Knowledge

Line code

Source 📝

72: 702: 1707: 121: 83: 61: 94: 49: 803:. Each code word in a paired disparity code that averages to a negative level is paired with another code word that averages to a positive level. The transmitter keeps track of the running DC buildup, and picks the code word that pushes the DC level back towards zero. The receiver is designed so that either code word of the pair decodes to the same data bits. Examples of paired disparity codes include 1581: 909:
may be imposed on the generated channel sequence, i.e., the maximum number of consecutive ones or zeros is bounded to a reasonable number. A clock period is recovered by observing transitions in the received sequence, so that a maximum run length guarantees sufficient transitions to assure clock
843:
Bipolar line codes have two polarities, are generally implemented as RZ, and have a radix of three since there are three distinct output levels (negative, positive and zero). One of the principle advantages of this type of code is that it can eliminate any DC component. This is important if the
956:
Specifically, RLL bounds the length of stretches (runs) of repeated bits during which the signal does not change. If the runs are too long, clock recovery is difficult; if they are too short, the high frequencies might be attenuated by the communications channel. By
33: 1382: 965:, RLL reduces the timing uncertainty in decoding the stored data, which would lead to the possible erroneous insertion or removal of bits when reading the data back. This mechanism ensures that the boundaries between bits can always be accurately found (preventing 787:
in a constant-weight code is designed such that every code word that contains some positive or negative levels also contains enough of the opposite levels, such that the average level over each code word is zero. Examples of constant-weight codes include
847:
Unfortunately, several long-distance communication channels have polarity ambiguity. Polarity-insensitive line codes compensate in these channels. There are three ways of providing unambiguous reception of 0 and 1 bits over such channels:
440:
in data storage systems. Some signals are more prone to error than others as the physics of the communication channel or storage medium constrains the repertoire of signals that can be used reliably.
1026:
of the received signal. If the clock recovery is not ideal, then the signal to be decoded will not be sampled at the optimal times. This will increase the probability of error in the received data.
1585: 1029:
Biphase line codes require at least one transition per bit time. This makes it easier to synchronize the transceivers and detect errors, however, the baud rate is greater than that of NRZ codes.
1445:
When PSK data modulation is used, the potential exists for an ambiguity in the polarity of the received channel symbols. This problem can be solved in one of two ways. First ... a so-called
1410: 852:
Pair each code word with the polarity-inverse of that code word. The receiver is designed so that either code word of the pair decodes to the same data bits. Examples include
1313: 1045:. These requirements are unique for each medium, because each one has different behavior related to interference, distortion, capacitance and attenuation. 1479:
Another benefit of differential encoding is its insensitivity to polarity of the signal. ... If the leads of a twisted pair are accidentally reversed...
1397: 403: 972:
Early disk drives used very simple encoding schemes, such as RLL (0,1) FM code, followed by RLL (1,3) MFM code which were widely used in
1620: 1340:
Line codes ... facilitates the transmission of data over telecommunication and computer networks and its storage in multimedia systems.
367: 1001: 1360: 1657: 1590: 1310: 396: 312: 709:
Each line code has advantages and disadvantages. Line codes are chosen to meet one or more of the following criteria:
661:
Differential Manchester used in Token Ring. There is always a transition halfway between the conditioned transitions.
1950: 1851: 1564: 1472: 1438: 1204: 425: 291: 890: 1749: 1734: 1631:
CodSim 2.0: Open source simulator for Digital Data Communications Model at the University of Malaga written in HTML
1134: 857: 515: 185: 76: 1625: 1596: 372: 286: 258: 225: 200: 152: 1739: 1729: 1331: 1856: 1380:, Peter E. K. Chow., "Code converter for polarity-insensitive transmission systems", published 1983 1198: 389: 647:
Variant of Differential Manchester. There is always a transition halfway between the conditioned transitions.
1155: 756:. The disparity of a bit pattern is the difference in the number of one bits vs the number of zero bits. The 1785: 1825: 1167: 1111: 997: 190: 17: 1907: 1650: 633:
Manchester. Two consecutive bits of the same type force a transition at the beginning of a bit period.
342: 162: 37: 1173: 784: 215: 969:), while efficiently using the media to reliably store the maximal amount of data in a given space. 1090: 853: 804: 352: 235: 171: 1897: 1228: 249: 128: 1902: 1955: 1528: 1491: 1277: 1249: 484: 362: 357: 195: 180: 1635: 1554: 1516:
A detailed description is furnished of the limiting properties of runlength limited sequences.
1037:
A line code will typically reflect technical requirements of the transmission medium, such as
71: 1913: 1643: 1042: 800: 429: 347: 281: 1919: 1892: 1795: 1096: 861: 780: 205: 142: 137: 8: 1945: 1924: 1805: 1765: 1406: 1125: 871: 472: 468: 230: 65: 467:
After line coding, the signal is put through a physical communication channel, either a
1353: 1161: 1085: 946: 906: 793: 574: 417: 263: 240: 220: 41: 764:
of the disparity of all previously transmitted bits. The simplest possible line code,
1790: 1706: 1681: 1560: 1468: 1434: 1253: 1210: 1149: 1005: 765: 701: 480: 444: 210: 87: 1820: 1686: 1600: 1532: 1507: 1495: 1281: 1080: 831: 823: 771:
Most line codes eliminate the DC component – such codes are called
768:, gives too many errors on such systems, because it has an unbounded DC component. 723: 577:
level. This is the standard positive logic signal format used in digital circuits.
452: 337: 332: 157: 147: 53: 1022:
Line coding should make it possible for the receiver to synchronize itself to the
1815: 1744: 1462: 1428: 1317: 1130: 1075: 973: 865: 789: 456: 272: 1329: 827: 1887: 1830: 1810: 1800: 1724: 1696: 1354:"Data Transmission at High Rates via Kapton Flexprints for the Mu3e Experiment" 1223: 1179: 1144: 1139: 1070: 1017: 950: 902: 875: 753: 519: 448: 433: 98: 1377: 1939: 1691: 1038: 1023: 937:, refer to the rate of the code, while the remaining two specify the minimal 775:, zero-DC, or DC-free. There are three ways of eliminating the DC component: 761: 498: 424:
is a pattern of voltage, current, or photons used to represent digital data
120: 1630: 1120: 1115: 741: 729: 544: 377: 317: 296: 1666: 1606: 772: 976:
until the mid-1980s and are still used in digital optical discs such as
958: 537: 533: 514:
the line-coded signal can be used to turn on and off a light source in
502: 112: 740:
Most long-distance communication channels cannot reliably transport a
819: 681:
is represented by a transition at the beginning of the clock period.
507: 27:
Pattern used within a communications system to represent digital data
1511: 1336:
IEEE International Conference on Signal Processing and Communication
844:
signal must pass through a transformer or a long transmission line.
675:
Need a Clock, always a transition in the middle of the clock period
82: 1882: 1872: 985: 966: 886: 526: 492: 483:, in the form of variations of the voltage or current (often using 109: 60: 1102: 993: 945:
number of zeroes between consecutive ones. This is used in both
532:
the line-coded signal can be converted to magnetized spots on a
1835: 1665: 1426: 1185: 1004:
codes. Higher density RLL (2,7) and RLL (1,7) codes became the
808: 93: 48: 874:
each symbol relative to the previous symbol. Examples include
1330:
Abdullatif Glass; Nidhal Abdulaziz; and Eesa Bastaki (2007),
989: 327: 705:
An arbitrary bit pattern in various binary line code formats
692:
forces a positive or negative pulse for half the bit period
1877: 1780: 1775: 1770: 1533:"EFMPlus: The Coding Format of the MultiMedia Compact Disc" 1065: 1060: 1055: 962: 879: 812: 525:
the line-coded signal can be printed on paper to create a
32: 1106: 981: 977: 36:
An example of coding a binary signal using rectangular
1527: 1490: 1433:. Springer Science & Business Media. p. 255. 1399:
Fieldbus Application Guide ... Wiring and Installation
639:
forces a positive transition in the middle of the bit
636:
forces a negative transition in the middle of the bit
622:
goes high for half the bit period and returns to low
543:
the line-coded signal can be converted to pits on an
1276: 1248: 949:
and storage systems that move a medium past a fixed
551:Some of the more common binary line codes include: 1430:Error-Correction Coding for Digital Communications 1332:"Slope line coding for telecommunication networks" 1376: 436:. This repertoire of signals is usually called a 1937: 1460: 1286:IEEE Journal on Selected Areas in Communications 608:does nothing (keeps sending the previous level) 597:does nothing (keeps sending the previous level) 501:(to reduce its frequency bandwidth) and then is 1541:A high-density alternative to EFM is described. 913:RLL codes are defined by four main parameters: 479:the line-coded signal can directly be put on a 1282:"A Survey of Codes for Optical Disk Recording" 1651: 397: 1395: 689:The positive and negative pulses alternate. 1351: 896: 462: 1658: 1644: 1427:George C. Clark Jr.; J. Bibb Cain (2013). 822:. For example, the scrambler specified in 404: 390: 1537:IEEE Transactions on Consumer Electronics 1464:Data Communications and Computer Networks 475:. The most common physical channels are: 1559:. Javvin Technologies Inc. p. 284. 700: 92: 81: 70: 59: 47: 31: 1032: 14: 1938: 1750:Differential Manchester/biphase (Bi-φ) 1303: 885:Invert the whole stream when inverted 744:. The DC component is also called the 505:(to shift its frequency) to create an 1730:Non-return-to-zero, level (NRZ/NRZ-L) 1639: 1467:. PHI Learning Pvt. Ltd. p. 13. 1311:"Coding for Magnetic Storage Mediums" 1270: 1192: 695:keeps a zero level during bit period 672:Differential Manchester (Alternative) 1735:Non-return-to-zero, inverted (NRZ-I) 1626:Line Coding in Digital Communication 1552: 1158:, Miller encoding and delay encoding 1048: 518:, most commonly used in an infrared 511:that can be sent through free space. 1008:for hard disks by the early 1990s. 719:Ease error detection and correction 24: 1396:David A. Glanzer, "4.7 Polarity", 1011: 25: 1967: 1852:Carrier-suppressed return-to-zero 1740:Non-return-to-zero, space (NRZ-S) 1614: 1254:"Innovation in Constrained Codes" 1205:Carrier-Suppressed Return-to-Zero 678:is represented by no transition. 1705: 1584: This article incorporates 1579: 1366:from the original on 2022-10-09. 858:Differential Manchester encoding 625:stays low for the entire period 516:free-space optical communication 119: 77:differential Manchester encoding 1669:(digital baseband transmission) 1597:General Services Administration 1546: 1521: 1484: 1416:from the original on 2022-10-09 1857:Alternate-phase return-to-zero 1454: 1420: 1389: 1370: 1345: 1323: 1242: 1199:Alternate-Phase Return-to-Zero 713:Minimize transmission hardware 13: 1: 1496:"Runlength-Limited Sequences" 1235: 1156:Modified frequency modulation 1826:Eight-to-fourteen modulation 1258:IEEE Communications Magazine 1168:Non-return-to-zero, inverted 1112:Eight-to-fourteen modulation 889:are detected, perhaps using 735: 7: 1217: 1211:Three of Six, Fiber Optical 838: 490:the line-coded signal (the 64:Encoding of 11011000100 in 10: 1972: 1908:Pulse-amplitude modulation 1015: 716:Facilitate synchronization 443:Common line encodings are 313:Capacity-approaching codes 38:pulse-amplitude modulation 1865: 1844: 1758: 1714: 1703: 1674: 1621:Line Coding Lecture No. 9 1461:Prakash C. Gupta (2013). 1174:Pulse-position modulation 605:Non-return-to-zero space 1951:Physical layer protocols 1903:Pulse modulation methods 1786:Alternate mark inversion 1152:: B8ZS, B6ZS, B3ZS, HDB3 1091:Alternate mark inversion 897:Run-length limited codes 854:alternate mark inversion 805:alternate mark inversion 591:Non-return-to-zero mark 463:Transmission and storage 1898:Ethernet physical layer 1500:Proceedings of the IEEE 1231:and bit synchronization 1229:Self-synchronizing code 1135:differential Manchester 250:Hierarchical modulation 1592:Federal Standard 1037C 1586:public domain material 1529:Kees Schouhamer Immink 1492:Kees Schouhamer Immink 706: 485:differential signaling 101: 90: 79: 68: 57: 45: 1914:Pulse-code modulation 1831:Delay/Miller encoding 1605: (in support of 1553:Dong, Jielin (2007). 1338:, Dubai: IEEE: 1537, 1043:shielded twisted pair 907:run-length limitation 801:paired disparity code 704: 664:keeps level constant 653:keeps level constant 430:communication channel 96: 85: 74: 63: 51: 35: 1920:Serial communication 1893:Digital transmission 1796:Coded mark inversion 1352:Jens Kröger (2014). 1278:K. Schouhamer Immink 1250:K. Schouhamer Immink 1097:Coded mark inversion 1033:Other considerations 862:coded mark inversion 781:constant-weight code 667:forces a transition 650:forces a transition 611:forces a transition 594:forces a transition 580:forces a high level 497:) undergoes further 1925:Category:Line codes 1806:Hybrid ternary code 1766:Conditioned diphase 1759:Extended line codes 1725:Return to zero (RZ) 1407:Fieldbus Foundation 1126:Hybrid ternary code 905:at the receiver, a 891:polarity switching 872:differential coding 783:. Each transmitted 583:forces a low level 473:data storage medium 469:transmission medium 66:Manchester encoding 1845:Optical line codes 1556:Network Dictionary 1539:. CE-41: 491–497. 1316:2014-05-21 at the 1193:Optical line codes 1162:Non-return-to-zero 1150:Modified AMI codes 1086:128b/130b encoding 1006:de facto standards 947:telecommunications 910:recovery quality. 794:Interleaved 2 of 5 707: 575:Non-return-to-zero 418:telecommunications 172:Digital modulation 102: 91: 80: 69: 58: 46: 42:non-return-to-zero 1933: 1932: 1791:Modified AMI code 1682:Unipolar encoding 1506:(11): 1745–1759. 1494:(December 1990). 1049:Common line codes 929:. The first two, 758:running disparity 722:Achieve a target 699: 698: 481:transmission line 414: 413: 129:Analog modulation 88:biphase mark code 16:(Redirected from 1963: 1821:64b/66b encoding 1709: 1687:Bipolar encoding 1660: 1653: 1646: 1637: 1636: 1610: 1604: 1599:. Archived from 1583: 1582: 1571: 1570: 1550: 1544: 1543: 1525: 1519: 1518: 1488: 1482: 1481: 1458: 1452: 1451: 1424: 1418: 1417: 1415: 1404: 1393: 1387: 1386: 1385: 1381: 1374: 1368: 1367: 1365: 1358: 1349: 1343: 1342: 1327: 1321: 1307: 1301: 1300: 1298: 1297: 1274: 1268: 1267: 1265: 1264: 1246: 1081:64b/66b encoding 974:hard disk drives 832:64b/66b encoding 724:spectral density 554: 553: 438:constrained code 432:or written to a 406: 399: 392: 123: 106: 105: 54:bipolar encoding 21: 1971: 1970: 1966: 1965: 1964: 1962: 1961: 1960: 1936: 1935: 1934: 1929: 1861: 1840: 1816:8b/10b encoding 1754: 1710: 1701: 1670: 1664: 1617: 1589: 1580: 1578: 1575: 1574: 1567: 1551: 1547: 1526: 1522: 1512:10.1109/5.63306 1489: 1485: 1475: 1459: 1455: 1441: 1425: 1421: 1413: 1402: 1394: 1390: 1383: 1375: 1371: 1363: 1356: 1350: 1346: 1328: 1324: 1318:Wayback Machine 1308: 1304: 1295: 1293: 1275: 1271: 1262: 1260: 1247: 1243: 1238: 1220: 1195: 1190: 1131:Manchester code 1114:(EFM), used in 1076:8b/10b encoding 1051: 1035: 1020: 1014: 1012:Synchronization 899: 866:Miller encoding 841: 790:Manchester code 738: 619:Return to zero 465: 457:Manchester code 410: 273:Spread spectrum 104: 103: 28: 23: 22: 15: 12: 11: 5: 1969: 1959: 1958: 1953: 1948: 1931: 1930: 1928: 1927: 1922: 1917: 1911: 1905: 1900: 1895: 1890: 1888:Digital signal 1885: 1880: 1875: 1866: 1863: 1862: 1860: 1859: 1854: 1848: 1846: 1842: 1841: 1839: 1838: 1833: 1828: 1823: 1818: 1813: 1811:6b/8b encoding 1808: 1803: 1801:MLT-3 encoding 1798: 1793: 1788: 1783: 1778: 1773: 1768: 1762: 1760: 1756: 1755: 1753: 1752: 1747: 1742: 1737: 1732: 1727: 1721: 1719: 1712: 1711: 1704: 1702: 1700: 1699: 1697:Mark and space 1694: 1689: 1684: 1678: 1676: 1672: 1671: 1663: 1662: 1655: 1648: 1640: 1634: 1633: 1628: 1623: 1616: 1615:External links 1613: 1612: 1611: 1603:on 2022-01-22. 1573: 1572: 1565: 1545: 1520: 1483: 1473: 1453: 1439: 1419: 1409:, p. 10, 1388: 1369: 1359:. p. 16. 1344: 1322: 1309:Karl Paulsen. 1302: 1269: 1240: 1239: 1237: 1234: 1233: 1232: 1226: 1224:Physical layer 1219: 1216: 1215: 1214: 1208: 1202: 1194: 1191: 1189: 1188: 1183: 1180:Return-to-zero 1177: 1171: 1165: 1159: 1153: 1147: 1145:MLT-3 encoding 1142: 1140:Mark and space 1137: 1128: 1123: 1118: 1109: 1100: 1094: 1088: 1083: 1078: 1073: 1071:6b/8b encoding 1068: 1063: 1058: 1052: 1050: 1047: 1034: 1031: 1018:Clock recovery 1016:Main article: 1013: 1010: 951:recording head 903:clock recovery 898: 895: 894: 893: 883: 876:MLT-3 encoding 869: 840: 837: 836: 835: 816: 797: 754:DC coefficient 737: 734: 733: 732: 726: 720: 717: 714: 697: 696: 693: 690: 687: 683: 682: 679: 676: 673: 669: 668: 665: 662: 659: 655: 654: 651: 648: 645: 641: 640: 637: 634: 631: 627: 626: 623: 620: 617: 613: 612: 609: 606: 603: 599: 598: 595: 592: 589: 585: 584: 581: 578: 572: 568: 567: 564: 561: 558: 549: 548: 541: 530: 523: 520:remote control 512: 488: 464: 461: 434:storage medium 412: 411: 409: 408: 401: 394: 386: 383: 382: 381: 380: 375: 370: 365: 360: 355: 350: 345: 340: 335: 330: 325: 320: 315: 307: 306: 302: 301: 300: 299: 294: 289: 284: 276: 275: 269: 268: 267: 266: 261: 253: 252: 246: 245: 244: 243: 238: 233: 228: 223: 218: 213: 208: 203: 198: 193: 188: 183: 175: 174: 168: 167: 166: 165: 160: 155: 150: 145: 140: 132: 131: 125: 124: 116: 115: 99:MLT-3 encoding 97:An example of 86:An example of 75:An example of 52:An example of 30: 29: 26: 9: 6: 4: 3: 2: 1968: 1957: 1956:Coding theory 1954: 1952: 1949: 1947: 1944: 1943: 1941: 1926: 1923: 1921: 1918: 1915: 1912: 1909: 1906: 1904: 1901: 1899: 1896: 1894: 1891: 1889: 1886: 1884: 1881: 1879: 1876: 1874: 1871: 1868: 1867: 1864: 1858: 1855: 1853: 1850: 1849: 1847: 1843: 1837: 1834: 1832: 1829: 1827: 1824: 1822: 1819: 1817: 1814: 1812: 1809: 1807: 1804: 1802: 1799: 1797: 1794: 1792: 1789: 1787: 1784: 1782: 1779: 1777: 1774: 1772: 1769: 1767: 1764: 1763: 1761: 1757: 1751: 1748: 1746: 1743: 1741: 1738: 1736: 1733: 1731: 1728: 1726: 1723: 1722: 1720: 1718: 1713: 1708: 1698: 1695: 1693: 1692:On-off keying 1690: 1688: 1685: 1683: 1680: 1679: 1677: 1675:Main articles 1673: 1668: 1661: 1656: 1654: 1649: 1647: 1642: 1641: 1638: 1632: 1629: 1627: 1624: 1622: 1619: 1618: 1608: 1602: 1598: 1594: 1593: 1587: 1577: 1576: 1568: 1566:9781602670006 1562: 1558: 1557: 1549: 1542: 1538: 1534: 1530: 1524: 1517: 1513: 1509: 1505: 1501: 1497: 1493: 1487: 1480: 1476: 1474:9788120348646 1470: 1466: 1465: 1457: 1450: 1448: 1442: 1440:9781489921741 1436: 1432: 1431: 1423: 1412: 1408: 1401: 1400: 1392: 1379: 1373: 1362: 1355: 1348: 1341: 1337: 1333: 1326: 1319: 1315: 1312: 1306: 1291: 1287: 1283: 1279: 1273: 1259: 1255: 1251: 1245: 1241: 1230: 1227: 1225: 1222: 1221: 1212: 1209: 1206: 1203: 1200: 1197: 1196: 1187: 1184: 1181: 1178: 1175: 1172: 1169: 1166: 1163: 1160: 1157: 1154: 1151: 1148: 1146: 1143: 1141: 1138: 1136: 1132: 1129: 1127: 1124: 1122: 1119: 1117: 1116:compact discs 1113: 1110: 1108: 1104: 1101: 1098: 1095: 1092: 1089: 1087: 1084: 1082: 1079: 1077: 1074: 1072: 1069: 1067: 1064: 1062: 1059: 1057: 1054: 1053: 1046: 1044: 1040: 1039:optical fiber 1030: 1027: 1025: 1019: 1009: 1007: 1003: 999: 995: 991: 987: 983: 979: 975: 970: 968: 964: 960: 954: 952: 948: 944: 940: 936: 932: 928: 924: 920: 916: 911: 908: 904: 901:For reliable 892: 888: 884: 881: 877: 873: 870: 867: 863: 859: 855: 851: 850: 849: 845: 833: 829: 825: 821: 817: 814: 810: 806: 802: 798: 795: 791: 786: 782: 778: 777: 776: 774: 769: 767: 763: 762:running total 759: 755: 751: 747: 743: 731: 727: 725: 721: 718: 715: 712: 711: 710: 703: 694: 691: 688: 685: 684: 680: 677: 674: 671: 670: 666: 663: 660: 657: 656: 652: 649: 646: 643: 642: 638: 635: 632: 629: 628: 624: 621: 618: 615: 614: 610: 607: 604: 601: 600: 596: 593: 590: 587: 586: 582: 579: 576: 573: 570: 569: 565: 562: 559: 556: 555: 552: 546: 542: 539: 535: 531: 528: 524: 521: 517: 513: 510: 509: 504: 500: 499:pulse shaping 496: 494: 489: 486: 482: 478: 477: 476: 474: 470: 460: 458: 454: 450: 446: 441: 439: 435: 431: 427: 423: 419: 407: 402: 400: 395: 393: 388: 387: 385: 384: 379: 376: 374: 371: 369: 366: 364: 361: 359: 356: 354: 351: 349: 346: 344: 341: 339: 336: 334: 331: 329: 326: 324: 321: 319: 316: 314: 311: 310: 309: 308: 304: 303: 298: 295: 293: 290: 288: 285: 283: 280: 279: 278: 277: 274: 271: 270: 265: 262: 260: 257: 256: 255: 254: 251: 248: 247: 242: 239: 237: 234: 232: 229: 227: 224: 222: 219: 217: 214: 212: 209: 207: 204: 202: 199: 197: 194: 192: 189: 187: 184: 182: 179: 178: 177: 176: 173: 170: 169: 164: 161: 159: 156: 154: 151: 149: 146: 144: 141: 139: 136: 135: 134: 133: 130: 127: 126: 122: 118: 117: 114: 111: 108: 107: 100: 95: 89: 84: 78: 73: 67: 62: 55: 50: 43: 39: 34: 19: 1869: 1716: 1601:the original 1591: 1555: 1548: 1540: 1536: 1523: 1515: 1503: 1499: 1486: 1478: 1463: 1456: 1446: 1444: 1429: 1422: 1398: 1391: 1372: 1347: 1339: 1335: 1325: 1305: 1294:. Retrieved 1289: 1285: 1272: 1261:. Retrieved 1257: 1244: 1121:Hamming code 1036: 1028: 1021: 971: 955: 942: 941:and maximal 938: 934: 930: 926: 922: 918: 914: 912: 900: 846: 842: 770: 757: 749: 745: 742:DC component 739: 730:DC component 728:Eliminate a 708: 550: 545:optical disc 506: 491: 466: 442: 437: 421: 415: 378:Multiplexing 322: 318:Demodulation 1667:Line coding 1607:MIL-STD-188 1447:transparent 773:DC-balanced 426:transmitted 323:Line coding 40:with polar 18:Line coding 1946:Line codes 1940:Categories 1745:Manchester 1717:line codes 1378:US 4387366 1296:2018-02-05 1263:2022-10-05 1236:References 1105:, used in 959:modulating 538:tape drive 534:hard drive 113:modulation 1870:See also: 1449:code. ... 1292:: 751–764 887:syncwords 820:scrambler 785:code word 752:, or the 746:disparity 736:Disparity 658:Biphase–S 644:Biphase–M 630:Biphase–L 508:RF signal 503:modulated 422:line code 56:, or AMI. 1883:Bit rate 1873:Baseband 1531:(1995). 1411:archived 1361:Archived 1314:Archived 1280:(2001). 1252:(2022). 1218:See also 967:bit slip 839:Polarity 766:unipolar 566:0 state 560:Comments 527:bar code 493:baseband 445:unipolar 305:See also 110:Passband 1213:(TS-FO) 1103:EFMPlus 1002:EFMPLus 994:Blu-ray 760:is the 686:Bipolar 563:1 state 453:bipolar 428:down a 1836:TC-PAM 1715:Basic 1563:  1471:  1437:  1384:  1320:.2007. 1207:(CSRZ) 1201:(APRZ) 1186:TC-PAM 1170:(NRZI) 996:using 826:  818:Use a 809:8b/10b 799:Use a 779:Use a 748:, the 557:Signal 495:signal 455:, and 231:SC-FDE 1916:(PCM) 1910:(PAM) 1588:from 1414:(PDF) 1403:(PDF) 1364:(PDF) 1357:(PDF) 1176:(PPM) 1164:(NRZ) 1099:(CMI) 1093:(AMI) 1024:phase 990:Hi-MD 602:NRZ–S 588:NRZ–M 571:NRZ–L 449:polar 328:Modem 1878:Baud 1781:2B1Q 1776:4B5B 1771:4B3T 1561:ISBN 1469:ISBN 1435:ISBN 1182:(RZ) 1133:and 1107:DVDs 1066:4B5B 1061:4B3T 1056:2B1Q 1000:and 992:and 963:data 961:the 880:NRZI 878:and 864:and 830:for 828:2615 813:4B3T 811:and 792:and 750:bias 420:, a 368:OFDM 297:THSS 292:FHSS 287:DSSS 201:MFSK 186:APSK 44:code 1508:doi 1041:or 998:EFM 982:DVD 824:RFC 536:or 471:or 416:In 373:FDM 363:ΔΣM 358:PWM 353:PDM 348:PCM 343:PAM 338:PoM 333:AnM 282:CSS 264:WDM 259:QAM 241:WDM 236:TCM 226:QAM 221:PSK 216:PPM 211:OOK 206:MSK 196:FSK 191:CPM 181:ASK 163:SSB 153:QAM 1942:: 1609:). 1595:. 1535:. 1514:. 1504:78 1502:. 1498:. 1477:. 1443:. 1405:, 1334:, 1290:19 1288:. 1284:. 1256:. 988:, 986:MD 984:, 980:, 978:CD 953:. 925:, 921:, 917:, 860:, 856:, 807:, 616:RZ 487:). 459:. 451:, 447:, 158:SM 148:PM 143:FM 138:AM 1659:e 1652:t 1645:v 1569:. 1510:: 1299:. 1266:. 943:k 939:d 935:n 933:/ 931:m 927:k 923:d 919:n 915:m 882:. 868:. 834:. 815:. 796:. 547:. 540:. 529:. 522:. 405:e 398:t 391:v 20:)

Index

Line coding

pulse-amplitude modulation
non-return-to-zero

bipolar encoding

Manchester encoding

differential Manchester encoding

biphase mark code

MLT-3 encoding
Passband
modulation

Analog modulation
AM
FM
PM
QAM
SM
SSB
Digital modulation
ASK
APSK
CPM
FSK
MFSK

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.