Knowledge

Lie sphere geometry

Source 📝

977: 545: 20: 2453: 1230:(i.e., directed) line through that point. The point and the line are incident cycles. The key observation is that the set of all cycles incident with both the point and the line is a Lie invariant object: in addition to the point and the line, it consists of all the circles which make oriented contact with the line at the given point. It is called a 989:. This problem concerns a configuration of three distinct circles (which may be points or lines): the aim is to find every other circle (including points or lines) which is tangent to all three of the original circles. For a generic configuration of circles, there are at most eight such tangent circles. 1021:, then the corresponding points , , lie on a line in projective space. Since a nontrivial quadratic equation has at most two solutions, this line actually lies in the Lie quadric, and any point on this line defines a cycle incident with , and . Thus there are infinitely many solutions in this case. 104:
Lie sphere geometry can be defined in any dimension, but the case of the plane and 3-dimensional space are the most important. In the latter case, Lie noticed a remarkable similarity between the Lie quadric of spheres in 3-dimensions, and the space of lines in 3-dimensional projective space, which is
1043:
orthogonal to all three is 2-dimensional. It can have signature (2,0), (1,0), or (1,1), in which case there are zero, one or two solutions for respectively. (The signature cannot be (0,1) or (0,2) because it is orthogonal to a space containing more than one null line.) In the case that the subspace
980:
The eight solutions of the generic Apollonian problem. The three given circles are labeled C1, C2 and C3 and colored red, green and blue, respectively. The solutions are arranged in four pairs, with one pink and one black solution circle each, labeled as 1A/1B, 2A/2B, 3A/3B, and 4A/4B. Each pair
1190:
and so all cycles are Lie equivalent. In particular, points are not preserved by general Lie transformations. The subgroup of Lie transformations preserving the point cycles is essentially the subgroup of orthogonal transformations which preserve the chosen timelike direction. This subgroup is
539: 1218:
The fact that Lie transformations do not preserve points in general can also be a hindrance to understanding Lie sphere geometry. In particular, the notion of a curve is not Lie invariant. This difficulty can be mitigated by the observation that there is a Lie invariant notion of
896:∩ (1,0,0,0,0) are signature (2,1) subspaces of (1,0,0,0,0). They therefore either coincide or intersect in a 2-dimensional subspace. In the latter case, the 2-dimensional subspace can either have signature (2,0), (1,0), (1,1), in which case the corresponding two circles in 992:
The solution, using Lie sphere geometry, proceeds as follows. Choose an orientation for each of the three circles (there are eight ways to do this, but there are only four up to reversing the orientation of all three). This defines three points , , on the Lie quadric
74:). Lie sphere geometry is the geometry of the Lie quadric and the Lie transformations which preserve it. This geometry can be difficult to visualize because Lie transformations do not preserve points in general: points can be transformed into circles (or spheres). 1244:
Note that the cycles are all incident with each other as well. In terms of the Lie quadric, this means that a pencil of cycles is a (projective) line lying entirely on the Lie quadric, i.e., it is the projectivization of a totally null two dimensional subspace of
54:
in the nineteenth century. The main idea which leads to Lie sphere geometry is that lines (or planes) should be regarded as circles (or spheres) of infinite radius and that points in the plane (or space) should be regarded as circles (or spheres) of zero radius.
1723: 2605:
This provides one way to see that Dupin cyclides are cyclides, in the sense that they are zero-sets of quartics of a particular form. For this, note that as in the planar case, 3-dimensional Euclidean space embeds into the Lie quadric
1892: 2564:. Conversely such a decomposition uniquely determines a contact lift of a surface which envelops two one parameter families of spheres; the image of this contact lift is given by the null 2-dimensional subspaces which intersect 152:
with automorphisms known as "Mobius transformations". Second, points are regarded as circles (or spheres) of zero radius. Finally, for technical reasons, the circles (or spheres), including the lines (or planes) are given
1154:), but with an overall reversal of orientation. Thus there are at most 8 solution circles to the Apollonian problem unless all three circles meet tangentially at a single point, when there are infinitely many solutions. 160:
These objects, i.e., the points, oriented circles and oriented lines in the plane, or the points, oriented spheres and oriented planes in space, are sometimes called cycles or Lie cycles. It turns out that they form a
812:
in the plane, where a cycle is either an oriented circle (or straight line) or a point in the plane (or the point at infinity); the points can be thought of as circles of radius zero, but they are not oriented.
267: 900:
intersect in zero, one or two points respectively. Hence they have first order contact if and only if the 2-dimensional subspace is degenerate (signature (1,0)), which holds if and only if the span of
2902: 2718: 181:
of the plane/sphere plus point at infinity. The point-preserving transformations are precisely the Möbius transformations. The Lie transformations which fix the ideal point at infinity are the
189:. These two subgroups generate the group of Lie transformations, and their intersection are the Möbius transforms that fix the ideal point at infinity, namely the affine conformal maps. 1342:, and the contact structure is Lie invariant. It follows that oriented curves can be studied in a Lie invariant way via their contact lifts, which may be characterized, generically as 1542: 3017:
An elementary video introducing concepts in Laguerre geometry (whose transformation group is a subgroup of the group of Lie transformations). The video is presented from the
845:∪ {∞}, then this just means that lies on the circle corresponding to ; this case is immediate from the definition of this circle (if corresponds to a point circle then 1729: 743:
nonzero correspond to oriented circles (or oriented lines, which are circles through infinity) in the Euclidean plane. This is easier to see in terms of the
144:
is added to Euclidean space so that lines (or planes) can be regarded as circles (or spheres) passing through the point at infinity (i.e., having infinite
1063:
The general solution to the Apollonian problem is obtained by reversing orientations of some of the circles, or equivalently, by considering the triples (
1186:
on the Lie quadric. These transformations of cycles are called "Lie transformations". They preserve the incidence relation between cycles. The action is
186: 225: 90: 981:
makes oriented contact with C1, C2, and C3, for a suitable choice of orientations; there are four such choices up to an overall orientation reversal.
109:. This similarity led Lie to his famous "line-sphere correspondence" between the space of lines and the space of spheres in 3-dimensional space. 2613:
as the set of point spheres apart from the ideal point at infinity. Explicitly, the point (x,y,z) in Euclidean space corresponds to the point
534:{\displaystyle (x_{0},x_{1},x_{2},x_{3},x_{4})\cdot (y_{0},y_{1},y_{2},y_{3},y_{4})=-x_{0}y_{0}-x_{1}y_{1}+x_{2}y_{2}+x_{3}y_{4}+x_{4}y_{3}.} 3014: 177:
known as the Lie transformations. These transformations do not preserve points in general: they are transforms of the Lie quadric,
2736:). The class of cyclides is a natural family of surfaces in Lie sphere geometry, and the Dupin cyclides form a natural subfamily. 997:. By the incidence of cycles, a solution to the Apollonian problem compatible with the chosen orientations is given by a point ∈ 3008: 805:
of the Lie quadric which reverses the orientation of circles and lines, and fixes the points of the plane (including infinity).
3009:"On complexes - in particular, line and sphere complexes - with applications to the theory of partial differential equations" 2971: 2891: 2862: 2257:
defining the Plücker relation comes from a symmetric bilinear form of signature (3,3). In other words, the space of lines in
2265:). Although this is not the same as the Lie quadric, a "correspondence" can be defined between lines and spheres using the 2640: 1969:= 0. The group of Lie transformations is now O(n + 1, 2) and the Lie transformations preserve incidence of Lie cycles. 1210:
Lie transformations can often be used to simplify a geometrical problem, by transforming circles into lines or points.
149: 2958: 2602:
such that the associated symmetric endomorphism has square equal to the identity and eigenspaces of signature (2,1).
1980:: in terms of the given choice of point spheres, these contact elements correspond to pairs consisting of a point in 58:
The space of circles in the plane (or spheres in space), including points and lines (or planes) turns out to be a
1503:. In other words, after taking contact lifts, much of the basic theory of curves in the plane is Lie invariant. 3034: 2951: 2059:) describes the (Lie) geometry of spheres in Euclidean 3-space. Lie noticed a remarkable similarity with the 197: 833:= 0 if and only if the corresponding cycles "kiss", that is they meet each other with oriented first order 735:= 0 correspond to points in the Euclidean plane with an ideal point at infinity. On the other hand, points 1718:{\displaystyle (x_{0},x_{1},\ldots x_{n},x_{n+1},x_{n+2})\cdot (y_{0},y_{1},\ldots y_{n},y_{n+1},y_{n+2})} 3044: 3039: 1167: 692:. This is the Euclidean plane with an ideal point at infinity, which we take to be : the finite points ( 1183: 229: 1227: 154: 121:
in the plane (resp. in space) which only depend on the concepts of circles (resp. spheres) and their
1456:
has a preferred Lie cycle associated to each point on the curve: the derivative of the immersion at
799: 182: 1484:); the kernel of any nonzero element of this subspace is a well defined 1-dimensional subspace of 1196: 2075: 2000:-sphere. This identification is not invariant under Lie transformations: in Lie invariant terms, 1445: 258: 254: 2575:
Such a decomposition is equivalently given, up to a sign choice, by a symmetric endomorphism of
228:). Eventually, there is also an isomorphism between the Möbius group and the Lorentz group (see 1343: 909: 201: 170: 2190: 681:
The orthogonal space to (1,0,0,0,0), intersected with the Lie quadric, is the two dimensional
3018: 2745: 1952:
The incidence relation carries over without change: the spheres corresponding to points , ∈
1220: 986: 834: 140:
and points) are treated on an equal footing. This is achieved in three steps. First an ideal
1249:: the representative vectors for the cycles in the pencil are all orthogonal to each other. 2060: 1949:
is an (n + 1)-dimensional manifold (spheres are parameterized by their center and radius).
1232: 689: 561: 174: 162: 67: 2464:. These are characterized as the common envelope of two one parameter families of spheres 1276:
whose fibres are circles. This map is not Lie invariant, as points are not Lie invariant.
8: 1887:{\displaystyle =-x_{0}y_{0}+x_{1}y_{1}+\cdots +x_{n}y_{n}+x_{n+1}y_{n+2}+x_{n+2}y_{n+1}.} 1163: 808:
To summarize: there is a one-to-one correspondence between points on the Lie quadric and
782:
has a definite sign; represents the same circle with the opposite orientation. Thus the
137: 2966: 2019:. There is no longer a preferred Lie cycle associated to each point: instead, there are 1264:. For a given choice of point cycles (the points orthogonal to a chosen timelike vector 2488:
are maps from intervals into the Lie quadric. In order for a common envelope to exist,
221: 125: 118: 105:
also a quadric hypersurface in a 5-dimensional projective space, called the Plücker or
98: 1311:) and the oriented line tangent to the curve at that point (the line in the direction 2990: 2954: 2935: 2918:
Knight, Robert D. (2005), "The Apollonius contact problem and Lie contact geometry",
2887: 2858: 1500: 1187: 1018: 141: 86: 23:
Sophus Lie, the originator of Lie sphere geometry and the line-sphere correspondence.
209: 2980: 2927: 2869: 1993: 1414: 1339: 744: 682: 213: 166: 133: 71: 39: 1984:-dimensional space (which may be the point at infinity) together with an oriented 77:
To handle this, curves in the plane and surfaces in space are studied using their
2178: 1260:. The Lie transformations preserve the contact elements, and act transitively on 1037: 985:
The incidence of cycles in Lie sphere geometry provides a simple solution to the
129: 2946:
Milson, R. (2000) "An overview of Lie’s line-sphere correspondence", pp 1–10 of
2512:, i.e., their representative vectors must span a null 2-dimensional subspace of 2189:. There are six independent coordinates and they satisfy a single relation, the 1226:
An oriented contact element in the plane is a pair consisting of a point and an
2266: 2254: 2023:– 1 such cycles, corresponding to the curvature spheres in Euclidean geometry. 35: 2985: 2931: 2851:
Classical Geometries in Modern Contexts: Geometry of Real Inner Product Spaces
205: 3028: 2994: 2939: 2461: 2243: 2016: 217: 193: 106: 94: 82: 2854: 128:
have a more natural formulation in a more general context in which circles,
2751: 976: 192:
These groups also have a direct physical interpretation: As pointed out by
1268:), every contact element contains a unique point. This defines a map from 117:
The key observation that leads to Lie sphere geometry is that theorems of
2846: 1925: 1200: 1175: 549: 63: 2748:, also can involve considering a line as a circle with infinite radius. 1985: 1937: 1363: 1192: 659: 51: 2876:, Grundlehren der mathematischen Wissenschaften, vol. 3, Springer 2238:
It follows that there is a one-to-one correspondence between lines in
2037: 2910:
Proceedings of the Sophus Lie Memorial Conference, Oslo, August, 1992
1506: 885: 634:
To relate this to planar geometry it is necessary to fix an oriented
856:
It therefore remains to consider the case that neither nor are in
544: 169:
of dimension 4 or 5, which is known as the Lie quadric. The natural
1253: 783: 635: 619:
consists of the points in projective space represented by vectors
59: 31: 2598:
To summarize, Dupin cyclides are determined by quadratic forms on
2444:
defines a point on the complexified Klein quadric (where i = –1).
2803:; for a classification of solutions using Laguerre geometry, see 2026:
The problem of Apollonius has a natural generalization involving
700:) in the plane are then represented by the points = ; note that 122: 2853:, chapter 3: Sphere geometries of Möbius and Lie, pages 93–174, 2536:), i.e., if and only if there is an orthogonal decomposition of 216:
pointed out that the Laguerre group is simply isomorphic to the
145: 47: 43: 2774:. Almost all the material in this article can be found there. 2516:. Hence they define a map into the space of contact elements 19: 1499:
in the plane, then the preferred cycle at each point is the
1354:
at the point corresponding to a null 2-dimensional subspace
2520:. This map is Legendrian if and only if the derivatives of 1252:
The set of all lines on the Lie quadric is a 3-dimensional
2579:
whose square is the identity and whose ±1 eigenspaces are
2452: 2315:) is a point on the (complexified) Lie quadric (i.e., the 2770:
The definitive modern textbook on Lie sphere geometry is
2786:
Lie was particularly pleased with this achievement: see
638:
line. The chosen coordinates suggest using the point ∈
245:
The Lie quadric of the plane is defined as follows. Let
196:, the Lie sphere transformations are identical with the 93:
of a surface. It also allows for a natural treatment of
2872:(1929), "Differentialgeometrie der Kreise und Kugeln", 2004:
is the space of (projective) lines on the Lie quadric.
2460:
Lie sphere geometry provides a natural description of
3011:
English translation of Lie's key paper on the subject
2967:"Configurations of cycles and the Apollonius problem" 2643: 1732: 1545: 1213: 270: 2912:, Oslo: Scandinavian University Press, pp. 3–21 2063:
for lines in 3-dimensional space (more precisely in
2713:{\displaystyle \sum _{i,j=1}^{5}a_{ij}x_{i}x_{j}=0} 2038:
Three dimensions and the line-sphere correspondence
1199:of the sphere. It can also be characterized as the 235: 2964: 2817: 2800: 2712: 2246:, which is the quadric hypersurface of points in 1886: 1717: 1507:Lie sphere geometry in space and higher dimensions 1303:to the contact element corresponding to the point 821:Suppose two cycles are represented by points , ∈ 533: 2965:Zlobec, Borut Jurčič; Mramor Kosta, Neža (2001), 1961:have oriented first order contact if and only if 1182:to another such subspace. Hence the group O(3,2) 3026: 952:= 1 ± 1. The contact is oriented if and only if 3015:"Oriented circles and 3D relativistic geometry" 2634:which satisfy an additional quadratic relation 2177:. These are the homogeneous coordinates of the 1940:and point spheres as limiting cases. Note that 860:. Without loss of generality, we can then take 552:is a 2-dimensional analogue of the Lie quadric. 253:of 5-tuples of real numbers, equipped with the 2816:This problem and its solution is discussed by 2948:The Geometric Study of Differential Equations 2782: 2780: 2540:into a direct sum of 3-dimensional subspaces 1992:is therefore isomorphic to the projectivized 85:. This provides a natural realisation of the 2591:, this is determined by a quadratic form on 971: 2886:, Universitext, Springer-Verlag, New York, 2777: 1536:equipped with the symmetric bilinear form 226:Laguerre group isomorphic to Lorentz group 2984: 2950:, J.A. Leslie & T.P. Robart editors, 2011:-dimensional space has a contact lift to 1429:) of this tangent space in the space Hom( 1044:has signature (1,0), the unique solution 2900: 2868: 2830: 2799:The Lie sphere approach is discussed in 2787: 2451: 1924:= 0. The quadric parameterizes oriented 1207:, which is itself a Lie transformation. 975: 543: 42:in which the fundamental concept is the 18: 2324:are taken to be complex numbers), then 1350:. More precisely, the tangent space to 3027: 2917: 2874:Vorlesungen über Differentialgeometrie 2804: 2627:. A cyclide consists of the points ∈ 2007:Any immersed oriented hypersurface in 1988:passing through that point. The space 1157: 816: 798:· (1,0,0,0,0)) (1,0,0,0,0) induces an 2972:Rocky Mountain Journal of Mathematics 2881: 2829:The following discussion is based on 2771: 1972:The space of contact elements is a (2 1524:(corresponding to the Lie quadric in 1520:-dimensions is obtained by replacing 1256:called the space of contact elements 1174:maps any one-dimensional subspace of 1488:, i.e., a point on the Lie quadric. 774:= 0. The circle is oriented because 646:can then be represented by a vector 568:and is the space of nonzero vectors 560:P is the space of lines through the 2926:(1–2), Basel: Birkhäuser: 137–152, 2250:P satisfying the Plücker relation. 1460:is a 1-dimensional subspace of Hom( 888:unit vectors in (1,0,0,0,0). Thus 230:Möbius group#Lorentz transformation 13: 1976:– 1)-dimensional contact manifold 1908:is again defined as the set of ∈ 1214:Contact elements and contact lifts 1036:are linearly independent then the 240: 14: 3056: 3002: 2723:for some symmetric 5 ×; 5 matrix 2447: 1511: 1142:)) yields the same solutions as ( 750:: the circle corresponding to ∈ 112: 97:and a conceptual solution of the 642:P. Any point in the Lie quadric 236:Lie sphere geometry in the plane 81:, which are determined by their 2903:"Sophus Lie, the Mathematician" 1495:is the contact lift of a curve 2823: 2818:Zlobec & Mramor Kosta 2001 2810: 2801:Zlobec & Mramor Kosta 2001 2793: 2764: 2548:of signature (2,1), such that 1936:-dimensional space, including 1712: 1632: 1626: 1546: 407: 342: 336: 271: 198:spherical wave transformations 148:). This extension is known as 1: 2952:American Mathematical Society 2840: 2587:. Using the inner product on 1017:. If these three vectors are 912:, this holds if and only if ( 936:) = 1, i.e., if and only if 7: 2901:Helgason, Sigurdur (1994), 2739: 2504:) must be incident for all 2015:determined by its oriented 1491:In more familiar terms, if 1287:be an oriented curve. Then 16:Geometry founded on spheres 10: 3061: 1168:orthogonal transformations 758:≠ 0) is the set of points 716:· (0,0,0,0,1) = −1. 615:). The planar Lie quadric 2932:10.1007/s00022-005-0009-x 2882:Cecil, Thomas E. (1992), 2572:in a pair of null lines. 1362:is the subspace of those 972:The problem of Apollonius 853:= 0 if and only if = ). 662:to (1,0,0,0,0). Since ∈ 2757: 731:on the Lie quadric with 204:invariant. In addition, 183:Laguerre transformations 175:group of transformations 2986:10.1216/rmjm/1020171586 2076:homogeneous coordinates 1516:Lie sphere geometry in 1195:to the group O(3,1) of 259:symmetric bilinear form 200:that leave the form of 173:of this quadric form a 50:. It was introduced by 2714: 2670: 2457: 2261:P is the quadric in P( 1888: 1719: 1295:from the interval to 1197:Möbius transformations 1118:Note that the triple ( 982: 712:· (1,0,0,0,0) = 0 and 553: 535: 24: 3035:Differential geometry 3019:rational trigonometry 2715: 2644: 2455: 1889: 1720: 987:problem of Apollonius 979: 556:The projective space 547: 536: 99:problem of Apollonius 22: 2641: 2528:) are orthogonal to 2242:P and points on the 2061:Klein correspondence 2030:+ 1 hyperspheres in 1730: 1543: 1417:is the subspace Hom( 1415:contact distribution 1048:lies in the span of 690:Minkowski space-time 268: 163:quadric hypersurface 89:to a curve, and the 68:quadric hypersurface 2920:Journal of Geometry 2884:Lie sphere geometry 1528:= 2 dimensions) by 1444:It follows that an 1162:Any element of the 1158:Lie transformations 910:Lagrange's identity 817:Incidence of cycles 576:up to scale, where 202:Maxwell's equations 28:Lie sphere geometry 3045:Conformal geometry 3040:Incidence geometry 2746:Descartes' theorem 2710: 2458: 1884: 1715: 1441:) of linear maps. 1203:of the involution 1019:linearly dependent 983: 908:is degenerate. By 892:∩ (1,0,0,0,0) and 554: 531: 222:special relativity 150:inversive geometry 119:Euclidean geometry 25: 2893:978-0-387-97747-8 2870:Blaschke, Wilhelm 2863:978-3-7643-8541-5 1501:osculating circle 1448:Legendrian curve 1344:Legendrian curves 1291:determines a map 1005:is orthogonal to 650:= λ(1,0,0,0,0) + 249:denote the space 187:Laguerre geometry 142:point at infinity 91:curvature spheres 87:osculating circle 3052: 2997: 2988: 2942: 2913: 2907: 2896: 2877: 2834: 2827: 2821: 2814: 2808: 2797: 2791: 2784: 2775: 2768: 2719: 2717: 2716: 2711: 2703: 2702: 2693: 2692: 2683: 2682: 2669: 2664: 2560:takes values in 2552:takes values in 2456:A Dupin cyclide. 2191:Plücker relation 2046:=3, the quadric 1994:cotangent bundle 1899:The Lie quadric 1893: 1891: 1890: 1885: 1880: 1879: 1864: 1863: 1845: 1844: 1829: 1828: 1810: 1809: 1800: 1799: 1781: 1780: 1771: 1770: 1758: 1757: 1748: 1747: 1724: 1722: 1721: 1716: 1711: 1710: 1692: 1691: 1673: 1672: 1657: 1656: 1644: 1643: 1625: 1624: 1606: 1605: 1587: 1586: 1571: 1570: 1558: 1557: 1340:contact manifold 1272:to the 2-sphere 872:= (1,0,0,0,0) + 864:= (1,0,0,0,0) + 745:celestial sphere 683:celestial sphere 540: 538: 537: 532: 527: 526: 517: 516: 504: 503: 494: 493: 481: 480: 471: 470: 458: 457: 448: 447: 435: 434: 425: 424: 406: 405: 393: 392: 380: 379: 367: 366: 354: 353: 335: 334: 322: 321: 309: 308: 296: 295: 283: 282: 214:Wilhelm Blaschke 167:projective space 136:(resp. spheres, 72:projective space 40:spatial geometry 3060: 3059: 3055: 3054: 3053: 3051: 3050: 3049: 3025: 3024: 3005: 2905: 2894: 2843: 2838: 2837: 2833:, pp. 4–5. 2828: 2824: 2815: 2811: 2798: 2794: 2785: 2778: 2769: 2765: 2760: 2742: 2735: 2698: 2694: 2688: 2684: 2675: 2671: 2665: 2648: 2642: 2639: 2638: 2633: 2626: 2612: 2450: 2440: 2433: 2426: 2419: 2411: 2404: 2397: 2390: 2383: 2376: 2368: 2361: 2354: 2347: 2340: 2333: 2323: 2314: 2307: 2300: 2293: 2286: 2279: 2267:complex numbers 2233: 2227: 2220: 2214: 2207: 2201: 2179:projective line 2176: 2168: 2159: 2151: 2142: 2133: 2126: 2119: 2112: 2105: 2098: 2091: 2084: 2054: 2040: 1960: 1948: 1907: 1869: 1865: 1853: 1849: 1834: 1830: 1818: 1814: 1805: 1801: 1795: 1791: 1776: 1772: 1766: 1762: 1753: 1749: 1743: 1739: 1731: 1728: 1727: 1700: 1696: 1681: 1677: 1668: 1664: 1652: 1648: 1639: 1635: 1614: 1610: 1595: 1591: 1582: 1578: 1566: 1562: 1553: 1549: 1544: 1541: 1540: 1514: 1509: 1239:contact element 1221:contact element 1216: 1160: 974: 819: 786:reflection map 614: 607: 600: 593: 586: 522: 518: 512: 508: 499: 495: 489: 485: 476: 472: 466: 462: 453: 449: 443: 439: 430: 426: 420: 416: 401: 397: 388: 384: 375: 371: 362: 358: 349: 345: 330: 326: 317: 313: 304: 300: 291: 287: 278: 274: 269: 266: 265: 243: 241:The Lie quadric 238: 115: 17: 12: 11: 5: 3058: 3048: 3047: 3042: 3037: 3023: 3022: 3012: 3004: 3003:External links 3001: 3000: 2999: 2979:(2): 725–744, 2962: 2944: 2915: 2898: 2892: 2879: 2866: 2842: 2839: 2836: 2835: 2822: 2809: 2792: 2776: 2762: 2761: 2759: 2756: 2755: 2754: 2749: 2741: 2738: 2731: 2721: 2720: 2709: 2706: 2701: 2697: 2691: 2687: 2681: 2678: 2674: 2668: 2663: 2660: 2657: 2654: 2651: 2647: 2631: 2624: 2618: 2617: 2610: 2462:Dupin cyclides 2449: 2448:Dupin cyclides 2446: 2442: 2441: 2438: 2431: 2424: 2417: 2412: 2409: 2402: 2395: 2388: 2381: 2374: 2369: 2366: 2359: 2352: 2345: 2338: 2331: 2319: 2312: 2305: 2298: 2291: 2284: 2277: 2255:quadratic form 2236: 2235: 2231: 2225: 2218: 2212: 2205: 2199: 2172: 2164: 2155: 2147: 2138: 2131: 2124: 2117: 2110: 2103: 2096: 2089: 2082: 2050: 2039: 2036: 2017:tangent spaces 1956: 1944: 1903: 1897: 1896: 1895: 1894: 1883: 1878: 1875: 1872: 1868: 1862: 1859: 1856: 1852: 1848: 1843: 1840: 1837: 1833: 1827: 1824: 1821: 1817: 1813: 1808: 1804: 1798: 1794: 1790: 1787: 1784: 1779: 1775: 1769: 1765: 1761: 1756: 1752: 1746: 1742: 1738: 1735: 1714: 1709: 1706: 1703: 1699: 1695: 1690: 1687: 1684: 1680: 1676: 1671: 1667: 1663: 1660: 1655: 1651: 1647: 1642: 1638: 1634: 1631: 1628: 1623: 1620: 1617: 1613: 1609: 1604: 1601: 1598: 1594: 1590: 1585: 1581: 1577: 1574: 1569: 1565: 1561: 1556: 1552: 1548: 1513: 1512:General theory 1510: 1508: 1505: 1411: 1410: 1323:is called the 1237:, or simply a 1215: 1212: 1159: 1156: 973: 970: 818: 815: 727:(1,0,0,0,0) + 719:Hence points 612: 605: 598: 591: 584: 542: 541: 530: 525: 521: 515: 511: 507: 502: 498: 492: 488: 484: 479: 475: 469: 465: 461: 456: 452: 446: 442: 438: 433: 429: 423: 419: 415: 412: 409: 404: 400: 396: 391: 387: 383: 378: 374: 370: 365: 361: 357: 352: 348: 344: 341: 338: 333: 329: 325: 320: 316: 312: 307: 303: 299: 294: 290: 286: 281: 277: 273: 242: 239: 237: 234: 210:Henri Poincaré 114: 113:Basic concepts 111: 95:Dupin cyclides 83:tangent spaces 15: 9: 6: 4: 3: 2: 3057: 3046: 3043: 3041: 3038: 3036: 3033: 3032: 3030: 3020: 3016: 3013: 3010: 3007: 3006: 2996: 2992: 2987: 2982: 2978: 2974: 2973: 2968: 2963: 2960: 2959:0-8218-2964-5 2956: 2953: 2949: 2945: 2941: 2937: 2933: 2929: 2925: 2921: 2916: 2911: 2904: 2899: 2895: 2889: 2885: 2880: 2875: 2871: 2867: 2864: 2860: 2856: 2852: 2848: 2845: 2844: 2832: 2831:Helgason 1994 2826: 2819: 2813: 2806: 2802: 2796: 2789: 2788:Helgason 1994 2783: 2781: 2773: 2767: 2763: 2753: 2750: 2747: 2744: 2743: 2737: 2734: 2730: 2726: 2707: 2704: 2699: 2695: 2689: 2685: 2679: 2676: 2672: 2666: 2661: 2658: 2655: 2652: 2649: 2645: 2637: 2636: 2635: 2630: 2623: 2616: 2615: 2614: 2609: 2603: 2601: 2596: 2594: 2590: 2586: 2582: 2578: 2573: 2571: 2567: 2563: 2559: 2555: 2551: 2547: 2543: 2539: 2535: 2531: 2527: 2523: 2519: 2515: 2511: 2507: 2503: 2499: 2495: 2491: 2487: 2483: 2479: 2475: 2471: 2467: 2463: 2454: 2445: 2437: 2430: 2423: 2416: 2413: 2408: 2401: 2394: 2387: 2380: 2373: 2370: 2365: 2358: 2351: 2344: 2337: 2330: 2327: 2326: 2325: 2322: 2318: 2311: 2304: 2297: 2290: 2283: 2276: 2272: 2268: 2264: 2260: 2256: 2251: 2249: 2245: 2244:Klein quadric 2241: 2230: 2224: 2217: 2211: 2204: 2198: 2195: 2194: 2193: 2192: 2188: 2184: 2180: 2175: 2171: 2167: 2163: 2158: 2154: 2150: 2146: 2141: 2137: 2130: 2123: 2116: 2109: 2102: 2095: 2088: 2081: 2077: 2073: 2070:Suppose , ∈ 2068: 2066: 2062: 2058: 2053: 2049: 2045: 2035: 2033: 2029: 2024: 2022: 2018: 2014: 2010: 2005: 2003: 1999: 1995: 1991: 1987: 1983: 1979: 1975: 1970: 1968: 1964: 1959: 1955: 1950: 1947: 1943: 1939: 1935: 1931: 1929: 1923: 1919: 1915: 1911: 1906: 1902: 1881: 1876: 1873: 1870: 1866: 1860: 1857: 1854: 1850: 1846: 1841: 1838: 1835: 1831: 1825: 1822: 1819: 1815: 1811: 1806: 1802: 1796: 1792: 1788: 1785: 1782: 1777: 1773: 1767: 1763: 1759: 1754: 1750: 1744: 1740: 1736: 1733: 1726: 1725: 1707: 1704: 1701: 1697: 1693: 1688: 1685: 1682: 1678: 1674: 1669: 1665: 1661: 1658: 1653: 1649: 1645: 1640: 1636: 1629: 1621: 1618: 1615: 1611: 1607: 1602: 1599: 1596: 1592: 1588: 1583: 1579: 1575: 1572: 1567: 1563: 1559: 1554: 1550: 1539: 1538: 1537: 1535: 1531: 1527: 1523: 1519: 1504: 1502: 1498: 1494: 1489: 1487: 1483: 1479: 1475: 1471: 1467: 1463: 1459: 1455: 1451: 1447: 1442: 1440: 1436: 1432: 1428: 1424: 1420: 1416: 1408: 1404: 1400: 1396: 1392: 1388: 1385: 1384: 1383: 1381: 1377: 1373: 1369: 1365: 1361: 1357: 1353: 1349: 1345: 1341: 1337: 1332: 1330: 1326: 1322: 1319:)). This map 1318: 1314: 1310: 1306: 1302: 1298: 1294: 1290: 1286: 1282: 1277: 1275: 1271: 1267: 1263: 1259: 1255: 1250: 1248: 1242: 1240: 1236: 1235:of Lie cycles 1234: 1229: 1224: 1222: 1211: 1208: 1206: 1202: 1198: 1194: 1189: 1185: 1181: 1177: 1173: 1169: 1165: 1155: 1153: 1149: 1145: 1141: 1137: 1133: 1129: 1125: 1121: 1116: 1114: 1110: 1106: 1102: 1098: 1094: 1090: 1086: 1082: 1078: 1074: 1070: 1066: 1061: 1059: 1055: 1051: 1047: 1042: 1039: 1035: 1031: 1027: 1022: 1020: 1016: 1012: 1008: 1004: 1000: 996: 990: 988: 978: 969: 967: 963: 960:= – 1, i.e., 959: 955: 951: 947: 944:= ± 1, i.e., 943: 939: 935: 931: 927: 923: 919: 915: 911: 907: 903: 899: 895: 891: 887: 883: 879: 875: 871: 867: 863: 859: 854: 852: 848: 844: 840: 836: 832: 828: 824: 814: 811: 806: 804: 801: 797: 793: 789: 785: 781: 777: 773: 769: 765: 761: 757: 753: 749: 746: 742: 738: 734: 730: 726: 722: 717: 715: 711: 707: 703: 699: 695: 691: 687: 684: 679: 677: 673: 669: 665: 661: 657: 653: 649: 645: 641: 637: 632: 630: 626: 622: 618: 611: 604: 597: 590: 583: 579: 575: 571: 567: 563: 559: 551: 546: 528: 523: 519: 513: 509: 505: 500: 496: 490: 486: 482: 477: 473: 467: 463: 459: 454: 450: 444: 440: 436: 431: 427: 421: 417: 413: 410: 402: 398: 394: 389: 385: 381: 376: 372: 368: 363: 359: 355: 350: 346: 339: 331: 327: 323: 318: 314: 310: 305: 301: 297: 292: 288: 284: 279: 275: 264: 263: 262: 260: 256: 252: 248: 233: 231: 227: 223: 219: 218:Lorentz group 215: 211: 207: 203: 199: 195: 194:Harry Bateman 190: 188: 184: 180: 176: 172: 168: 164: 158: 156: 151: 147: 143: 139: 135: 131: 127: 124: 120: 110: 108: 107:Klein quadric 102: 100: 96: 92: 88: 84: 80: 79:contact lifts 75: 73: 69: 65: 62:known as the 61: 56: 53: 49: 45: 41: 37: 33: 29: 21: 2976: 2970: 2947: 2923: 2919: 2909: 2883: 2873: 2850: 2825: 2812: 2795: 2790:, p. 7. 2766: 2752:Quasi-sphere 2732: 2728: 2724: 2722: 2628: 2621: 2619: 2607: 2604: 2599: 2597: 2592: 2588: 2584: 2580: 2576: 2574: 2569: 2565: 2561: 2557: 2553: 2549: 2545: 2541: 2537: 2533: 2529: 2525: 2521: 2517: 2513: 2509: 2505: 2501: 2497: 2493: 2489: 2485: 2481: 2477: 2473: 2469: 2465: 2459: 2443: 2435: 2428: 2421: 2414: 2406: 2399: 2392: 2385: 2378: 2371: 2363: 2356: 2349: 2342: 2335: 2328: 2320: 2316: 2309: 2302: 2295: 2288: 2281: 2274: 2270: 2262: 2258: 2252: 2247: 2239: 2237: 2228: 2222: 2215: 2209: 2202: 2196: 2186: 2182: 2173: 2169: 2165: 2161: 2156: 2152: 2148: 2144: 2139: 2135: 2128: 2121: 2114: 2107: 2100: 2093: 2086: 2079: 2071: 2069: 2064: 2056: 2051: 2047: 2043: 2042:In the case 2041: 2034:dimensions. 2031: 2027: 2025: 2020: 2012: 2008: 2006: 2001: 1997: 1989: 1981: 1977: 1973: 1971: 1966: 1962: 1957: 1953: 1951: 1945: 1941: 1933: 1930:– 1)-spheres 1927: 1921: 1917: 1913: 1909: 1904: 1900: 1898: 1533: 1529: 1525: 1521: 1517: 1515: 1496: 1492: 1490: 1485: 1481: 1477: 1473: 1469: 1465: 1461: 1457: 1453: 1449: 1443: 1438: 1434: 1430: 1426: 1422: 1418: 1412: 1406: 1402: 1398: 1394: 1390: 1386: 1379: 1375: 1371: 1367: 1359: 1355: 1351: 1347: 1335: 1333: 1328: 1325:contact lift 1324: 1320: 1316: 1312: 1308: 1304: 1300: 1296: 1292: 1288: 1284: 1280: 1278: 1273: 1269: 1265: 1261: 1257: 1251: 1246: 1243: 1238: 1231: 1225: 1217: 1209: 1204: 1179: 1176:null vectors 1171: 1161: 1151: 1147: 1143: 1139: 1135: 1131: 1127: 1123: 1119: 1117: 1112: 1108: 1104: 1100: 1096: 1092: 1088: 1084: 1080: 1076: 1072: 1068: 1064: 1062: 1057: 1053: 1049: 1045: 1040: 1033: 1029: 1025: 1023: 1014: 1010: 1006: 1002: 998: 994: 991: 984: 965: 961: 957: 953: 949: 945: 941: 937: 933: 929: 925: 921: 917: 913: 905: 901: 897: 893: 889: 881: 877: 873: 869: 865: 861: 857: 855: 850: 846: 842: 838: 830: 826: 822: 820: 809: 807: 802: 795: 791: 787: 779: 775: 771: 767: 763: 759: 755: 751: 747: 740: 736: 732: 728: 724: 720: 718: 713: 709: 705: 701: 697: 693: 685: 680: 675: 671: 667: 663: 655: 651: 647: 643: 639: 633: 628: 624: 620: 616: 609: 602: 595: 588: 581: 577: 573: 569: 565: 557: 555: 250: 246: 244: 191: 178: 159: 155:orientations 116: 103: 78: 76: 57: 27: 26: 3021:perspective 2847:Walter Benz 2805:Knight 2005 1938:hyperplanes 1364:linear maps 1299:by sending 1201:centralizer 1024:If instead 550:hyperboloid 261:defined by 206:Élie Cartan 64:Lie quadric 32:geometrical 3029:Categories 2855:Birkhäuser 2841:References 2772:Cecil 1992 1986:hyperplane 1532:. This is 1193:isomorphic 1188:transitive 1166:O(3,2) of 1001:such that 800:involution 660:orthogonal 171:symmetries 123:tangential 52:Sophus Lie 34:theory of 2995:0035-7596 2940:0047-2468 2646:∑ 2480:), where 1786:⋯ 1737:− 1662:… 1630:⋅ 1576:… 886:spacelike 784:isometric 437:− 414:− 340:⋅ 255:signature 2740:See also 2181:joining 2074:P, with 1472:) where 1446:immersed 1413:and the 1334:In fact 1254:manifold 1228:oriented 1095:)) and ( 1038:subspace 876:, where 837:. If ∈ 654:, where 636:timelike 548:A ruled 60:manifold 2849:(2007) 2134:). Put 2106:) and ( 1996:of the 1916:) with 1366:(A mod 835:contact 825:. Then 126:contact 2993:  2957:  2938:  2890:  2861:  2496:) and 2472:) and 1912:P = P( 1233:pencil 810:cycles 754:(with 562:origin 257:(3,2) 146:radius 138:planes 134:points 48:sphere 44:circle 36:planar 2906:(PDF) 2758:Notes 2269:: if 2055:in P( 1409:) = 0 1382:with 1338:is a 1164:group 1079:), ( 968:= 0. 920:) = ( 794:+ 2 ( 766:with 739:with 708:= 0, 678:≥ 0. 631:= 0. 623:with 224:(see 165:in a 130:lines 30:is a 2991:ISSN 2955:ISBN 2936:ISSN 2888:ISBN 2859:ISBN 2583:and 2568:and 2556:and 2544:and 2532:(or 2524:(or 2508:and 2484:and 2253:The 2234:= 0. 2185:and 2067:P). 1393:) · 1283:: → 1279:Let 1184:acts 1115:)). 1056:and 1032:and 1013:and 904:and 884:are 880:and 868:and 212:and 132:and 2981:doi 2928:doi 2727:= ( 2620:in 2405:– i 2384:+ i 2355:= – 2273:= ( 1932:in 1452:in 1358:of 1346:in 1327:of 1178:in 1170:of 688:in 658:is 580:= ( 572:in 564:in 232:). 220:of 185:of 179:not 70:in 66:(a 46:or 38:or 3031:: 2989:, 2977:31 2975:, 2969:, 2934:, 2924:83 2922:, 2908:, 2857:, 2779:^ 2733:ij 2595:. 2434:= 2432:12 2427:, 2420:= 2418:03 2398:= 2396:31 2391:, 2377:= 2375:02 2362:+ 2353:23 2348:, 2341:+ 2334:= 2332:01 2232:12 2226:03 2221:+ 2219:31 2213:02 2208:+ 2206:23 2200:01 2160:- 2143:= 2140:ij 1965:· 1920:· 1401:· 1397:+ 1374:→ 1370:): 1331:. 1315:'( 1241:. 1223:. 1134:), 1126:), 1107:), 1075:), 1060:. 1052:, 1028:, 1009:, 964:· 956:· 948:· 940:· 932:· 928:)( 924:· 916:· 849:· 841:≅ 829:· 790:→ 770:· 762:∈ 723:= 704:· 674:= 670:· 666:, 627:· 208:, 157:. 101:. 2998:. 2983:: 2961:. 2943:. 2930:: 2914:. 2897:. 2878:. 2865:. 2820:. 2807:. 2729:a 2725:A 2708:0 2705:= 2700:j 2696:x 2690:i 2686:x 2680:j 2677:i 2673:a 2667:5 2662:1 2659:= 2656:j 2653:, 2650:i 2632:3 2629:Q 2625:3 2622:Q 2611:3 2608:Q 2600:R 2593:R 2589:R 2585:τ 2581:σ 2577:R 2570:τ 2566:σ 2562:τ 2558:T 2554:σ 2550:S 2546:τ 2542:σ 2538:R 2534:S 2530:T 2526:T 2522:S 2518:Z 2514:R 2510:t 2506:s 2502:t 2500:( 2498:T 2494:s 2492:( 2490:S 2486:T 2482:S 2478:t 2476:( 2474:T 2470:s 2468:( 2466:S 2439:5 2436:x 2429:p 2425:4 2422:x 2415:p 2410:1 2407:x 2403:2 2400:x 2393:p 2389:3 2386:x 2382:2 2379:x 2372:p 2367:1 2364:x 2360:0 2357:x 2350:p 2346:1 2343:x 2339:0 2336:x 2329:p 2321:i 2317:x 2313:5 2310:x 2308:, 2306:4 2303:x 2301:, 2299:3 2296:x 2294:, 2292:2 2289:x 2287:, 2285:1 2282:x 2280:, 2278:0 2275:x 2271:x 2263:R 2259:R 2248:R 2240:R 2229:p 2223:p 2216:p 2210:p 2203:p 2197:p 2187:y 2183:x 2174:i 2170:y 2166:j 2162:x 2157:j 2153:y 2149:i 2145:x 2136:p 2132:3 2129:y 2127:, 2125:2 2122:y 2120:, 2118:1 2115:y 2113:, 2111:0 2108:y 2104:3 2101:x 2099:, 2097:2 2094:x 2092:, 2090:1 2087:x 2085:, 2083:0 2080:x 2078:( 2072:R 2065:R 2057:R 2052:3 2048:Q 2044:n 2032:n 2028:n 2021:n 2013:Z 2009:n 2002:Z 1998:n 1990:Z 1982:n 1978:Z 1974:n 1967:y 1963:x 1958:n 1954:Q 1946:n 1942:Q 1934:n 1928:n 1926:( 1922:x 1918:x 1914:R 1910:R 1905:n 1901:Q 1882:. 1877:1 1874:+ 1871:n 1867:y 1861:2 1858:+ 1855:n 1851:x 1847:+ 1842:2 1839:+ 1836:n 1832:y 1826:1 1823:+ 1820:n 1816:x 1812:+ 1807:n 1803:y 1797:n 1793:x 1789:+ 1783:+ 1778:1 1774:y 1768:1 1764:x 1760:+ 1755:0 1751:y 1745:0 1741:x 1734:= 1713:) 1708:2 1705:+ 1702:n 1698:y 1694:, 1689:1 1686:+ 1683:n 1679:y 1675:, 1670:n 1666:y 1659:, 1654:1 1650:y 1646:, 1641:0 1637:y 1633:( 1627:) 1622:2 1619:+ 1616:n 1612:x 1608:, 1603:1 1600:+ 1597:n 1593:x 1589:, 1584:n 1580:x 1573:, 1568:1 1564:x 1560:, 1555:0 1551:x 1547:( 1534:R 1530:R 1526:n 1522:R 1518:n 1497:γ 1493:λ 1486:π 1482:t 1480:( 1478:λ 1476:= 1474:π 1470:π 1468:/ 1466:π 1464:, 1462:π 1458:t 1454:Z 1450:λ 1439:π 1437:/ 1435:R 1433:, 1431:π 1427:π 1425:/ 1423:π 1421:, 1419:π 1407:y 1405:( 1403:A 1399:x 1395:y 1391:x 1389:( 1387:A 1380:π 1378:/ 1376:R 1372:π 1368:π 1360:R 1356:π 1352:Z 1348:Z 1336:Z 1329:γ 1321:λ 1317:t 1313:γ 1309:t 1307:( 1305:γ 1301:t 1297:Z 1293:λ 1289:γ 1285:R 1281:γ 1274:S 1270:Z 1266:v 1262:Z 1258:Z 1247:R 1205:ρ 1180:R 1172:R 1152:z 1150:, 1148:y 1146:, 1144:x 1140:z 1138:( 1136:ρ 1132:y 1130:( 1128:ρ 1124:x 1122:( 1120:ρ 1113:z 1111:( 1109:ρ 1105:y 1103:( 1101:ρ 1099:, 1097:x 1093:z 1091:( 1089:ρ 1087:, 1085:y 1083:, 1081:x 1077:z 1073:y 1071:( 1069:ρ 1067:, 1065:x 1058:z 1054:y 1050:x 1046:q 1041:V 1034:z 1030:y 1026:x 1015:z 1011:y 1007:x 1003:q 999:Q 995:Q 966:y 962:x 958:w 954:v 950:y 946:x 942:w 938:v 934:w 930:w 926:v 922:v 918:w 914:v 906:w 902:v 898:S 894:w 890:v 882:w 878:v 874:w 870:y 866:v 862:x 858:S 851:y 847:x 843:R 839:S 831:y 827:x 823:Q 803:ρ 796:x 792:x 788:x 780:λ 778:/ 776:v 772:v 768:y 764:S 760:y 756:λ 752:Q 748:S 741:λ 737:x 733:λ 729:v 725:λ 721:x 714:v 710:v 706:v 702:v 698:y 696:, 694:x 686:S 676:λ 672:v 668:v 664:Q 656:v 652:v 648:x 644:Q 640:R 629:x 625:x 621:x 617:Q 613:4 610:x 608:, 606:3 603:x 601:, 599:2 596:x 594:, 592:1 589:x 587:, 585:0 582:x 578:x 574:R 570:x 566:R 558:R 529:. 524:3 520:y 514:4 510:x 506:+ 501:4 497:y 491:3 487:x 483:+ 478:2 474:y 468:2 464:x 460:+ 455:1 451:y 445:1 441:x 432:0 428:y 422:0 418:x 411:= 408:) 403:4 399:y 395:, 390:3 386:y 382:, 377:2 373:y 369:, 364:1 360:y 356:, 351:0 347:y 343:( 337:) 332:4 328:x 324:, 319:3 315:x 311:, 306:2 302:x 298:, 293:1 289:x 285:, 280:0 276:x 272:( 251:R 247:R

Index


geometrical
planar
spatial geometry
circle
sphere
Sophus Lie
manifold
Lie quadric
quadric hypersurface
projective space
tangent spaces
osculating circle
curvature spheres
Dupin cyclides
problem of Apollonius
Klein quadric
Euclidean geometry
tangential
contact
lines
points
planes
point at infinity
radius
inversive geometry
orientations
quadric hypersurface
projective space
symmetries

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.