1846:x 1842:= 1839:x 1816:t 1813:n 1810:i 1805:R 1781:t 1778:n 1775:i 1770:M 1761:( 1746:t 1743:n 1740:i 1735:R 1704:t 1701:h 1698:g 1695:i 1692:r 1687:M 1677:t 1674:f 1671:e 1668:l 1663:M 1639:t 1636:h 1633:g 1630:i 1627:r 1622:M 1598:t 1595:f 1592:e 1589:l 1584:M 1560:t 1557:h 1554:g 1551:i 1548:r 1543:M 1534:( 1519:t 1516:h 1513:g 1510:i 1507:r 1502:R 1478:t 1475:f 1472:e 1469:l 1464:M 1455:( 1440:t 1437:f 1434:e 1431:l 1426:R 1408:n 1391:t 1388:h 1385:g 1382:i 1379:r 1374:R 1350:t 1347:f 1344:e 1341:l 1336:R 1312:t 1309:n 1306:i 1301:R 1277:t 1274:h 1271:g 1268:i 1265:r 1260:R 1236:t 1233:f 1230:e 1227:l 1222:R 1198:d 1195:e 1192:m 1187:x 1183:= 1180:x 1167:x 1150:d 1147:e 1144:m 1139:x 1122:n 1115:n 1111:n 1109:( 1107:O 1103:x 1099:y 1081:) 1077:n 1067:n 1064:( 1061:O 1037:n 1024:| 1020:) 1017:C 1014:( 1011:S 1008:D 1005:M 1001:| 987:n 983:C 967:d 953:k 949:n 947:( 945:O 941:k 937:C 933:n 929:C 894:4 890:M 881:2 877:M 846:3 842:M 833:1 829:M 803:1 797:i 793:R 770:1 767:+ 764:i 760:R 737:i 733:R 707:i 703:M 680:i 676:R 650:m 646:R 642:, 636:, 631:i 627:R 616:m 612:H 600:n 596:m 591:. 589:H 582:m 574:n 570:n 568:( 566:O 562:C 558:H 554:n 550:C 508:M 504:C 497:M 493:C 479:M 475:C 464:x 460:M 456:C 416:n 412:n 410:( 408:O 400:n 396:n 394:( 392:O 377:x 369:x 365:M 361:C 342:M 324:M 319:| 315:) 312:C 309:( 306:S 303:D 300:M 296:| 285:| 281:S 277:| 264:M 260:M 252:x 245:S 241:x 233:x 217:S 213:x 205:S 201:x 195:. 193:S 186:C 175:x 170:. 168:S 164:x 138:C 131:C 122:. 120:S 108:C 104:C 92:C 88:C 27:(

Index

computational geometry
independent set
intersection graph
maximum independent set
NP complete
polynomial-time approximation schemes
automatic label placement
VLSI
frequency division multiplexing
greedy algorithm

earliest deadline first scheduling
interval scheduling


regular polygons
dynamic programming
dynamic programming
guillotine separation
Joseph S. B. Mitchell
squares
circles
polynomial-time approximation scheme
fat objects
fat objects
squares
circles
PTAS
pigeonhole principle
dynamic programming

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.