Knowledge

Mach wave

Source đź“ť

31: 98: 84:
compression in supersonic flows). A Mach wave is the weak limit of an oblique shock wave where time averages of flow quantities don't change (a normal shock is the other limit). If the size of the object moving at the speed of sound is near 0, then this domain of influence of the wave is called a
187:
used grooves in the wall of a duct to produce Mach waves in a duct, which were then photographed by the schlieren method, to obtain data about the flow in nozzles and ducts. Mach angles may also occasionally be visualized out of their condensation in air, for example
163: 37:
of an attached shock on a sharp-nosed supersonic body. The Mach angle is acute, showing that the body exceeds Mach 1. The angle of the Mach wave (~59 degrees) indicates a velocity of about Mach 1.17.
101:
A sonic boom produced by an aircraft moving at M=2.92, calculated from the cone angle of 20 degrees. Observers hear nothing until the shock wave, on the edges of the cone, crosses their location.
252:
Zelʹdovich, I︠A︡kov Borisovich, Yurii Petrovich Raizer, and Wallace D. Hayes. Physics of shock waves and high-temperature hydrodynamic phenomena. Vol. 1. New York: Academic Press, 1966.
243:
Landau, Lev Davidovich, and Evgenii Mikhailovich Lifshitz. Fluid mechanics: Landau And Lifshitz: course of theoretical physics, Volume 6. Vol. 6. Elsevier, 2013.
77:. Thus, it is possible to have shockless compression or expansion in a supersonic flow by having the production of Mach waves sufficiently spaced ( 354:
Supersonic wind tunnel test demonstration (Mach 2.5) with flat plate and wedge creating an oblique shock along with numerous Mach waves(Video)
112:, which is the angle formed between the Mach wave wavefront and a vector that points opposite to the vector of motion. It is given by 118: 323: 286: 210: 17: 183:
or shadowgraph observations to determine the local Mach number of the flow. Early observations by
368: 30: 220: 180: 34: 8: 338: 292: 81: 319: 296: 282: 205: 62: 69:
if sufficient Mach waves are present at any location. Such a shock wave is called a
274: 270: 373: 54: 42: 353: 278: 362: 215: 173: 225: 189: 184: 66: 315: 193: 58: 65:. These weak waves can combine in supersonic flow to become a 310:
E. Carscallen, William; Patrick, H. Oosthuizen (2013-07-12).
97: 158:{\displaystyle \mu =\arcsin \left({\frac {1}{M}}\right),} 265:
Sasoh, Akihiro (2020-01-02). "4.3 Oblique Shock Wave".
121: 309: 157: 360: 105:A Mach wave propagates across the flow at the 267:Compressible Fluid Dynamics and Shock Waves 96: 53:, is a pressure wave traveling with the 29: 312:Introduction to Compressible Fluid Flow 260: 258: 14: 361: 264: 255: 24: 25: 385: 347: 332: 303: 246: 237: 13: 1: 231: 92: 57:caused by a slight change of 7: 273:Singapore. pp. 80–82. 211:Prandtl–Meyer expansion fan 199: 10: 390: 179:Mach waves can be used in 279:10.1007/978-981-15-0504-1 192:around aircraft during 159: 102: 38: 221:Schlieren photography 216:Shadowgraph technique 160: 100: 33: 119: 35:Schlieren photograph 155: 103: 51:weak discontinuity 49:, also known as a 39: 325:978-1-4398-7792-0 288:978-981-15-0504-1 269:. Nagoya, Japan: 206:Compressible flow 146: 63:compressible flow 16:(Redirected from 381: 342: 336: 330: 329: 307: 301: 300: 262: 253: 250: 244: 241: 164: 162: 161: 156: 151: 147: 139: 21: 389: 388: 384: 383: 382: 380: 379: 378: 359: 358: 350: 345: 337: 333: 326: 308: 304: 289: 271:Springer Nature 263: 256: 251: 247: 242: 238: 234: 202: 138: 134: 120: 117: 116: 95: 28: 23: 22: 15: 12: 11: 5: 387: 377: 376: 371: 369:Fluid dynamics 357: 356: 349: 348:External links 346: 344: 343: 331: 324: 314:(2 ed.). 302: 287: 254: 245: 235: 233: 230: 229: 228: 223: 218: 213: 208: 201: 198: 166: 165: 154: 150: 145: 142: 137: 133: 130: 127: 124: 94: 91: 55:speed of sound 43:fluid dynamics 26: 9: 6: 4: 3: 2: 386: 375: 372: 370: 367: 366: 364: 355: 352: 351: 340: 335: 327: 321: 317: 313: 306: 298: 294: 290: 284: 280: 276: 272: 268: 261: 259: 249: 240: 236: 227: 224: 222: 219: 217: 214: 212: 209: 207: 204: 203: 197: 195: 191: 186: 182: 177: 175: 171: 152: 148: 143: 140: 135: 131: 128: 125: 122: 115: 114: 113: 111: 108: 99: 90: 88: 83: 80: 76: 72: 68: 64: 60: 56: 52: 48: 44: 36: 32: 27:Pressure wave 19: 334: 311: 305: 266: 248: 239: 178: 169: 167: 109: 106: 104: 86: 78: 74: 70: 50: 46: 40: 190:vapor cones 174:Mach number 61:added to a 363:Categories 339:Mach angle 232:References 226:Shock wave 185:Ernst Mach 107:Mach angle 93:Mach angle 82:isentropic 75:Mach front 67:shock wave 316:CRC Press 297:213248761 194:transonic 181:schlieren 132:⁡ 123:μ 87:Mach cone 71:Mach stem 47:Mach wave 18:Mach cone 341:at NASA. 200:See also 196:flight. 59:pressure 172:is the 322:  295:  285:  168:where 129:arcsin 374:Waves 293:S2CID 320:ISBN 283:ISBN 45:, a 275:doi 79:cf. 73:or 41:In 365:: 318:. 291:. 281:. 257:^ 176:. 89:. 328:. 299:. 277:: 170:M 153:, 149:) 144:M 141:1 136:( 126:= 110:ÎĽ 20:)

Index

Mach cone

Schlieren photograph
fluid dynamics
speed of sound
pressure
compressible flow
shock wave
isentropic

Mach number
schlieren
Ernst Mach
vapor cones
transonic
Compressible flow
Prandtl–Meyer expansion fan
Shadowgraph technique
Schlieren photography
Shock wave


Springer Nature
doi
10.1007/978-981-15-0504-1
ISBN
978-981-15-0504-1
S2CID
213248761
CRC Press

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑