Knowledge

Lebesgue's universal covering problem

Source 📝

134: 27: 49:
of a set by definition is the least upper bound of the distances between all pairs of points in the set. A shape covers a set if it contains a congruent subset. In other words the set may be rotated, translated or reflected to fit inside the shape.
137:
The shape outlined in black is Pál's solution to Lebesgue's universal covering problem. Within it, planar shapes with diameter one have been included: a circle (in blue), a Reuleaux triangle (in red) and a square (in
180:
After a sequence of improvements to Sprague's solution, each removing small corners from the solution, a 2018 preprint of Philip Gibbs claimed the best upper bound known, a further reduction to area 0.8440935944.
184:
The best known lower bound for the area was provided by Peter Brass and Mehrbod Sharifi using a combination of three shapes in optimal alignment, proving that the area of an optimal cover is at least 0.832.
129: 432: 170: 146:
showed that a part of Pál's cover could be removed near one of the other corners while still retaining its property as a cover. This reduced the upper bound on the area to
399: 93: 63: 478: 409: 209:, a set of minimal area that can accommodate every unit-length line segment (with translations allowed, but not rotations) 325: 133: 82:
in 1914. It was published in a paper by Pál in 1920 along with Pál's analysis. He showed that a cover for all
203:, the problem of finding a maximum-area shape that can be rotated and translated through an L-shaped corridor 90:
with an inscribed circle of diameter one and removing two corners from the hexagon to give a cover of area
149: 86:
one is also a cover for all sets of diameter one and that a cover can be constructed by taking a regular
473: 212: 194: 83: 20: 430:
Brass, Peter; Sharifi, Mehrbod (2005). "A lower bound for Lebesgue's universal cover problem".
453: 356: 298: 60:
What is the minimum area of a convex shape that can cover every planar set of diameter one?
8: 277: 200: 323:; Bagdasaryan, Karine; Gibbs, Philip (2015). "The Lebesgue universal covering problem". 379: 360: 334: 302: 257: 215:, which can be used to prove that Lebesgue's universal covering problem has a solution. 306: 364: 441: 378:
Gibbs, Philip (23 October 2018). "An upper bound for Lebesgue's covering problem".
344: 286: 449: 404: 352: 294: 143: 75: 30:
An equilateral triangle of diameter 1 doesn’t fit inside a circle of diameter 1
445: 467: 197:, what is the minimum area of a shape that can cover every unit-length curve? 45:
shape of smallest area that can cover every planar set of diameter one. The
320: 26: 348: 275:
Hansen, H. C. (1992). "Small universal covers for sets of unit diameter".
79: 261: 290: 206: 52: 42: 384: 339: 46: 38: 87: 19:
For other uses of "universal cover" or "universal covering", see
433:
International Journal of Computational Geometry and Applications
252:
Sprague, R. (1936). "Über ein elementares Variationsproblem".
233:
Pál, J. (1920). "'Über ein elementares Variationsproblem".
124:{\displaystyle 2-{\frac {2}{\sqrt {3}}}\approx 0.84529946.} 400:"Amateur mathematician finds smallest universal cover" 152: 96: 319: 164: 123: 69: 465: 54: 429: 383: 338: 132: 25: 251: 64:(more unsolved problems in mathematics) 466: 274: 21:Covering space § Universal covers 377: 35:Lebesgue's universal covering problem 165:{\displaystyle a\leq 0.844137708436} 232: 13: 14: 490: 326:Journal of Computational Geometry 175: 235:Danske Mat.-Fys. Meddelelser III 55:Unsolved problem in mathematics 423: 392: 371: 313: 268: 245: 226: 70:Formulation and early research 1: 479:Unsolved problems in geometry 254:Matematiska Tidsskrift Ser. B 219: 7: 188: 10: 495: 213:Blaschke selection theorem 37:is an unsolved problem in 18: 446:10.1142/S0218195905001828 74:The problem was posed by 16:Unsolved geometry problem 84:curves of constant width 166: 139: 125: 31: 349:10.20382/jocg.v6i1a12 167: 136: 126: 29: 195:Moser's worm problem 150: 94: 278:Geometriae Dedicata 201:Moving sofa problem 291:10.1007/BF00147549 162: 140: 121: 41:that asks for the 32: 474:Discrete geometry 113: 112: 486: 458: 457: 427: 421: 420: 418: 417: 408:. Archived from 396: 390: 389: 387: 375: 369: 368: 342: 317: 311: 310: 272: 266: 265: 249: 243: 242: 230: 171: 169: 168: 163: 130: 128: 127: 122: 114: 108: 104: 56: 494: 493: 489: 488: 487: 485: 484: 483: 464: 463: 462: 461: 428: 424: 415: 413: 405:Quanta Magazine 398: 397: 393: 376: 372: 318: 314: 273: 269: 250: 246: 231: 227: 222: 191: 178: 151: 148: 147: 103: 95: 92: 91: 78:in a letter to 72: 67: 66: 61: 58: 24: 17: 12: 11: 5: 492: 482: 481: 476: 460: 459: 440:(5): 537–544. 422: 391: 370: 312: 285:(2): 205–213. 267: 244: 224: 223: 221: 218: 217: 216: 210: 204: 198: 190: 187: 177: 176:Current bounds 174: 161: 160:0.844137708436 158: 155: 144:Roland Sprague 120: 117: 111: 107: 102: 99: 76:Henri Lebesgue 71: 68: 62: 59: 53: 15: 9: 6: 4: 3: 2: 491: 480: 477: 475: 472: 471: 469: 455: 451: 447: 443: 439: 435: 434: 426: 412:on 2019-01-14 411: 407: 406: 401: 395: 386: 381: 374: 366: 362: 358: 354: 350: 346: 341: 336: 332: 328: 327: 322: 321:Baez, John C. 316: 308: 304: 300: 296: 292: 288: 284: 280: 279: 271: 263: 259: 255: 248: 240: 236: 229: 225: 214: 211: 208: 205: 202: 199: 196: 193: 192: 186: 182: 173: 159: 156: 153: 145: 135: 131: 118: 115: 109: 105: 100: 97: 89: 85: 81: 77: 65: 51: 48: 44: 40: 36: 28: 22: 437: 431: 425: 414:. Retrieved 410:the original 403: 394: 373: 330: 324: 315: 282: 276: 270: 253: 247: 238: 234: 228: 183: 179: 141: 73: 34: 33: 333:: 288–299. 119:0.84529946. 468:Categories 416:2018-11-16 385:1810.10089 340:1502.01251 220:References 207:Kakeya set 307:122081393 256:: 96–99. 157:≤ 142:In 1936, 116:≈ 101:− 80:Gyula Pál 365:20752239 262:24530328 189:See also 47:diameter 39:geometry 454:2176049 357:3400942 299:1163713 138:green). 88:hexagon 452:  363:  355:  305:  297:  260:  43:convex 380:arXiv 361:S2CID 335:arXiv 303:S2CID 258:JSTOR 442:doi 345:doi 287:doi 172:. 470:: 450:MR 448:. 438:15 436:. 402:. 359:. 353:MR 351:. 343:. 329:. 301:. 295:MR 293:. 283:42 281:. 237:. 456:. 444:: 419:. 388:. 382:: 367:. 347:: 337:: 331:6 309:. 289:: 264:. 241:. 239:2 154:a 110:3 106:2 98:2 57:: 23:.

Index

Covering space § Universal covers

geometry
convex
diameter
(more unsolved problems in mathematics)
Henri Lebesgue
Gyula Pál
curves of constant width
hexagon

Roland Sprague
Moser's worm problem
Moving sofa problem
Kakeya set
Blaschke selection theorem
JSTOR
24530328
Geometriae Dedicata
doi
10.1007/BF00147549
MR
1163713
S2CID
122081393
Baez, John C.
Journal of Computational Geometry
arXiv
1502.01251
doi

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.