Knowledge

Marangoni number

Source đź“ť

84: 458:
across this layer. This could be due to the liquid evaporating or being heated from below. There is a surface tension at the surface of a liquid that depends on temperature, typically as the temperature increases the surface tension decreases. Thus if due to a small fluctuation temperature, one part
35:, with the rate of transport of diffusion. The Marangoni effect is flow of a liquid due to gradients in the surface tension of the liquid. Diffusion is of whatever is creating the gradient in the surface tension. Thus as the Marangoni number compares flow and diffusion timescales it is a type of 88:
A common example is surface tension gradients caused by temperature gradients. Then the relevant diffusion process is that of thermal energy (heat). Another is surface gradients caused by variations in the concentration of surfactants, where the diffusion is now that of surfactant molecules.
45: 664: 426: 668:
When Ma is small thermal diffusion dominates and there is no flow, but for large Ma, flow (convection) occurs, driven by the gradients in the surface tension. This is called BĂ©nard-Marangoni convection.
578: 463:. This flow will transport thermal energy, and the Marangoni number compares the rate at which thermal energy is transported by this flow to the rate at which thermal energy diffuses. 833: 206:, where the fluid velocity is obtained by equating the stress gradient to the viscous dissipation. A surface tension is a force per unit length, so the resulting stress must scale as 583: 323: 235: 140: 459:
of the surface is hotter than another, there will be flow from the hotter part to the colder part, driven by this difference in surface tension, this flow is called the
456: 544: 524: 358: 266: 504: 117: 79:{\displaystyle \mathrm {Ma} ={\dfrac {\mbox{advective transport rate, due to surface tension gradient}}{\mbox{diffusive transport rate, of source of gradient}}}} 484: 351: 286: 200: 180: 160: 826: 1178: 819: 1183: 842: 739:
Block, Myron J. (1956). "Surface Tension as the Cause of BĂ©nard Cells and Surface Deformation in a Liquid Film".
549: 988: 291: 209: 435:
A common application is to a layer of liquid, such as water, when there is a temperature difference
122: 1065: 1048: 96:, although its use dates from the 1950s and it was neither discovered nor used by Carlo Marangoni. 791: 353:, Here this is the diffusion constant of whatever is causing the surface tension difference. So, 1188: 1043: 943: 659:{\displaystyle \mathrm {Ma} =-(\partial \gamma /\partial T).{\frac {L.\Delta T}{\mu .\alpha }}} 182:
is the only length scale in the problem, which in practice implies that the liquid be at least
438: 529: 509: 240: 898: 811: 748: 697: 28: 903: 489: 102: 8: 968: 752: 701: 1152: 938: 878: 772: 721: 469: 336: 330: 271: 185: 165: 145: 1107: 1072: 853: 764: 725: 713: 1157: 1028: 978: 888: 776: 756: 705: 460: 32: 1033: 326: 36: 1122: 1102: 1060: 1055: 883: 93: 421:{\displaystyle \mathrm {Ma} ={\dfrac {uL}{D}}={\dfrac {\Delta \gamma L}{\mu D}}} 1132: 1112: 1097: 1092: 1038: 1023: 998: 993: 983: 963: 953: 918: 863: 162:
parallel to the surface, can be estimated as follows. Note that we assume that
709: 1172: 1142: 1137: 1127: 1117: 1082: 1077: 1018: 958: 948: 928: 923: 893: 858: 768: 717: 688:
Pearson, J. R. A. (1958). "On convection cells induced by surface tension".
1147: 1087: 1003: 973: 933: 908: 868: 1008: 913: 873: 203: 288:
the speed of the Marangoni flow. Equating the two we have a flow speed
580:, the Marangoni number can be calculated using the following formula: 760: 202:
deep. The transport rate is usually estimated using the equations of
841: 430: 65:
advective transport rate, due to surface tension gradient
99:
The Marangoni number for a simple liquid of viscosity
68: 63: 586: 552: 532: 512: 492: 472: 441: 394: 374: 361: 339: 294: 274: 243: 212: 188: 168: 148: 125: 105: 61: 48: 658: 572: 538: 518: 498: 478: 450: 420: 345: 317: 280: 260: 229: 194: 174: 154: 134: 111: 78: 1170: 329:, it is a velocity times a length, divided by a 70:diffusive transport rate, of source of gradient 827: 789: 92:The number is named after Italian scientist 573:{\displaystyle \partial \gamma /\partial T} 31:that compares the rate of transport due to 834: 820: 546:which changes with temperature at a rate 431:Marangoni number due to thermal gradients 1179:Dimensionless numbers of fluid mechanics 843:Dimensionless numbers in fluid mechanics 1184:Dimensionless numbers of thermodynamics 687: 1171: 815: 738: 318:{\displaystyle u=\Delta \gamma /\mu } 237:, while the viscous stress scales as 683: 681: 42:The Marangoni number is defined as: 13: 636: 615: 604: 591: 588: 564: 553: 442: 397: 366: 363: 301: 213: 126: 53: 50: 14: 1200: 678: 466:For a liquid layer of thickness 230:{\displaystyle \Delta \gamma /L} 783: 732: 621: 601: 135:{\displaystyle \Delta \gamma } 119:with a surface tension change 27:) is, as usually defined, the 1: 792:"Marangoni Number Calculator" 672: 7: 10: 1205: 690:Journal of Fluid Mechanics 849: 710:10.1017/S0022112058000616 526:, with a surface tension 16:Concept in fluid dynamics 506:and thermal diffusivity 451:{\displaystyle \Delta T} 539:{\displaystyle \gamma } 519:{\displaystyle \alpha } 261:{\displaystyle \mu u/L} 660: 574: 540: 520: 500: 480: 452: 422: 347: 319: 282: 262: 231: 196: 176: 156: 136: 113: 80: 661: 575: 541: 521: 501: 481: 453: 423: 348: 325:. As Ma is a type of 320: 283: 263: 232: 197: 177: 157: 137: 114: 81: 584: 550: 530: 510: 499:{\displaystyle \mu } 490: 470: 439: 359: 337: 292: 272: 241: 210: 186: 166: 146: 123: 112:{\displaystyle \mu } 103: 46: 29:dimensionless number 790:Pr. Steven Abbott. 753:1956Natur.178..650B 702:1958JFM.....4..489P 989:Keulegan–Carpenter 796:stevenabbott.co.uk 656: 570: 536: 516: 496: 476: 448: 418: 416: 388: 343: 331:diffusion constant 315: 278: 258: 227: 192: 172: 152: 132: 109: 76: 74: 72: 67: 1166: 1165: 747:(4534): 650–651. 654: 479:{\displaystyle L} 415: 387: 346:{\displaystyle D} 281:{\displaystyle u} 195:{\displaystyle L} 175:{\displaystyle L} 155:{\displaystyle L} 73: 71: 66: 1196: 836: 829: 822: 813: 812: 807: 806: 804: 802: 787: 781: 780: 761:10.1038/178650a0 736: 730: 729: 685: 665: 663: 662: 657: 655: 653: 642: 628: 614: 594: 579: 577: 576: 571: 563: 545: 543: 542: 537: 525: 523: 522: 517: 505: 503: 502: 497: 485: 483: 482: 477: 461:Marangoni effect 457: 455: 454: 449: 427: 425: 424: 419: 417: 414: 406: 395: 389: 383: 375: 369: 352: 350: 349: 344: 324: 322: 321: 316: 311: 287: 285: 284: 279: 267: 265: 264: 259: 254: 236: 234: 233: 228: 223: 201: 199: 198: 193: 181: 179: 178: 173: 161: 159: 158: 153: 142:over a distance 141: 139: 138: 133: 118: 116: 115: 110: 85: 83: 82: 77: 75: 69: 64: 62: 56: 21:Marangoni number 1204: 1203: 1199: 1198: 1197: 1195: 1194: 1193: 1169: 1168: 1167: 1162: 845: 840: 810: 800: 798: 788: 784: 737: 733: 686: 679: 675: 643: 629: 627: 610: 587: 585: 582: 581: 559: 551: 548: 547: 531: 528: 527: 511: 508: 507: 491: 488: 487: 471: 468: 467: 440: 437: 436: 433: 407: 396: 393: 376: 373: 362: 360: 357: 356: 338: 335: 334: 307: 293: 290: 289: 273: 270: 269: 250: 242: 239: 238: 219: 211: 208: 207: 187: 184: 183: 167: 164: 163: 147: 144: 143: 124: 121: 120: 104: 101: 100: 94:Carlo Marangoni 60: 49: 47: 44: 43: 33:Marangoni flows 17: 12: 11: 5: 1202: 1192: 1191: 1189:Fluid dynamics 1186: 1181: 1164: 1163: 1161: 1160: 1155: 1150: 1145: 1140: 1135: 1130: 1125: 1120: 1115: 1110: 1105: 1100: 1095: 1090: 1085: 1080: 1075: 1070: 1069: 1068: 1058: 1053: 1052: 1051: 1046: 1036: 1031: 1026: 1021: 1016: 1011: 1006: 1001: 996: 991: 986: 981: 976: 971: 966: 961: 956: 951: 946: 941: 936: 931: 926: 921: 916: 911: 906: 901: 896: 891: 886: 881: 876: 871: 866: 861: 856: 850: 847: 846: 839: 838: 831: 824: 816: 809: 808: 782: 731: 696:(5): 489–500. 676: 674: 671: 652: 649: 646: 641: 638: 635: 632: 626: 623: 620: 617: 613: 609: 606: 603: 600: 597: 593: 590: 569: 566: 562: 558: 555: 535: 515: 495: 475: 447: 444: 432: 429: 413: 410: 405: 402: 399: 392: 386: 382: 379: 372: 368: 365: 342: 314: 310: 306: 303: 300: 297: 277: 257: 253: 249: 246: 226: 222: 218: 215: 191: 171: 151: 131: 128: 108: 59: 55: 52: 15: 9: 6: 4: 3: 2: 1201: 1190: 1187: 1185: 1182: 1180: 1177: 1176: 1174: 1159: 1156: 1154: 1151: 1149: 1146: 1144: 1141: 1139: 1136: 1134: 1131: 1129: 1126: 1124: 1121: 1119: 1116: 1114: 1111: 1109: 1106: 1104: 1101: 1099: 1096: 1094: 1091: 1089: 1086: 1084: 1081: 1079: 1076: 1074: 1071: 1067: 1064: 1063: 1062: 1059: 1057: 1054: 1050: 1047: 1045: 1042: 1041: 1040: 1037: 1035: 1032: 1030: 1027: 1025: 1022: 1020: 1017: 1015: 1012: 1010: 1007: 1005: 1002: 1000: 997: 995: 992: 990: 987: 985: 982: 980: 977: 975: 972: 970: 967: 965: 962: 960: 957: 955: 952: 950: 947: 945: 942: 940: 937: 935: 932: 930: 927: 925: 922: 920: 917: 915: 912: 910: 907: 905: 902: 900: 899:Chandrasekhar 897: 895: 892: 890: 887: 885: 882: 880: 877: 875: 872: 870: 867: 865: 862: 860: 857: 855: 852: 851: 848: 844: 837: 832: 830: 825: 823: 818: 817: 814: 797: 793: 786: 778: 774: 770: 766: 762: 758: 754: 750: 746: 742: 735: 727: 723: 719: 715: 711: 707: 703: 699: 695: 691: 684: 682: 677: 670: 666: 650: 647: 644: 639: 633: 630: 624: 618: 611: 607: 598: 595: 567: 560: 556: 533: 513: 493: 473: 464: 462: 445: 428: 411: 408: 403: 400: 390: 384: 380: 377: 370: 354: 340: 332: 328: 327:PĂ©clet number 312: 308: 304: 298: 295: 275: 255: 251: 247: 244: 224: 220: 216: 205: 189: 169: 149: 129: 106: 97: 95: 90: 86: 57: 40: 38: 37:PĂ©clet number 34: 30: 26: 22: 1013: 799:. Retrieved 795: 785: 744: 740: 734: 693: 689: 667: 486:, viscosity 465: 434: 355: 98: 91: 87: 41: 24: 20: 18: 1153:Weissenberg 204:Stokes flow 1173:Categories 1073:Richardson 854:Archimedes 673:References 1158:Womersley 1049:turbulent 1029:Ohnesorge 1014:Marangoni 979:Iribarren 904:Damköhler 889:Capillary 769:0028-0836 726:123404447 718:0022-1120 651:α 645:μ 637:Δ 616:∂ 608:γ 605:∂ 599:− 565:∂ 557:γ 554:∂ 534:γ 514:α 494:μ 443:Δ 409:μ 401:γ 398:Δ 313:μ 305:γ 302:Δ 245:μ 217:γ 214:Δ 130:γ 127:Δ 107:μ 1133:Suratman 1123:Strouhal 1103:Sherwood 1066:magnetic 1061:Reynolds 1056:Rayleigh 1044:magnetic 884:Brinkman 1113:Stanton 1108:Shields 1098:Scruton 1093:Schmidt 1039:Prandtl 1024:Nusselt 999:Laplace 994:Knudsen 984:Kapitza 969:Görtler 964:Grashof 954:Galilei 919:Deborah 864:Bagnold 801:2 March 777:4273633 749:Bibcode 698:Bibcode 1143:Ursell 1138:Taylor 1128:Stuart 1118:Stokes 1083:Rossby 1078:Roshko 1034:PĂ©clet 1019:Morton 959:Graetz 949:Froude 939:Eötvös 929:Eckert 924:Dukhin 894:Cauchy 859:Atwood 775:  767:  741:Nature 724:  716:  268:, for 1148:Weber 1088:Rouse 1004:Lewis 974:Hagen 944:Euler 934:Ekman 909:Darcy 869:Bejan 773:S2CID 722:S2CID 1009:Mach 914:Dean 879:Bond 874:Biot 803:2019 765:ISSN 714:ISSN 19:The 757:doi 745:178 706:doi 1175:: 794:. 771:. 763:. 755:. 743:. 720:. 712:. 704:. 692:. 680:^ 333:, 39:. 25:Ma 835:e 828:t 821:v 805:. 779:. 759:: 751:: 728:. 708:: 700:: 694:4 648:. 640:T 634:. 631:L 625:. 622:) 619:T 612:/ 602:( 596:= 592:a 589:M 568:T 561:/ 474:L 446:T 412:D 404:L 391:= 385:D 381:L 378:u 371:= 367:a 364:M 341:D 309:/ 299:= 296:u 276:u 256:L 252:/ 248:u 225:L 221:/ 190:L 170:L 150:L 58:= 54:a 51:M 23:(

Index

dimensionless number
Marangoni flows
PĂ©clet number
Carlo Marangoni
Stokes flow
PĂ©clet number
diffusion constant
Marangoni effect


Bibcode
1958JFM.....4..489P
doi
10.1017/S0022112058000616
ISSN
0022-1120
S2CID
123404447
Bibcode
1956Natur.178..650B
doi
10.1038/178650a0
ISSN
0028-0836
S2CID
4273633
"Marangoni Number Calculator"
v
t
e

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑