Knowledge

Karp–Lipton theorem

Source 📝

1077:
really is a valid circuit using self-reducibility, as described above. This equivalent formula has its quantifiers in the opposite order, as desired. Therefore, the Karp–Lipton assumption allows us to transpose the order of existential and universal quantifiers in formulas of this type, showing that
440:
is any polynomial-time computable predicate. The existential power of the first quantifier in this predicate can be used to guess a correct circuit for SAT, and the universal power of the second quantifier can be used to verify that the circuit is correct. Once this circuit is guessed and verified,
304:
Suppose that polynomial sized circuits for SAT not only exist, but also that they could be constructed by a polynomial time algorithm. Then this supposition implies that SAT itself could be solved by a polynomial time algorithm that constructs the circuit and then applies it. That is, efficiently
667:. Once these two smaller instances have been constructed, apply the test for solvability to each of them. If one of these two tests returns that the smaller instance is satisfiable, continue solving that instance until a complete solution has been derived. 3922: 847:
is a polynomial-time computable predicate. The Karp–Lipton theorem states that this type of formula can be transformed in polynomial time into an equivalent formula in which the quantifiers appear in the opposite order; such a formula belongs to
2153: 3843: 2919: 4061: 2808: 2060: 2665: 2365: 2556: 2269: 3713: 623:
Self-reducibility describes the phenomenon that, if we can quickly test whether a SAT instance is solvable, we can almost as quickly find an explicit solution to the instance. To find a solution to an instance
3535: 4149: 3777: 3651: 1064: 3282: 3066: 1400: 1227: 164:
at its second level. Such a collapse is believed unlikely, so the theorem is generally viewed by complexity theorists as evidence for the nonexistence of polynomial size circuits for SAT or for other
3450: 3217: 3152: 1121:
Repeating the transposition allows formulas with deeper nesting to be simplified to a form in which they have a single existential quantifier followed by a single universal quantifier, showing that
3342: 1696: 822: 3975: 1601: 415: 143: 1777: 933: 3593: 3382: 2418: 1453: 99: 1119: 1838: 3854: 1158: 3008: 1915: 873: 466: 364: 333: 243: 212: 1980: 1945: 1868: 1319: 765: 719: 614: 505: 2076: 2695: 2445: 1520: 1484: 1285: 1254: 972: 845: 438: 2981: 2942: 1888: 4306: 3788: 2814: 3991: 2703: 308:
The assumption of the Karp–Lipton theorem, that these circuits exist, is weaker. But it is still possible for an algorithm in the complexity class
2003: 2562: 2275: 2453: 2179: 3656: 3463: 4094: 4167: 3721: 3602: 984: 176:), the theorem is also evidence that the use of randomization does not lead to polynomial time algorithms for NP-complete problems. 3222: 3017: 1327: 1178: 3387: 3165: 3089: 740:
The Karp–Lipton theorem can be restated as a result about Boolean formulas with polynomially-bounded quantifiers. Problems in
3290: 1627: 773: 17: 3933: 480:
is a correct circuit for solving SAT instances of a given size, and show that this circuit testing problem belongs to
1534: 372: 4240: 288:. If NP is assumed to be a subset of BPP (which is a subset of P/poly), then the polynomial hierarchy collapses to 104: 1729: 38: 881: 1986:
making the formula (1) false will work against any circuit. This property means a stronger collapse, namely to
46: 670:
To use self-reducibility to check the second property of a correct circuit for SAT, we rewrite it as follows:
3549: 3347: 3155: 2373: 1408: 63: 1081: 1786: 476:
To understand the Karp–Lipton proof in more detail, we consider the problem of testing whether a circuit
3917:{\displaystyle {\mathsf {P^{\#P}}}\supseteq {\mathsf {PH}}\supseteq \Sigma _{2}\supseteq {\mathsf {MA}}} 2159: 1124: 729: 153: 2986: 1893: 851: 444: 342: 311: 221: 190: 2148:{\displaystyle {\mathsf {NP}}\subseteq {\mathsf {P/poly}}\implies {\mathsf {AM}}={\mathsf {MA}}} 1958: 1923: 1846: 1297: 743: 697: 592: 483: 3077: 2673: 2423: 1489: 1462: 1263: 1232: 957: 942:
is a valid circuit for SAT, then this subformula is equivalent to the unquantified formula
830: 423: 161: 31: 8: 3068:, which is currently open and states that there exists a single language that is not in 4255: 2966: 2927: 1873: 1456: 4192: 284:, or some other complexity classes are assumed to have polynomial-sized circuits; see 4273: 4235: 3925: 184: 173: 27:
On collapse of the polynomial hierarchy if NP is in non-uniform polynomial time class
4179:
Kannan, R. (1982). "Circuit-size lower bounds and non-reducibility to sparse sets".
4285: 4259: 4245: 4188: 3838:{\displaystyle {\mathsf {P^{\#P}}}\supseteq {\mathsf {PP}}\supseteq {\mathsf {MA}}} 3456:
A stronger version of Karp–Lipton theorem strengthens Kannan's theorem to: for any
1988: 289: 266: 2914:{\displaystyle z\notin L\implies \forall D.\Pr \nolimits _{x}\leq {\tfrac {1}{3}}} 686:) is true, the self-reduction procedure described above finds a valid solution to 152:, the class of nondeterministic polynomial time problems, can be contained in the 4269: 4231: 4221: 3846: 3542: 256: 250: 180: 169: 149: 50: 4163: 4151: 4056:{\displaystyle {\mathsf {PP}}=\Sigma _{2}\not \subseteq {\mathsf {SIZE}}(n^{k})} 4217: 4079: 2803:{\displaystyle z\in L\implies \exists D.\Pr \nolimits _{x}\geq {\tfrac {2}{3}}} 215: 4238:(1980), "Some connections between nonuniform and uniform complexity classes", 589:
The first of these two properties is already in the form of problems in class
4300: 4206: 2055:{\displaystyle \Pi _{2}\subseteq {\mathsf {S}}_{2}^{P}\subseteq \Sigma _{2}} 4250: 305:
constructible circuits for SAT would lead to a stronger collapse, P = NP.
172:. As P/poly contains all problems solvable in randomized polynomial time ( 2956: 2951: 1619:
Furthermore, the circuit can be guessed with existential quantification:
165: 4289: 2660:{\displaystyle z\notin L\implies \Pr \nolimits _{x}\leq {\tfrac {1}{3}}} 2360:{\displaystyle z\notin L\implies \Pr \nolimits _{x}\leq {\tfrac {1}{3}}} 3977:(follows from assumption using interactive protocol for permanent, see 54: 4241:
Proceedings of the Twelfth Annual ACM Symposium on Theory of Computing
2551:{\displaystyle z\in L\implies \Pr \nolimits _{x}\geq {\tfrac {2}{3}}} 2264:{\displaystyle z\in L\implies \Pr \nolimits _{x}\geq {\tfrac {2}{3}}} 187:, who first proved it in 1980. (Their original proof collapsed PH to 3708:{\displaystyle {\mathsf {PP}}\not \subseteq {\mathsf {SIZE}}(n^{k})} 168:
problems. A proof that such circuits do not exist would imply that
3530:{\displaystyle L\in {\mathsf {S}}_{2}^{P}-{\mathsf {SIZE}}(n^{k})} 515:
is a correct circuit if and only if, for all polynomially-bounded
4144:{\displaystyle S_{2}^{P}\subseteq {\mathsf {ZPP}}^{\mathsf {NP}}} 293: 3978: 3772:{\displaystyle {\mathsf {P^{\#P}}}\subseteq {\mathsf {P/poly}}} 3646:{\displaystyle {\mathsf {PP}}\not \subseteq {\mathsf {P/poly}}} 507:. That is, there exists a polynomial time computable predicate 285: 281: 248:
Variants of the theorem state that, under the same assumption,
157: 1059:{\displaystyle \exists c\forall (x,z)\;V(c,z)\wedge c(s(x))\,} 296:, then the polynomial hierarchy collapses to its third level. 3277:{\displaystyle {\mathsf {SAT}}\notin {\mathsf {SIZE}}(n^{k})} 1260:. Using self-reducibility, there exists a family of circuits 538:
is a correct circuit for SAT if it satisfies two properties:
280:
complexity class. There are stronger conclusions possible if
3061:{\displaystyle \Sigma _{2}\not \subseteq {\mathsf {P/poly}}} 30:
The notation used in this article is explained on the page
1395:{\displaystyle L=\{z:\forall x.\exists y.\phi (x,y,z)\}\,} 1222:{\displaystyle {\mathsf {NP}}\subseteq {\mathsf {P/poly}}} 1287:
which outputs a satisfying assignment on true instances.
974:
is equivalent (under the assumption that a valid circuit
3445:{\displaystyle L\in \Sigma _{2}-{\mathsf {SIZE}}(n^{k})} 3212:{\displaystyle {\mathsf {SAT}}\notin {\mathsf {P/poly}}} 3147:{\displaystyle L\in \Sigma _{4}-{\mathsf {SIZE}}(n^{k})} 767:
are described by formulas of this type, with the syntax
468:
can use it as a subroutine for solving other problems.
2952:
Application to circuit lower bounds – Kannan's theorem
2900: 2789: 2646: 2537: 2346: 2250: 4097: 3994: 3936: 3857: 3791: 3724: 3659: 3605: 3552: 3466: 3390: 3350: 3337:{\displaystyle {\mathsf {SAT}}\in {\mathsf {P/poly}}} 3293: 3225: 3168: 3092: 3020: 2989: 2969: 2930: 2817: 2706: 2676: 2565: 2456: 2426: 2376: 2278: 2182: 2079: 2006: 1961: 1926: 1896: 1876: 1849: 1789: 1732: 1691:{\displaystyle \exists D.\forall x.\phi (x,D(x,z),z)} 1630: 1537: 1492: 1465: 1411: 1330: 1300: 1266: 1235: 1181: 1127: 1084: 987: 960: 884: 854: 833: 776: 746: 700: 595: 486: 447: 426: 375: 345: 314: 224: 193: 107: 66: 817:{\displaystyle \phi =\forall x\exists y\;\psi (x,y)} 2447:that outputs a satisfying assignment if it exists: 160:, then this assumption implies the collapse of the 4143: 4055: 3970:{\displaystyle {\mathsf {P^{\#P}}}={\mathsf {MA}}} 3969: 3916: 3837: 3771: 3707: 3645: 3587: 3529: 3444: 3376: 3336: 3276: 3211: 3146: 3060: 3002: 2975: 2936: 2913: 2802: 2689: 2659: 2550: 2439: 2412: 2359: 2263: 2147: 2054: 1974: 1939: 1909: 1882: 1862: 1832: 1771: 1690: 1595: 1514: 1478: 1447: 1394: 1313: 1279: 1248: 1221: 1152: 1113: 1058: 966: 927: 867: 839: 816: 759: 713: 608: 499: 460: 432: 409: 358: 327: 237: 206: 137: 93: 4298: 4168:If NP has Polynomial-Size Circuits, then MA = AM 339:a correct circuit for SAT. The complexity class 1596:{\displaystyle \forall x.\phi (x,D_{n}(x,z),z)} 1229:. Therefore, there exists a family of circuits 735: 1256:that solves satisfiability on input of length 410:{\displaystyle \exists x\forall y\;\psi (x,y)} 138:{\displaystyle {\mathsf {PH}}=\Sigma _{2}.\,} 4276:(1982), "Turing machines that take advice", 3595:, which was proved by Vinodchandran. Proof: 1388: 1337: 616:. To verify the second property, we use the 4307:Theorems in computational complexity theory 4082:, Probabilistic quantifiers and games, 1988 3988:the containments are equalities and we get 1772:{\displaystyle \neg \exists y.\phi (x,y,z)} 4268: 4230: 2831: 2827: 2720: 2716: 2579: 2575: 2470: 2466: 2292: 2288: 2196: 2192: 2121: 2117: 1829: 1012: 928:{\displaystyle s(x)=\exists y\;\psi (x,y)} 906: 795: 388: 4249: 2070:A modification of the above proof yields 1455:can be considered an instance of SAT (by 1391: 1055: 134: 90: 3014:(n) (This is a different statement than 1162: 659:denotes the formula formed by replacing 3588:{\displaystyle {\mathsf {SIZE}}(n^{k})} 3377:{\displaystyle \Sigma _{4}=\Sigma _{2}} 179:The Karp–Lipton theorem is named after 14: 4299: 4207:A note on the circuit complexity of PP 4178: 4135: 4132: 4125: 4122: 4119: 4032: 4029: 4026: 4023: 4000: 3997: 3962: 3959: 3947: 3944: 3940: 3909: 3906: 3883: 3880: 3868: 3865: 3861: 3830: 3827: 3817: 3814: 3802: 3799: 3795: 3764: 3761: 3758: 3755: 3751: 3747: 3735: 3732: 3728: 3684: 3681: 3678: 3675: 3665: 3662: 3638: 3635: 3632: 3629: 3625: 3621: 3611: 3608: 3564: 3561: 3558: 3555: 3506: 3503: 3500: 3497: 3476: 3421: 3418: 3415: 3412: 3329: 3326: 3323: 3320: 3316: 3312: 3302: 3299: 3296: 3253: 3250: 3247: 3244: 3234: 3231: 3228: 3204: 3201: 3198: 3195: 3191: 3187: 3177: 3174: 3171: 3123: 3120: 3117: 3114: 3053: 3050: 3047: 3044: 3040: 3036: 2413:{\displaystyle \exists y.\phi (x,y,z)} 2140: 2137: 2127: 2124: 2112: 2109: 2106: 2103: 2099: 2095: 2085: 2082: 2023: 1448:{\displaystyle \exists y.\phi (x,y,z)} 1214: 1211: 1208: 1205: 1201: 1197: 1187: 1184: 628:, choose one of the Boolean variables 113: 110: 94:{\displaystyle \Pi _{2}=\Sigma _{2}\,} 2959:'s theorem states that for any fixed 1114:{\displaystyle \Sigma _{2}=\Pi _{2}.} 292:. If coNP is assumed to be subset of 4222:Oracles Are Subtle But Not Malicious 1621: 1528: 954:)). Therefore, the full formula for 725:is a valid circuit for solving SAT. 471: 1833:{\displaystyle \phi (x,D(x,z),z)\;} 1073:is the formula used to verify that 938:is an instance of SAT. That is, if 24: 4009: 3892: 3398: 3365: 3352: 3100: 3022: 2991: 2832: 2721: 2377: 2306: 2210: 2043: 2008: 1963: 1947:formula is true, then the circuit 1928: 1898: 1851: 1736: 1733: 1640: 1631: 1538: 1412: 1355: 1346: 1302: 1138: 1099: 1086: 994: 988: 900: 856: 789: 783: 748: 702: 597: 488: 449: 382: 376: 347: 316: 226: 195: 122: 81: 68: 25: 4318: 1522:, such that the formula defining 636:, and make two smaller instances 3158:technique). Consider two cases: 2062:). It was observed by Sengupta. 1783:can output an assignment making 3344:, then by Karp–Lipton theorem, 1153:{\displaystyle PH=\Sigma _{2}.} 558:is a solution to the instance, 366:describes problems of the form 4211: 4199: 4172: 4156: 4085: 4073: 4050: 4037: 3702: 3689: 3582: 3569: 3524: 3511: 3439: 3426: 3271: 3258: 3141: 3128: 2893: 2890: 2881: 2869: 2857: 2851: 2828: 2782: 2779: 2770: 2758: 2746: 2740: 2717: 2639: 2636: 2627: 2615: 2596: 2590: 2576: 2530: 2527: 2518: 2506: 2487: 2481: 2467: 2407: 2389: 2339: 2336: 2318: 2303: 2289: 2243: 2240: 2222: 2207: 2193: 2118: 1826: 1817: 1805: 1793: 1766: 1748: 1685: 1676: 1664: 1652: 1590: 1581: 1569: 1550: 1508: 1500: 1442: 1424: 1385: 1367: 1052: 1049: 1043: 1037: 1028: 1016: 1009: 997: 922: 910: 894: 888: 811: 799: 404: 392: 47:Boolean satisfiability problem 13: 1: 4193:10.1016/S0019-9958(82)90382-5 4067: 57:number of logic gates, then 736:Proof of Karp–Lipton theorem 299: 7: 4278:L'Enseignement Mathématique 3003:{\displaystyle \Sigma _{2}} 2842: 2731: 2581: 2472: 2294: 2198: 1910:{\displaystyle \Sigma _{2}} 1843:The proof has shown that a 1779:. In this case, no circuit 1722: 1716: 1704: 1609: 875:. Note that the subformula 868:{\displaystyle \Sigma _{2}} 461:{\displaystyle \Sigma _{2}} 359:{\displaystyle \Sigma _{2}} 328:{\displaystyle \Sigma _{2}} 238:{\displaystyle \Sigma _{2}} 207:{\displaystyle \Sigma _{3}} 154:non-uniform polynomial time 148:That is, if we assume that 10: 4323: 3460:, there exists a language 2370:and as previously rewrite 2065: 1459:), there exists a circuit 554:is an instance of SAT and 29: 1726:). If (1) is false, then 3086:There exists a language 2963:there exists a language 2944:is in the smaller class 1975:{\displaystyle \Pi _{2}} 1940:{\displaystyle \Pi _{2}} 1863:{\displaystyle \Pi _{2}} 1314:{\displaystyle \Pi _{2}} 760:{\displaystyle \Pi _{2}} 730:Random self-reducibility 714:{\displaystyle \Pi _{1}} 609:{\displaystyle \Pi _{1}} 500:{\displaystyle \Pi _{1}} 4181:Information and Control 2000:complexity class (i.e. 1982:formula is false, then 978:exists) to the formula 441:the algorithm in class 49:(SAT) can be solved by 4162:V. Arvind, J. Köbler, 4145: 4057: 3971: 3918: 3839: 3773: 3709: 3647: 3589: 3540:It is also known that 3531: 3446: 3378: 3338: 3284:and theorem is proved. 3278: 3213: 3148: 3062: 3004: 2977: 2938: 2915: 2804: 2691: 2661: 2552: 2441: 2414: 2361: 2265: 2160:Arthur–Merlin protocol 2149: 2056: 1976: 1951:will work against any 1941: 1911: 1884: 1864: 1834: 1773: 1692: 1597: 1516: 1480: 1449: 1396: 1315: 1281: 1250: 1223: 1154: 1115: 1060: 968: 929: 869: 841: 818: 761: 732:for more information. 715: 610: 501: 462: 434: 411: 360: 329: 239: 208: 139: 95: 4251:10.1145/800141.804678 4205:N. V. Vinodchandran, 4146: 4058: 3972: 3919: 3840: 3774: 3710: 3648: 3590: 3532: 3447: 3379: 3339: 3279: 3214: 3149: 3063: 3005: 2978: 2939: 2916: 2805: 2692: 2690:{\displaystyle D_{n}} 2662: 2553: 2442: 2440:{\displaystyle D_{n}} 2415: 2362: 2266: 2150: 2057: 1977: 1942: 1912: 1885: 1865: 1835: 1774: 1693: 1598: 1517: 1515:{\displaystyle n=|z|} 1481: 1479:{\displaystyle D_{n}} 1450: 1397: 1316: 1282: 1280:{\displaystyle D_{n}} 1251: 1249:{\displaystyle C_{n}} 1224: 1155: 1116: 1061: 969: 967:{\displaystyle \phi } 930: 870: 842: 840:{\displaystyle \psi } 819: 762: 716: 694:Thus, we can test in 611: 502: 463: 435: 433:{\displaystyle \psi } 412: 361: 330: 240: 209: 140: 96: 4244:, pp. 302–309, 4095: 4063:by Kannan's theorem. 3992: 3934: 3855: 3789: 3722: 3657: 3603: 3550: 3546:is not contained in 3464: 3388: 3348: 3291: 3223: 3166: 3090: 3018: 2987: 2967: 2928: 2815: 2704: 2674: 2563: 2454: 2424: 2374: 2276: 2180: 2077: 2004: 1959: 1924: 1920:What's more, if the 1894: 1874: 1847: 1787: 1730: 1628: 1535: 1490: 1463: 1409: 1328: 1298: 1264: 1233: 1179: 1125: 1082: 985: 958: 882: 852: 831: 774: 744: 698: 593: 484: 445: 424: 373: 343: 312: 222: 191: 162:polynomial hierarchy 105: 64: 32:polynomial hierarchy 4290:10.5169/seals-52237 4112: 3928:and property of MA) 3491: 3078:circuit lower bound 2038: 1163:Another proof and S 674:For every instance 569:For every instance 45:states that if the 43:Karp–Lipton theorem 18:Karp-Lipton theorem 4141: 4098: 4053: 3967: 3914: 3835: 3769: 3705: 3643: 3585: 3527: 3473: 3442: 3374: 3334: 3274: 3209: 3144: 3076:). It is a simple 3058: 3010:, which is not in 3000: 2973: 2934: 2911: 2909: 2800: 2798: 2687: 2657: 2655: 2548: 2546: 2437: 2420:using the circuit 2410: 2357: 2355: 2261: 2259: 2145: 2052: 2020: 1972: 1937: 1907: 1880: 1860: 1830: 1769: 1688: 1593: 1512: 1476: 1457:Cook-Levin theorem 1445: 1392: 1311: 1277: 1246: 1219: 1150: 1111: 1056: 964: 925: 865: 837: 814: 757: 711: 663:with the constant 606: 497: 458: 430: 407: 356: 325: 235: 204: 135: 91: 2976:{\displaystyle L} 2937:{\displaystyle L} 2908: 2797: 2654: 2545: 2354: 2258: 1883:{\displaystyle L} 1712: 1711: 1617: 1616: 1526:is equivalent to 678:of SAT for which 632:that is input to 620:property of SAT. 618:self-reducibility 585:must be solvable. 573:of SAT for which 472:Self-reducibility 185:Richard J. Lipton 174:Adleman's theorem 156:complexity class 39:complexity theory 16:(Redirected from 4314: 4292: 4262: 4253: 4224: 4215: 4209: 4203: 4197: 4196: 4176: 4170: 4160: 4154: 4150: 4148: 4147: 4142: 4140: 4139: 4138: 4129: 4128: 4111: 4106: 4089: 4083: 4077: 4062: 4060: 4059: 4054: 4049: 4048: 4036: 4035: 4017: 4016: 4004: 4003: 3976: 3974: 3973: 3968: 3966: 3965: 3953: 3952: 3951: 3950: 3923: 3921: 3920: 3915: 3913: 3912: 3900: 3899: 3887: 3886: 3874: 3873: 3872: 3871: 3845:(by property of 3844: 3842: 3841: 3836: 3834: 3833: 3821: 3820: 3808: 3807: 3806: 3805: 3778: 3776: 3775: 3770: 3768: 3767: 3754: 3741: 3740: 3739: 3738: 3714: 3712: 3711: 3706: 3701: 3700: 3688: 3687: 3669: 3668: 3652: 3650: 3649: 3644: 3642: 3641: 3628: 3615: 3614: 3594: 3592: 3591: 3586: 3581: 3580: 3568: 3567: 3536: 3534: 3533: 3528: 3523: 3522: 3510: 3509: 3490: 3485: 3480: 3479: 3451: 3449: 3448: 3443: 3438: 3437: 3425: 3424: 3406: 3405: 3383: 3381: 3380: 3375: 3373: 3372: 3360: 3359: 3343: 3341: 3340: 3335: 3333: 3332: 3319: 3306: 3305: 3283: 3281: 3280: 3275: 3270: 3269: 3257: 3256: 3238: 3237: 3218: 3216: 3215: 3210: 3208: 3207: 3194: 3181: 3180: 3154:(the proof uses 3153: 3151: 3150: 3145: 3140: 3139: 3127: 3126: 3108: 3107: 3067: 3065: 3064: 3059: 3057: 3056: 3043: 3030: 3029: 3009: 3007: 3006: 3001: 2999: 2998: 2982: 2980: 2979: 2974: 2943: 2941: 2940: 2935: 2920: 2918: 2917: 2912: 2910: 2901: 2850: 2849: 2809: 2807: 2806: 2801: 2799: 2790: 2739: 2738: 2697:can be guessed: 2696: 2694: 2693: 2688: 2686: 2685: 2666: 2664: 2663: 2658: 2656: 2647: 2614: 2613: 2589: 2588: 2557: 2555: 2554: 2549: 2547: 2538: 2505: 2504: 2480: 2479: 2446: 2444: 2443: 2438: 2436: 2435: 2419: 2417: 2416: 2411: 2366: 2364: 2363: 2358: 2356: 2347: 2302: 2301: 2270: 2268: 2267: 2262: 2260: 2251: 2206: 2205: 2154: 2152: 2151: 2146: 2144: 2143: 2131: 2130: 2116: 2115: 2102: 2089: 2088: 2061: 2059: 2058: 2053: 2051: 2050: 2037: 2032: 2027: 2026: 2016: 2015: 1997: 1996: 1981: 1979: 1978: 1973: 1971: 1970: 1946: 1944: 1943: 1938: 1936: 1935: 1916: 1914: 1913: 1908: 1906: 1905: 1889: 1887: 1886: 1881: 1869: 1867: 1866: 1861: 1859: 1858: 1839: 1837: 1836: 1831: 1778: 1776: 1775: 1770: 1706: 1697: 1695: 1694: 1689: 1622: 1611: 1602: 1600: 1599: 1594: 1568: 1567: 1529: 1521: 1519: 1518: 1513: 1511: 1503: 1485: 1483: 1482: 1477: 1475: 1474: 1454: 1452: 1451: 1446: 1401: 1399: 1398: 1393: 1320: 1318: 1317: 1312: 1310: 1309: 1286: 1284: 1283: 1278: 1276: 1275: 1255: 1253: 1252: 1247: 1245: 1244: 1228: 1226: 1225: 1220: 1218: 1217: 1204: 1191: 1190: 1171: 1170: 1159: 1157: 1156: 1151: 1146: 1145: 1120: 1118: 1117: 1112: 1107: 1106: 1094: 1093: 1065: 1063: 1062: 1057: 973: 971: 970: 965: 934: 932: 931: 926: 874: 872: 871: 866: 864: 863: 846: 844: 843: 838: 823: 821: 820: 815: 766: 764: 763: 758: 756: 755: 720: 718: 717: 712: 710: 709: 615: 613: 612: 607: 605: 604: 542:For every pair ( 506: 504: 503: 498: 496: 495: 467: 465: 464: 459: 457: 456: 439: 437: 436: 431: 416: 414: 413: 408: 365: 363: 362: 357: 355: 354: 334: 332: 331: 326: 324: 323: 277: 276: 275: 244: 242: 241: 236: 234: 233: 213: 211: 210: 205: 203: 202: 144: 142: 141: 136: 130: 129: 117: 116: 100: 98: 97: 92: 89: 88: 76: 75: 51:Boolean circuits 21: 4322: 4321: 4317: 4316: 4315: 4313: 4312: 4311: 4297: 4296: 4227: 4216: 4212: 4204: 4200: 4177: 4173: 4161: 4157: 4131: 4130: 4118: 4117: 4116: 4107: 4102: 4096: 4093: 4092: 4090: 4086: 4078: 4074: 4070: 4044: 4040: 4022: 4021: 4012: 4008: 3996: 3995: 3993: 3990: 3989: 3958: 3957: 3943: 3939: 3938: 3937: 3935: 3932: 3931: 3905: 3904: 3895: 3891: 3879: 3878: 3864: 3860: 3859: 3858: 3856: 3853: 3852: 3826: 3825: 3813: 3812: 3798: 3794: 3793: 3792: 3790: 3787: 3786: 3750: 3746: 3745: 3731: 3727: 3726: 3725: 3723: 3720: 3719: 3696: 3692: 3674: 3673: 3661: 3660: 3658: 3655: 3654: 3624: 3620: 3619: 3607: 3606: 3604: 3601: 3600: 3576: 3572: 3554: 3553: 3551: 3548: 3547: 3518: 3514: 3496: 3495: 3486: 3481: 3475: 3474: 3465: 3462: 3461: 3433: 3429: 3411: 3410: 3401: 3397: 3389: 3386: 3385: 3368: 3364: 3355: 3351: 3349: 3346: 3345: 3315: 3311: 3310: 3295: 3294: 3292: 3289: 3288: 3265: 3261: 3243: 3242: 3227: 3226: 3224: 3221: 3220: 3190: 3186: 3185: 3170: 3169: 3167: 3164: 3163: 3156:diagonalization 3135: 3131: 3113: 3112: 3103: 3099: 3091: 3088: 3087: 3083:Proof outline: 3039: 3035: 3034: 3025: 3021: 3019: 3016: 3015: 2994: 2990: 2988: 2985: 2984: 2968: 2965: 2964: 2954: 2929: 2926: 2925: 2899: 2845: 2841: 2816: 2813: 2812: 2788: 2734: 2730: 2705: 2702: 2701: 2681: 2677: 2675: 2672: 2671: 2645: 2609: 2605: 2584: 2580: 2564: 2561: 2560: 2536: 2500: 2496: 2475: 2471: 2455: 2452: 2451: 2431: 2427: 2425: 2422: 2421: 2375: 2372: 2371: 2345: 2297: 2293: 2277: 2274: 2273: 2249: 2201: 2197: 2181: 2178: 2177: 2136: 2135: 2123: 2122: 2098: 2094: 2093: 2081: 2080: 2078: 2075: 2074: 2068: 2046: 2042: 2033: 2028: 2022: 2021: 2011: 2007: 2005: 2002: 2001: 1995: 1992: 1991: 1990: 1966: 1962: 1960: 1957: 1956: 1931: 1927: 1925: 1922: 1921: 1901: 1897: 1895: 1892: 1891: 1875: 1872: 1871: 1854: 1850: 1848: 1845: 1844: 1788: 1785: 1784: 1731: 1728: 1727: 1629: 1626: 1625: 1563: 1559: 1536: 1533: 1532: 1507: 1499: 1491: 1488: 1487: 1486:, depending on 1470: 1466: 1464: 1461: 1460: 1410: 1407: 1406: 1329: 1326: 1325: 1305: 1301: 1299: 1296: 1295: 1271: 1267: 1265: 1262: 1261: 1240: 1236: 1234: 1231: 1230: 1200: 1196: 1195: 1183: 1182: 1180: 1177: 1176: 1173: 1169: 1166: 1165: 1164: 1141: 1137: 1126: 1123: 1122: 1102: 1098: 1089: 1085: 1083: 1080: 1079: 986: 983: 982: 959: 956: 955: 883: 880: 879: 859: 855: 853: 850: 849: 832: 829: 828: 775: 772: 771: 751: 747: 745: 742: 741: 738: 705: 701: 699: 696: 695: 658: 649: 642: 600: 596: 594: 591: 590: 491: 487: 485: 482: 481: 474: 452: 448: 446: 443: 442: 425: 422: 421: 374: 371: 370: 350: 346: 344: 341: 340: 319: 315: 313: 310: 309: 302: 274: 271: 270: 269: 267: 229: 225: 223: 220: 219: 218:improved it to 198: 194: 192: 189: 188: 181:Richard M. Karp 125: 121: 109: 108: 106: 103: 102: 84: 80: 71: 67: 65: 62: 61: 35: 28: 23: 22: 15: 12: 11: 5: 4320: 4310: 4309: 4295: 4294: 4265: 4264: 4226: 4225: 4210: 4198: 4187:(1–3): 40–56. 4171: 4166:, R. Schuler, 4155: 4137: 4134: 4127: 4124: 4121: 4115: 4110: 4105: 4101: 4084: 4071: 4069: 4066: 4065: 4064: 4052: 4047: 4043: 4039: 4034: 4031: 4028: 4025: 4020: 4015: 4011: 4007: 4002: 3999: 3985: 3984: 3983: 3982: 3964: 3961: 3956: 3949: 3946: 3942: 3929: 3926:Toda's theorem 3911: 3908: 3903: 3898: 3894: 3890: 3885: 3882: 3877: 3870: 3867: 3863: 3850: 3832: 3829: 3824: 3819: 3816: 3811: 3804: 3801: 3797: 3781: 3780: 3766: 3763: 3760: 3757: 3753: 3749: 3744: 3737: 3734: 3730: 3716: 3704: 3699: 3695: 3691: 3686: 3683: 3680: 3677: 3672: 3667: 3664: 3640: 3637: 3634: 3631: 3627: 3623: 3618: 3613: 3610: 3584: 3579: 3575: 3571: 3566: 3563: 3560: 3557: 3526: 3521: 3517: 3513: 3508: 3505: 3502: 3499: 3494: 3489: 3484: 3478: 3472: 3469: 3454: 3453: 3441: 3436: 3432: 3428: 3423: 3420: 3417: 3414: 3409: 3404: 3400: 3396: 3393: 3384:and therefore 3371: 3367: 3363: 3358: 3354: 3331: 3328: 3325: 3322: 3318: 3314: 3309: 3304: 3301: 3298: 3285: 3273: 3268: 3264: 3260: 3255: 3252: 3249: 3246: 3241: 3236: 3233: 3230: 3206: 3203: 3200: 3197: 3193: 3189: 3184: 3179: 3176: 3173: 3143: 3138: 3134: 3130: 3125: 3122: 3119: 3116: 3111: 3106: 3102: 3098: 3095: 3055: 3052: 3049: 3046: 3042: 3038: 3033: 3028: 3024: 2997: 2993: 2972: 2953: 2950: 2933: 2922: 2921: 2907: 2904: 2898: 2895: 2892: 2889: 2886: 2883: 2880: 2877: 2874: 2871: 2868: 2865: 2862: 2859: 2856: 2853: 2848: 2844: 2840: 2837: 2834: 2830: 2826: 2823: 2820: 2810: 2796: 2793: 2787: 2784: 2781: 2778: 2775: 2772: 2769: 2766: 2763: 2760: 2757: 2754: 2751: 2748: 2745: 2742: 2737: 2733: 2729: 2726: 2723: 2719: 2715: 2712: 2709: 2684: 2680: 2668: 2667: 2653: 2650: 2644: 2641: 2638: 2635: 2632: 2629: 2626: 2623: 2620: 2617: 2612: 2608: 2604: 2601: 2598: 2595: 2592: 2587: 2583: 2578: 2574: 2571: 2568: 2558: 2544: 2541: 2535: 2532: 2529: 2526: 2523: 2520: 2517: 2514: 2511: 2508: 2503: 2499: 2495: 2492: 2489: 2486: 2483: 2478: 2474: 2469: 2465: 2462: 2459: 2434: 2430: 2409: 2406: 2403: 2400: 2397: 2394: 2391: 2388: 2385: 2382: 2379: 2368: 2367: 2353: 2350: 2344: 2341: 2338: 2335: 2332: 2329: 2326: 2323: 2320: 2317: 2314: 2311: 2308: 2305: 2300: 2296: 2291: 2287: 2284: 2281: 2271: 2257: 2254: 2248: 2245: 2242: 2239: 2236: 2233: 2230: 2227: 2224: 2221: 2218: 2215: 2212: 2209: 2204: 2200: 2195: 2191: 2188: 2185: 2156: 2155: 2142: 2139: 2134: 2129: 2126: 2120: 2114: 2111: 2108: 2105: 2101: 2097: 2092: 2087: 2084: 2067: 2064: 2049: 2045: 2041: 2036: 2031: 2025: 2019: 2014: 2010: 1993: 1969: 1965: 1934: 1930: 1904: 1900: 1879: 1857: 1853: 1828: 1825: 1822: 1819: 1816: 1813: 1810: 1807: 1804: 1801: 1798: 1795: 1792: 1768: 1765: 1762: 1759: 1756: 1753: 1750: 1747: 1744: 1741: 1738: 1735: 1710: 1709: 1700: 1698: 1687: 1684: 1681: 1678: 1675: 1672: 1669: 1666: 1663: 1660: 1657: 1654: 1651: 1648: 1645: 1642: 1639: 1636: 1633: 1615: 1614: 1605: 1603: 1592: 1589: 1586: 1583: 1580: 1577: 1574: 1571: 1566: 1562: 1558: 1555: 1552: 1549: 1546: 1543: 1540: 1510: 1506: 1502: 1498: 1495: 1473: 1469: 1444: 1441: 1438: 1435: 1432: 1429: 1426: 1423: 1420: 1417: 1414: 1403: 1402: 1390: 1387: 1384: 1381: 1378: 1375: 1372: 1369: 1366: 1363: 1360: 1357: 1354: 1351: 1348: 1345: 1342: 1339: 1336: 1333: 1308: 1304: 1274: 1270: 1243: 1239: 1216: 1213: 1210: 1207: 1203: 1199: 1194: 1189: 1186: 1172: 1167: 1161: 1149: 1144: 1140: 1136: 1133: 1130: 1110: 1105: 1101: 1097: 1092: 1088: 1067: 1066: 1054: 1051: 1048: 1045: 1042: 1039: 1036: 1033: 1030: 1027: 1024: 1021: 1018: 1015: 1011: 1008: 1005: 1002: 999: 996: 993: 990: 963: 936: 935: 924: 921: 918: 915: 912: 909: 905: 902: 899: 896: 893: 890: 887: 862: 858: 836: 825: 824: 813: 810: 807: 804: 801: 798: 794: 791: 788: 785: 782: 779: 754: 750: 737: 734: 708: 704: 692: 691: 654: 647: 640: 603: 599: 587: 586: 567: 566:) must be true 494: 490: 473: 470: 455: 451: 429: 418: 417: 406: 403: 400: 397: 394: 391: 387: 384: 381: 378: 353: 349: 322: 318: 301: 298: 272: 232: 228: 216:Michael Sipser 201: 197: 146: 145: 133: 128: 124: 120: 115: 112: 101:and therefore 87: 83: 79: 74: 70: 26: 9: 6: 4: 3: 2: 4319: 4308: 4305: 4304: 4302: 4291: 4287: 4283: 4279: 4275: 4274:Lipton, R. J. 4271: 4267: 4266: 4261: 4257: 4252: 4247: 4243: 4242: 4237: 4236:Lipton, R. J. 4233: 4229: 4228: 4223: 4219: 4214: 4208: 4202: 4194: 4190: 4186: 4182: 4175: 4169: 4165: 4159: 4152: 4113: 4108: 4103: 4099: 4088: 4081: 4076: 4072: 4045: 4041: 4018: 4013: 4005: 3987: 3986: 3980: 3954: 3930: 3927: 3901: 3896: 3888: 3875: 3851: 3848: 3822: 3809: 3785: 3784: 3783: 3782: 3742: 3717: 3697: 3693: 3670: 3616: 3598: 3597: 3596: 3577: 3573: 3545: 3544: 3538: 3519: 3515: 3492: 3487: 3482: 3470: 3467: 3459: 3434: 3430: 3407: 3402: 3394: 3391: 3369: 3361: 3356: 3307: 3286: 3266: 3262: 3239: 3182: 3161: 3160: 3159: 3157: 3136: 3132: 3109: 3104: 3096: 3093: 3084: 3081: 3079: 3075: 3071: 3031: 3026: 3013: 2995: 2970: 2962: 2958: 2949: 2947: 2931: 2924:which proves 2905: 2902: 2896: 2887: 2884: 2878: 2875: 2872: 2866: 2863: 2860: 2854: 2846: 2838: 2835: 2824: 2821: 2818: 2811: 2794: 2791: 2785: 2776: 2773: 2767: 2764: 2761: 2755: 2752: 2749: 2743: 2735: 2727: 2724: 2713: 2710: 2707: 2700: 2699: 2698: 2682: 2678: 2651: 2648: 2642: 2633: 2630: 2624: 2621: 2618: 2610: 2606: 2602: 2599: 2593: 2585: 2572: 2569: 2566: 2559: 2542: 2539: 2533: 2524: 2521: 2515: 2512: 2509: 2501: 2497: 2493: 2490: 2484: 2476: 2463: 2460: 2457: 2450: 2449: 2448: 2432: 2428: 2404: 2401: 2398: 2395: 2392: 2386: 2383: 2380: 2351: 2348: 2342: 2333: 2330: 2327: 2324: 2321: 2315: 2312: 2309: 2298: 2285: 2282: 2279: 2272: 2255: 2252: 2246: 2237: 2234: 2231: 2228: 2225: 2219: 2216: 2213: 2202: 2189: 2186: 2183: 2176: 2175: 2174: 2172: 2168: 2165:Suppose that 2163: 2161: 2132: 2090: 2073: 2072: 2071: 2063: 2047: 2039: 2034: 2029: 2017: 2012: 1999: 1998: 1985: 1967: 1954: 1950: 1932: 1918: 1902: 1877: 1855: 1841: 1823: 1820: 1814: 1811: 1808: 1802: 1799: 1796: 1790: 1782: 1763: 1760: 1757: 1754: 1751: 1745: 1742: 1739: 1725: 1724: 1719: 1718: 1708: 1701: 1699: 1682: 1679: 1673: 1670: 1667: 1661: 1658: 1655: 1649: 1646: 1643: 1637: 1634: 1624: 1623: 1620: 1613: 1606: 1604: 1587: 1584: 1578: 1575: 1572: 1564: 1560: 1556: 1553: 1547: 1544: 1541: 1531: 1530: 1527: 1525: 1504: 1496: 1493: 1471: 1467: 1458: 1439: 1436: 1433: 1430: 1427: 1421: 1418: 1415: 1382: 1379: 1376: 1373: 1370: 1364: 1361: 1358: 1352: 1349: 1343: 1340: 1334: 1331: 1324: 1323: 1322: 1306: 1293: 1288: 1272: 1268: 1259: 1241: 1237: 1192: 1160: 1147: 1142: 1134: 1131: 1128: 1108: 1103: 1095: 1090: 1076: 1072: 1046: 1040: 1034: 1031: 1025: 1022: 1019: 1013: 1006: 1003: 1000: 991: 981: 980: 979: 977: 961: 953: 949: 945: 941: 919: 916: 913: 907: 903: 897: 891: 885: 878: 877: 876: 860: 834: 808: 805: 802: 796: 792: 786: 780: 777: 770: 769: 768: 752: 733: 731: 726: 724: 706: 689: 685: 681: 677: 673: 672: 671: 668: 666: 662: 657: 653: 646: 639: 635: 631: 627: 621: 619: 601: 584: 580: 576: 572: 568: 565: 561: 557: 553: 549: 545: 541: 540: 539: 537: 532: 530: 526: 522: 518: 514: 510: 492: 479: 469: 453: 427: 401: 398: 395: 389: 385: 379: 369: 368: 367: 351: 338: 320: 306: 297: 295: 291: 287: 283: 279: 278: 264:collapses to 263: 259: 258: 253: 252: 246: 230: 217: 199: 186: 182: 177: 175: 171: 167: 163: 159: 155: 151: 131: 126: 118: 85: 77: 72: 60: 59: 58: 56: 52: 48: 44: 40: 33: 19: 4281: 4277: 4239: 4213: 4201: 4184: 4180: 4174: 4158: 4091:Jin Yi-Cai. 4087: 4075: 3541: 3539: 3457: 3455: 3085: 3082: 3073: 3072:(n) for any 3069: 3011: 2960: 2955: 2945: 2923: 2669: 2369: 2170: 2166: 2164: 2157: 2069: 1987: 1983: 1952: 1948: 1919: 1842: 1780: 1721: 1715: 1713: 1702: 1618: 1607: 1523: 1404: 1291: 1289: 1257: 1174: 1074: 1070: 1068: 975: 951: 947: 943: 939: 937: 826: 739: 727: 722: 693: 687: 683: 679: 675: 669: 664: 660: 655: 651: 644: 637: 633: 629: 625: 622: 617: 588: 582: 578: 574: 570: 563: 559: 555: 551: 547: 543: 535: 534:The circuit 533: 528: 524: 520: 516: 512: 508: 477: 475: 419: 336: 307: 303: 265: 261: 255: 249: 247: 178: 147: 42: 36: 4284:: 191–209, 4270:Karp, R. M. 4232:Karp, R. M. 4218:S. Aaronson 4164:U. Schöning 4153:, section 6 3718:Otherwise, 1720:) implies ( 1714:Obviously ( 581:) is true, 531:) is true. 166:NP-complete 4068:References 511:such that 55:polynomial 4114:⊆ 4080:S. Zachos 4010:Σ 3945:# 3902:⊇ 3893:Σ 3889:⊇ 3876:⊇ 3866:# 3823:⊇ 3810:⊇ 3800:# 3743:⊆ 3733:# 3493:− 3471:∈ 3408:− 3399:Σ 3395:∈ 3366:Σ 3353:Σ 3308:∈ 3240:∉ 3183:∉ 3110:− 3101:Σ 3097:∈ 3023:Σ 2992:Σ 2897:≤ 2855:ϕ 2833:∀ 2829:⟹ 2822:∉ 2786:≥ 2744:ϕ 2722:∃ 2718:⟹ 2711:∈ 2643:≤ 2594:ϕ 2577:⟹ 2570:∉ 2534:≥ 2485:ϕ 2468:⟹ 2461:∈ 2387:ϕ 2378:∃ 2343:≤ 2316:ϕ 2307:∃ 2290:⟹ 2283:∉ 2247:≥ 2220:ϕ 2211:∃ 2194:⟹ 2187:∈ 2119:⟹ 2091:⊆ 2044:Σ 2040:⊆ 2018:⊆ 2009:Π 1964:Π 1955:. If the 1929:Π 1899:Σ 1852:Π 1791:ϕ 1746:ϕ 1737:∃ 1734:¬ 1650:ϕ 1641:∀ 1632:∃ 1548:ϕ 1539:∀ 1422:ϕ 1413:∃ 1365:ϕ 1356:∃ 1347:∀ 1303:Π 1193:⊆ 1139:Σ 1100:Π 1087:Σ 1032:∧ 995:∀ 989:∃ 962:ϕ 908:ψ 901:∃ 857:Σ 835:ψ 797:ψ 790:∃ 784:∀ 778:ϕ 749:Π 703:Π 598:Π 489:Π 450:Σ 428:ψ 390:ψ 383:∀ 377:∃ 348:Σ 317:Σ 300:Intuition 227:Σ 196:Σ 123:Σ 82:Σ 69:Π 4301:Category 4019:⊈ 3671:⊈ 3617:⊈ 3032:⊈ 2173:, i.e.: 1290:Suppose 721:whether 550:) where 4260:1458043 3779:. Since 2066:AM = MA 1175:Assume 294:NP/poly 53:with a 4258:  3979:P/poly 2957:Kannan 2670:Since 2169:is in 1890:is in 1840:true. 1405:Since 1069:where 827:where 650:where 420:where 286:P/poly 282:PSPACE 260:, and 214:, but 170:P ≠ NP 158:P/poly 41:, the 4256:S2CID 3653:then 3219:then 2158:(see 1294:is a 337:guess 3924:(by 3070:SIZE 3012:SIZE 1870:set 1321:set 728:See 643:and 183:and 4286:doi 4246:doi 4189:doi 3599:If 3287:If 3162:If 2983:in 2162:). 335:to 290:BPP 245:.) 37:In 4303:: 4282:28 4280:, 4272:; 4254:, 4234:; 4220:, 4185:55 4183:. 3847:MA 3543:PP 3537:. 3080:. 2948:. 2946:MA 2843:Pr 2732:Pr 2582:Pr 2473:Pr 2295:Pr 2199:Pr 2171:AM 1917:. 519:, 262:PH 257:AM 254:= 251:MA 150:NP 4293:. 4288:: 4263:. 4248:: 4195:. 4191:: 4136:P 4133:N 4126:P 4123:P 4120:Z 4109:P 4104:2 4100:S 4051:) 4046:k 4042:n 4038:( 4033:E 4030:Z 4027:I 4024:S 4014:2 4006:= 4001:P 3998:P 3981:) 3963:A 3960:M 3955:= 3948:P 3941:P 3910:A 3907:M 3897:2 3884:H 3881:P 3869:P 3862:P 3849:) 3831:A 3828:M 3818:P 3815:P 3803:P 3796:P 3765:y 3762:l 3759:o 3756:p 3752:/ 3748:P 3736:P 3729:P 3715:. 3703:) 3698:k 3694:n 3690:( 3685:E 3682:Z 3679:I 3676:S 3666:P 3663:P 3639:y 3636:l 3633:o 3630:p 3626:/ 3622:P 3612:P 3609:P 3583:) 3578:k 3574:n 3570:( 3565:E 3562:Z 3559:I 3556:S 3525:) 3520:k 3516:n 3512:( 3507:E 3504:Z 3501:I 3498:S 3488:P 3483:2 3477:S 3468:L 3458:k 3452:. 3440:) 3435:k 3431:n 3427:( 3422:E 3419:Z 3416:I 3413:S 3403:2 3392:L 3370:2 3362:= 3357:4 3330:y 3327:l 3324:o 3321:p 3317:/ 3313:P 3303:T 3300:A 3297:S 3272:) 3267:k 3263:n 3259:( 3254:E 3251:Z 3248:I 3245:S 3235:T 3232:A 3229:S 3205:y 3202:l 3199:o 3196:p 3192:/ 3188:P 3178:T 3175:A 3172:S 3142:) 3137:k 3133:n 3129:( 3124:E 3121:Z 3118:I 3115:S 3105:4 3094:L 3074:k 3054:y 3051:l 3048:o 3045:p 3041:/ 3037:P 3027:2 2996:2 2971:L 2961:k 2932:L 2906:3 2903:1 2894:] 2891:) 2888:z 2885:, 2882:) 2879:z 2876:, 2873:x 2870:( 2867:D 2864:, 2861:x 2858:( 2852:[ 2847:x 2839:. 2836:D 2825:L 2819:z 2795:3 2792:2 2783:] 2780:) 2777:z 2774:, 2771:) 2768:z 2765:, 2762:x 2759:( 2756:D 2753:, 2750:x 2747:( 2741:[ 2736:x 2728:. 2725:D 2714:L 2708:z 2683:n 2679:D 2652:3 2649:1 2640:] 2637:) 2634:z 2631:, 2628:) 2625:z 2622:, 2619:x 2616:( 2611:n 2607:D 2603:, 2600:x 2597:( 2591:[ 2586:x 2573:L 2567:z 2543:3 2540:2 2531:] 2528:) 2525:z 2522:, 2519:) 2516:z 2513:, 2510:x 2507:( 2502:n 2498:D 2494:, 2491:x 2488:( 2482:[ 2477:x 2464:L 2458:z 2433:n 2429:D 2408:) 2405:z 2402:, 2399:y 2396:, 2393:x 2390:( 2384:. 2381:y 2352:3 2349:1 2340:] 2337:) 2334:z 2331:, 2328:y 2325:, 2322:x 2319:( 2313:. 2310:y 2304:[ 2299:x 2286:L 2280:z 2256:3 2253:2 2244:] 2241:) 2238:z 2235:, 2232:y 2229:, 2226:x 2223:( 2217:. 2214:y 2208:[ 2203:x 2190:L 2184:z 2167:L 2141:A 2138:M 2133:= 2128:M 2125:A 2113:y 2110:l 2107:o 2104:p 2100:/ 2096:P 2086:P 2083:N 2048:2 2035:P 2030:2 2024:S 2013:2 1994:2 1989:S 1984:x 1968:2 1953:x 1949:D 1933:2 1903:2 1878:L 1856:2 1827:) 1824:z 1821:, 1818:) 1815:z 1812:, 1809:x 1806:( 1803:D 1800:, 1797:x 1794:( 1781:D 1767:) 1764:z 1761:, 1758:y 1755:, 1752:x 1749:( 1743:. 1740:y 1723:2 1717:1 1707:) 1705:2 1703:( 1686:) 1683:z 1680:, 1677:) 1674:z 1671:, 1668:x 1665:( 1662:D 1659:, 1656:x 1653:( 1647:. 1644:x 1638:. 1635:D 1612:) 1610:1 1608:( 1591:) 1588:z 1585:, 1582:) 1579:z 1576:, 1573:x 1570:( 1565:n 1561:D 1557:, 1554:x 1551:( 1545:. 1542:x 1524:L 1509:| 1505:z 1501:| 1497:= 1494:n 1472:n 1468:D 1443:) 1440:z 1437:, 1434:y 1431:, 1428:x 1425:( 1419:. 1416:y 1389:} 1386:) 1383:z 1380:, 1377:y 1374:, 1371:x 1368:( 1362:. 1359:y 1353:. 1350:x 1344:: 1341:z 1338:{ 1335:= 1332:L 1307:2 1292:L 1273:n 1269:D 1258:n 1242:n 1238:C 1215:y 1212:l 1209:o 1206:p 1202:/ 1198:P 1188:P 1185:N 1168:2 1148:. 1143:2 1135:= 1132:H 1129:P 1109:. 1104:2 1096:= 1091:2 1075:c 1071:V 1053:) 1050:) 1047:x 1044:( 1041:s 1038:( 1035:c 1029:) 1026:z 1023:, 1020:c 1017:( 1014:V 1010:) 1007:z 1004:, 1001:x 998:( 992:c 976:c 952:x 950:( 948:s 946:( 944:c 940:c 923:) 920:y 917:, 914:x 911:( 904:y 898:= 895:) 892:x 889:( 886:s 861:2 812:) 809:y 806:, 803:x 800:( 793:y 787:x 781:= 753:2 723:c 707:1 690:. 688:s 684:s 682:( 680:c 676:s 665:i 661:x 656:i 652:s 648:1 645:s 641:0 638:s 634:s 630:x 626:s 602:1 583:s 579:s 577:( 575:c 571:s 564:s 562:( 560:c 556:x 552:s 548:x 546:, 544:s 536:c 529:z 527:, 525:c 523:( 521:V 517:z 513:c 509:V 493:1 478:c 454:2 405:) 402:y 399:, 396:x 393:( 386:y 380:x 352:2 321:2 273:2 268:S 231:2 200:3 132:. 127:2 119:= 114:H 111:P 86:2 78:= 73:2 34:. 20:)

Index

Karp-Lipton theorem
polynomial hierarchy
complexity theory
Boolean satisfiability problem
Boolean circuits
polynomial
NP
non-uniform polynomial time
P/poly
polynomial hierarchy
NP-complete
P ≠ NP
Adleman's theorem
Richard M. Karp
Richard J. Lipton
Michael Sipser
MA
AM
S
2

PSPACE
P/poly
BPP
NP/poly
Random self-reducibility
Cook-Levin theorem
1
2
S
2

Arthur–Merlin protocol
Kannan

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.