Knowledge

Leray cover

Source 📝

494: 79:), the derived-functor cohomology agrees with this Čech cohomology obtained by direct limits. However, like the derived functor cohomology, this cover-independent Čech cohomology is virtually impossible to calculate from the definition. The Leray condition on an open cover ensures that the cover in question is already "fine enough." The derived functor cohomology agrees with the Čech cohomology with respect to any Leray cover. 74:
is well-suited to calculation, but of limited usefulness because it depends on the open cover chosen, not only on the sheaves and the space. By taking a direct limit of Čech cohomology over arbitrarily fine covers, we obtain a Čech cohomology theory that does not depend on the open cover chosen. In
385: 123: 267: 191: 429: 215: 167: 293: 449: 405: 143: 298: 535: 66:, follow directly from the definition. However, it is virtually impossible to calculate from the definition. On the other hand, 467: 85: 220: 528: 482:
Algebraic geometry. Introduction to schemes. W. A. Benjamin, Inc., New York-Amsterdam 1968 vii+113 pp.
172: 46:
measures the extent to which a locally exact sequence on a fixed topological space, for instance the
410: 196: 148: 466:
Taylor, Joseph L. Several complex variables with connections to algebraic geometry and Lie groups.
54:, is reasonably natural, if technical. Moreover, important properties, such as the existence of a 559: 521: 554: 272: 59: 8: 63: 55: 434: 390: 128: 47: 67: 509: 29: 479: 43: 25: 51: 505: 548: 380:{\displaystyle H^{k}(U_{i_{1}}\cap \cdots \cap U_{i_{n}},{\mathcal {F}})=0} 76: 17: 71: 37: 33: 75:
reasonable circumstances (for instance, if the topological space is
501: 493: 470:
v. 46. American Mathematical Society, Providence, RI. 2002.
437: 413: 393: 387:, in the derived functor cohomology. For example, if 301: 275: 223: 199: 175: 151: 131: 88: 50:, fails to be globally exact. Its definition, using 443: 423: 399: 379: 287: 261: 209: 185: 161: 137: 117: 546: 529: 451:by open affine subschemes is a Leray cover. 256: 224: 112: 99: 536: 522: 125:be an open cover of the topological space 118:{\displaystyle {\mathfrak {U}}=\{U_{i}\}} 32:which allows for easy calculation of its 262:{\displaystyle \{i_{1},\ldots ,i_{n}\}} 547: 488: 431:is quasicoherent, then any cover of 178: 91: 58:in cohomology corresponding to any 13: 416: 363: 217:if, for every nonempty finite set 202: 154: 14: 571: 193:is a Leray cover with respect to 492: 468:Graduate Studies in Mathematics 186:{\displaystyle {\mathfrak {U}}} 36:. Such covers are named after 473: 460: 424:{\displaystyle {\mathcal {F}}} 368: 312: 210:{\displaystyle {\mathcal {F}}} 162:{\displaystyle {\mathcal {F}}} 1: 454: 508:. You can help Knowledge by 7: 407:is a separated scheme, and 10: 576: 487: 169:a sheaf on X. We say that 269:of indices, and for all 445: 425: 401: 381: 289: 288:{\displaystyle k>0} 263: 211: 187: 163: 139: 119: 446: 426: 402: 382: 290: 264: 212: 188: 164: 140: 120: 435: 411: 391: 299: 273: 221: 197: 173: 149: 129: 86: 60:short exact sequence 70:with respect to an 56:long exact sequence 441: 421: 397: 377: 285: 259: 207: 183: 159: 135: 115: 517: 516: 480:Macdonald, Ian G. 444:{\displaystyle X} 400:{\displaystyle X} 138:{\displaystyle X} 30:topological space 567: 538: 531: 524: 502:topology-related 496: 489: 483: 477: 471: 464: 450: 448: 447: 442: 430: 428: 427: 422: 420: 419: 406: 404: 403: 398: 386: 384: 383: 378: 367: 366: 357: 356: 355: 354: 331: 330: 329: 328: 311: 310: 294: 292: 291: 286: 268: 266: 265: 260: 255: 254: 236: 235: 216: 214: 213: 208: 206: 205: 192: 190: 189: 184: 182: 181: 168: 166: 165: 160: 158: 157: 144: 142: 141: 136: 124: 122: 121: 116: 111: 110: 95: 94: 52:derived functors 48:de Rham sequence 44:Sheaf cohomology 22:Leray cover(ing) 575: 574: 570: 569: 568: 566: 565: 564: 545: 544: 543: 542: 486: 478: 474: 465: 461: 457: 436: 433: 432: 415: 414: 412: 409: 408: 392: 389: 388: 362: 361: 350: 346: 345: 341: 324: 320: 319: 315: 306: 302: 300: 297: 296: 295:, we have that 274: 271: 270: 250: 246: 231: 227: 222: 219: 218: 201: 200: 198: 195: 194: 177: 176: 174: 171: 170: 153: 152: 150: 147: 146: 130: 127: 126: 106: 102: 90: 89: 87: 84: 83: 68:Čech cohomology 12: 11: 5: 573: 563: 562: 560:Topology stubs 557: 541: 540: 533: 526: 518: 515: 514: 497: 485: 484: 472: 458: 456: 453: 440: 418: 396: 376: 373: 370: 365: 360: 353: 349: 344: 340: 337: 334: 327: 323: 318: 314: 309: 305: 284: 281: 278: 258: 253: 249: 245: 242: 239: 234: 230: 226: 204: 180: 156: 134: 114: 109: 105: 101: 98: 93: 9: 6: 4: 3: 2: 572: 561: 558: 556: 553: 552: 550: 539: 534: 532: 527: 525: 520: 519: 513: 511: 507: 504:article is a 503: 498: 495: 491: 490: 481: 476: 469: 463: 459: 452: 438: 394: 374: 371: 358: 351: 347: 342: 338: 335: 332: 325: 321: 316: 307: 303: 282: 279: 276: 251: 247: 243: 240: 237: 232: 228: 132: 107: 103: 96: 80: 78: 73: 69: 65: 61: 57: 53: 49: 45: 41: 39: 35: 31: 27: 23: 19: 555:Sheaf theory 510:expanding it 499: 475: 462: 81: 42: 21: 15: 77:paracompact 18:mathematics 549:Categories 455:References 72:open cover 38:Jean Leray 34:cohomology 339:∩ 336:⋯ 333:∩ 241:… 64:sheaves 145:, and 500:This 28:of a 26:cover 24:is a 506:stub 280:> 82:Let 20:, a 62:of 40:. 16:In 551:: 537:e 530:t 523:v 512:. 439:X 417:F 395:X 375:0 372:= 369:) 364:F 359:, 352:n 348:i 343:U 326:1 322:i 317:U 313:( 308:k 304:H 283:0 277:k 257:} 252:n 248:i 244:, 238:, 233:1 229:i 225:{ 203:F 179:U 155:F 133:X 113:} 108:i 104:U 100:{ 97:= 92:U

Index

mathematics
cover
topological space
cohomology
Jean Leray
Sheaf cohomology
de Rham sequence
derived functors
long exact sequence
short exact sequence
sheaves
Čech cohomology
open cover
paracompact
Graduate Studies in Mathematics
Macdonald, Ian G.
Stub icon
topology-related
stub
expanding it
v
t
e
Categories
Sheaf theory
Topology stubs

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.