Knowledge

Junk DNA

Source πŸ“

89: 162: 309:) project reported that detectable biochemical activity was observed in regions covering at least 80% of the human genome, with biochemical activity defined primarily as being transcribed. While these findings were announced as the demise of junk DNA it is important to point out that transcription does not mean a sequence is "functional", analogous to some meaningless text that can be transcribed or copied without having any meaning. 196:"Dear Francis, I am sure that you realize how frightfully angry a lot of people will be if you say that much of the DNA is junk. The geneticists will be angry because they think that DNA is sacred. The Darwinian evolutionists will be outraged because they believe every change in DNA that is accepted in evolution is necessarily an adaptive change. To suggest anything else is an insult to the sacred memory of Darwin." 85:. The paradox was resolved with the discovery of repetitive DNA and the observation that most of the differences in genome size could be attributed to repetitive DNA. Some scientists thought that most of the repetitive DNA was involved in regulating gene expression but many scientists thought that the excess repetitive DNA was nonfunctional. 245:
non-coding DNA. But Comings never said that. In that paper he discusses non-coding genes for ribosomal RNA and tRNAs and non-coding regulatory DNA and he proposes several possible functions for the bulk of non-coding DNA. In another publication from the same year Comings again discusses the term junk
131:
popularized the term in a 1972 paper titled "So much 'junk' DNA in our genome" where he summarized the current evidence that had accumulated by then. In a second paper that same year, he concluded that 90% of mammalian genomes consisted of nonfunctional DNA. The case for junk DNA was summarized in a
76:
In 1966 Muller reviewed these predictions and concluded that the human genome could only contain about 30,000 genes based on the number of deleterious mutations that the species could tolerate. Similar predictions were made by other leading experts in molecular evolution who concluded that the human
51:
It is difficult to determine whether other regions of the genome are functional or nonfunctional. There is considerable controversy over which criteria should be used to identify function. Many scientists have an evolutionary view of the genome and they prefer criteria based on whether DNA sequences
43:
All protein-coding regions are generally considered to be functional elements in genomes. Additionally, non-protein coding regions such as genes for ribosomal RNA and transfer RNA, regulatory sequences, origins of replication, centromeres, telomeres, and scaffold attachment regions are considered as
374:
Opponents of junk DNA argue that biochemical activity detects functional regions of the genome that are not identified by sequence conservation or purifying selection. According to some scientists, until a region in question has been shown to have additional features, beyond what is expected of the
60:
The idea that only a fraction of the human genome could be functional dates back to the late 1940s. The estimated mutation rate in humans suggested that if a large fraction of those mutations were deleterious then the human species could not survive such a mutation load (genetic load). This led to
111:
was refined to include RNA:DNA hybridization leading to the discovery that considerably less than 10% of the human genome was complementary to mRNA and this DNA was in the unique (non-repetitive) fraction. This confirmed the predictions made from genetic load arguments and was consistent with the
157:
in the 1970s seemed to confirm the views of junk DNA proponents because it meant that genes were very large and even huge genomes could not accommodate large numbers of genes. The proponents of junk DNA tended to dismiss intron sequences as mostly nonfunctional DNA (junk) but junk DNA opponents
187:
The positions of the two sides of the controversy hardened with one side believing that evolution was consistent with large amounts of junk DNA and the other side believing that natural selection should eliminate junk DNA. These differing views of evolution were highlighted in a letter from
80:
The size of genomes in various species was known to vary considerably and there did not seem to be a correlation between genome size and the complexity of the species. Even closely related species could have very different genome sizes. This observation led to what came to be known as the
324:
However, in most animal or plant genomes, a large fraction of DNA is non-functional, given that there is no obvious selective pressure on these sequences. More importantly, there is strong evidence that these sequences are not functional in other ways (using the human genome as example):
253:
It is simply not true that noncoding DNA has long been dismissed as worthless junk and that functional hypotheses have only recently been proposed - despite the frequency with which this clichΓ© is repeated in media reports and in the introduction of far too many scientific
179:
Opponents of junk DNA interpreted these results as evidence that most of the genome is functional and they developed several hypotheses advocating that transposon sequences could benefit the organism or the species. The most important opponent of junk DNA at this time was
232:
When it was first discovered, the nongenic DNA was sometimes calledβ€”somewhat derisively by people who did not know betterβ€”"junk DNA" because it had no obvious utility, and they foolishly assumed that if it was not carrying coding information it must be useless trash.
115:
The idea that large amounts of eukaryotic genomes could be nonfunctional conflicted with the prevailing view of evolution in 1968 since it seemed likely that nonfunctional DNA would be eliminated by natural selection. The development of the
359:
in the human genome of which 23.4% affected multiple genes (by deleting them or part of them). This study also found 47 deletions of >1 MB, showing that large chunks of the human genome can get deleted without obvious consequences.
95:(Tomoko Harada) developed the nearly neutral theory that led to an understanding of how slightly deleterious junk DNA could be maintained in the genomes of species with small effective population sizes. In 2015 she was awarded the 262:
Revisionist claims that equate noncoding DNA with junk merely reveal that people who are allowed to exhibit their logorrhea in Nature and other glam journals are as ignorant as the worst young-earth creationists.
271:
The main challenge of identifying junk DNA is to distinguish between "functional" and "non-functional " sequences. This is non-trivial, but there is some good evidence for both categories.
124:
provided a way out of this problem since it allowed for the preservation of slightly deleterious nonfunctional DNA in accordance with fundamental principles of population genetics.
2095:
Cavalier-Smith T (December 1978). "Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C-value paradox".
1209:
Britten RJ, Kohne DE (August 1968). "Repeated sequences in DNA. Hundreds of thousands of copies of DNA sequences have been incorporated into the genomes of higher organisms".
176:. This prompted a series of papers and letters describing transposons as selfish DNA that acted as a parasite in genomes and produced no fitness advantage for the organism. 352:(2.9% of total genome). Many of these sequences are the descendents of ancient virus infections and are thus "non-functional" in terms of human genome function. 184:
who argued that the extra DNA was required to increase the volume of the nucleus in order to promote more efficient transport across the nuclear membrane.
224:
Close to 99 percent of our genome has been historically classified as noncoding, useless "junk" DNA. Consequently, these sequences were rarely studied.
249:
The idea that all non-coding DNA was thought to be junk has been criticized by numerous authors for distorting the history of junk DNA; for example:
208:"A concept that is repugnant to us is that about half of the DNA of higher organisms is trivial or permanently inert (on an evolutionary timescale)." 237:
The common theme is that the original proponents of junk DNA thought that all non-coding DNA was junk. This claim has been attributed to a paper by
217:
There is considerable confusion in the popular press and in the scientific literature about the distinction between non-coding DNA and junk DNA.
644: 121: 282:
are the most obvious functional sequences in genomes. However, they make up only 1-2% of most vertebrate genomes. However, there are also
2346: 964:
Lin Y, Zhai T, Zhang X (April 2014). "Nanoscale heat transfer in direct nanopatterning into gold films by a nanosecond laser pulse".
69:, that only a small percentage of the human genome contains functional DNA elements (genes) that can be destroyed by mutation. (see 355:(2) Many sequences can be deleted as shown by comparing genomes. For instance, an analysis of 14,623 individuals identified 42,765 168:
and others promoted the idea that transposons were examples of selfish DNA and were responsible for the proliferation of junk DNA.
3026:"8.2% of the Human genome is constrained: variation in rates of turnover across functional element classes in the human lineage" 368: 367:
on these sequences, so they can rather freely mutate. About 11% or less of the human genome is conserved and about 7% is under
2477:
Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis CA, Doyle F, et al. (The ENCODE Project Consortium) (September 2012).
117: 2605: 2249:"On the immortality of television sets: "function" in the human genome according to the evolution-free gospel of ENCODE" 333: 1115:
Ohta T, Kimura M (September 1971). "Functional organization of genetic material as a product of molecular evolution".
52:
are preserved by natural selection. Other scientists dispute this view or have different interpretations of the data.
3008: 341: 2131: 345: 363:(3) Only a small fraction of the human genome is conserved, indicating that there is no strong (functional) 3134:
Halldorsson BV, Eggertsson HP, Moore KH, Hauswedell H, Eiriksson O, Ulfarsson MO, et al. (July 2022).
349: 328:(1) Repetitive elements, especially mobile elements make up a large fraction of the human genome, such as 143:
current estimates of the number of genes (in 1972) are much less than the number that can be accommodated,
747:
Germain PL, Ratti E, and Boem F (2014). "Junk or functional DNA? ENCODE and the function controversy".
321:
which typically have an extremely high gene density, with only a few percent being not protein-coding.
329: 28:) is a DNA sequence that has no known biological function. Most organisms have some junk DNA in their 1765:
Doolittle WF, Sapienza C (April 1980). "Selfish genes, the phenotype paradigm and genome evolution".
77:
genome could not contain more than 40,000 genes and that less than 10% of the genome was functional.
3254:"A Kuhnian revolution in molecular biology: Most genes in complex organisms express regulatory RNAs" 302:. These sequences are usually conserved in evolution and make up another 3-8% of the human genome. 2844:"Keeping up with the genomes: efficient learning of our increasing knowledge of the tree of life" 2395:
Graur D (2017). "Rubbish DNA: The functionless fraction of the human genome". In Saitou N (ed.).
1328:
Lewin B (1974). "Sequence Organization of Eukaryotic DNA: Defining the Unit of Gene Expression".
2428:
Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K, et al. (August 2005).
88: 40:
and viruses—but it is possible that some organisms have substantial amounts of junk DNA.
364: 295: 181: 66: 1440:
Kimura M, Ohta T (February 1971). "Protein polymorphism as a phase of molecular evolution".
831:
Kellis M, Wold B, Snyder MP, Bernstein BE, Kundaje A, Marinov GK, et al. (April 2014).
132:
lengthy paper by David Comings in 1972 where he listed four reasons for proposing junk DNA:
3147: 2955: 2747: 2688: 2636: 2490: 2051: 1994: 1937: 1880: 1825: 1774: 1729: 1682: 1639: 1586: 1449: 1261: 1218: 1124: 1081: 1027: 844: 614: 445: 394: 356: 246:
DNA with the clear understanding that it does not include non-coding regulatory sequences.
172:
By 1980 it was apparent that most of the repetitive DNA in the human genome was related to
158:
advanced a number of hypotheses attributing functions of various sort to intron sequences.
3075:
Christmas MJ, Kaplow IM, Genereux DP, Dong MX, Hughes GM, Li X, et al. (April 2023).
8: 291: 3151: 3111: 3076: 2959: 2751: 2692: 2640: 2494: 2209:
Niu DK, Jiang L (2013). "Can ENCODE tell us how much junk DNA we carry in our genome?".
2055: 1998: 1941: 1884: 1829: 1778: 1733: 1686: 1643: 1590: 1453: 1265: 1222: 1184: 1128: 1085: 1031: 848: 618: 449: 3321: 3294: 3229: 3202: 3178: 3135: 3052: 3025: 2976: 2943: 2919: 2895:"Repetitive DNA and next-generation sequencing: computational challenges and solutions" 2894: 2870: 2843: 2819: 2794: 2770: 2735: 2711: 2676: 2511: 2478: 2454: 2429: 2377: 2322: 2297: 2273: 2248: 2077: 2020: 1963: 1906: 1849: 1798: 1747: 1612: 1473: 1148: 1051: 997: 981: 949: 932: 908: 891: 867: 832: 810: 764: 724: 697: 675: 577: 550: 526: 499: 471: 3326: 3275: 3234: 3183: 3116: 3057: 3004: 2981: 2924: 2875: 2824: 2775: 2716: 2672: 2654: 2586: 2551: 2516: 2459: 2369: 2347:"Conceptual and empirical challenges of ascribing functions to transposable elements" 2327: 2278: 2226: 2112: 2069: 2012: 1955: 1898: 1841: 1790: 1698: 1655: 1604: 1520: 1465: 1422: 1418: 1387: 1341: 1277: 1234: 1188: 1140: 1097: 1043: 989: 913: 872: 814: 802: 768: 729: 667: 626: 582: 531: 463: 2942:
Abel HJ, Larson DE, Regier AA, Chiang C, Das I, Kanchi KL, et al. (July 2020).
2381: 2081: 2024: 1152: 1001: 679: 475: 3316: 3306: 3265: 3224: 3214: 3173: 3163: 3155: 3106: 3096: 3088: 3047: 3037: 2971: 2963: 2914: 2906: 2865: 2855: 2814: 2806: 2765: 2755: 2706: 2696: 2644: 2578: 2543: 2534:
Pennisi E (September 2012). "Genomics. ENCODE project writes eulogy for junk DNA".
2506: 2498: 2449: 2441: 2361: 2317: 2309: 2268: 2260: 2218: 2104: 2059: 2002: 1967: 1945: 1910: 1888: 1853: 1833: 1802: 1782: 1751: 1737: 1690: 1647: 1616: 1594: 1477: 1457: 1414: 1379: 1337: 1269: 1252:
Britten RJ, Davidson EH (July 1969). "Gene regulation for higher cells: a theory".
1226: 1180: 1132: 1089: 1055: 1035: 973: 944: 903: 862: 852: 794: 756: 719: 709: 659: 622: 572: 562: 521: 511: 453: 318: 201: 2547: 2430:"Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes" 605:
Ohno S (1972). "An argument for the genetic simplicity of man and other mammals".
3042: 2582: 1273: 1230: 1093: 516: 189: 82: 3203:"A meta-analysis of the genomic and transcriptomic composition of complex life" 3159: 2860: 2740:
Proceedings of the National Academy of Sciences of the United States of America
2681:
Proceedings of the National Academy of Sciences of the United States of America
2222: 1370:
O'Brien SJ (March 1973). "On estimating functional gene number in eukaryotes".
837:
Proceedings of the National Academy of Sciences of the United States of America
404: 399: 96: 62: 45: 2967: 2944:"Mapping and characterization of structural variation in 17,795 human genomes" 2649: 2624: 798: 760: 714: 458: 433: 3344: 3311: 3168: 3077:"Evolutionary constraint and innovation across hundreds of placental mammals" 1492: 279: 238: 165: 61:
predictions in the late 1940s by one of the founders of population genetics,
3092: 2760: 2701: 1651: 857: 3350: 3330: 3279: 3270: 3253: 3238: 3187: 3120: 3061: 2985: 2928: 2879: 2828: 2779: 2720: 2658: 2590: 2555: 2520: 2463: 2373: 2331: 2282: 2230: 1694: 1383: 1192: 1144: 993: 917: 876: 806: 733: 671: 586: 535: 467: 389: 337: 104: 70: 3219: 2073: 2016: 1959: 1902: 1845: 1794: 1659: 1524: 1469: 1426: 1391: 1281: 1238: 1101: 1047: 663: 2810: 2313: 2264: 2116: 2108: 1702: 1608: 567: 173: 128: 92: 37: 2502: 375:
null hypothesis, it should provisionally be labelled as non-functional.
146:
the mutation load would be too large if all the DNA were functional, and
3101: 2445: 1816:
Orgel LE, Crick FH (April 1980). "Selfish DNA: the ultimate parasite".
985: 299: 33: 2149:
Mortola E, Long M (2021). "Turning Junk into Us: How Genes Are Born".
1494:
Requiem for a Gene: The Problem of Junk DNA for the Molecular Paradigm
1018:
Kimura M (February 1968). "Evolutionary rate at the molecular level".
136:
some organisms have a lot more DNA than they seem to require (C-value
2064: 2039: 2007: 1982: 1950: 1925: 1893: 1868: 1837: 1786: 1742: 1717: 1599: 1574: 1461: 1136: 1039: 429: 161: 103:
At about the same time (late 1960s) the newly developed technique of
3133: 2910: 2365: 2247:
Graur D, Zheng Y, Price N, Azevedo RB, Zufall RA, Elhaik E (2013).
977: 2795:"Distinguishing between "function" and "effect" in genome biology" 1355:
Lewin B (1974). "Chapter 5: Transcription and Processing of RNA".
241:
in 1972 where he is reported to have said that junk DNA refers to
192:, a proponent of junk DNA, to Francis Crick on December 20, 1979: 2606:"Scientists attacked over claim that 'junk DNA' is vital to life" 220:
According to an article published in 2021 in American Scientist:
137: 2479:"An integrated encyclopedia of DNA elements in the human genome" 1560:
The Black Box of Biology: A History of the Molecular Revolution
384: 306: 154: 29: 2792: 2427: 1543:
Comings DE (1972). "The structure and function of chromatin".
1171:
Thomas CA (1971). "The genetic organization of chromosomes".
2793:
Doolittle WF, Brunet TD, Linquist S, Gregory TR (May 2014).
3074: 127:
The term "junk DNA" began to be used in the late 1950s but
2476: 2344: 1758: 1558:
Morange M (2020). "Chapter 17: Split Genes and Splicing".
1313:
Lewin B (1974). "Chapter 4: Sequences of Eukaryotic DNA".
2727: 1072:
King JL, Jukes TH (May 1969). "Non-Darwinian evolution".
830: 3023: 1245: 1204: 1202: 691: 689: 1917: 1298:
Gregory TR (2005). "Genome Size Evolution in Animals".
645:"Genome as a multipurpose structure built by evolution" 112:
idea that much of the repetitive DNA is nonfunctional.
3295:"Non-coding RNA: what is functional and what is junk?" 3194: 3024:
Rands CM, Meader S, Ponting CP, Lunter G (July 2014).
2941: 2625:"The ENCODE project: missteps overshadowing a success" 2246: 1673:
Crick F (April 1979). "Split genes and RNA splicing".
833:"Defining functional DNA elements in the human genome" 1199: 686: 99:
by the Royal Swedish Academy (with Richard Lewontin).
3136:"The sequences of 150,119 genomes in the UK Biobank" 3068: 2786: 2298:"An evolutionary classification of genomic function" 2204: 2202: 746: 493: 491: 489: 487: 485: 204:
and Kohne in their seminal paper on repetitive DNA.
2568: 2211:
Biochemical and Biophysical Research Communications
2172:. New York, New York, USA: Oxford University Press. 1809: 1630:Gilbert W (May 1985). "Genes-in-pieces revisited". 1511:Ohno S (1972). "So much "junk" DNA in our genome". 1433: 1108: 3127: 2088: 2031: 2841: 2562: 2295: 2199: 1764: 740: 482: 3342: 3003:. Sunderland MA (USA): Sinauer Associates, Inc. 2892: 2242: 2240: 1405:Bishop JO (June 1974). "The gene numbers game". 1067: 1065: 2733: 2414:. New York, New York, USA: W. A. Benjamin, Inc. 2345:Elliott TA, Linquist S, and Gregory TR (2014). 1538: 1536: 1534: 1251: 266: 3286: 3200: 2842:Zhao Z, Cristian A, Rosen G (September 2020). 2338: 2094: 2037: 1923: 1293: 1291: 497: 212: 3245: 2665: 2237: 1709: 1166: 1164: 1162: 1062: 1013: 1011: 780: 778: 695: 638: 636: 2527: 2470: 2176: 2170:DNA Demystified: Unraveling the Double Helix 1551: 1531: 1506: 1504: 1208: 963: 2148: 1718:"Genes in pieces: were they ever together?" 1623: 1566: 1369: 1288: 924: 600: 598: 596: 3292: 2893:Treangen TJ, Salzberg SL (November 2011). 2569:Casane D, Fumey J, Laurenti P (2015). "". 2403: 1815: 1439: 1398: 1363: 1348: 1321: 1159: 1114: 1008: 957: 883: 785:Mattick JS (2023). "RNA out of the mist". 775: 633: 548: 434:"The C-value paradox, junk DNA and ENCODE" 424: 422: 420: 3320: 3310: 3269: 3228: 3218: 3177: 3167: 3110: 3100: 3051: 3041: 2975: 2918: 2869: 2859: 2818: 2769: 2759: 2710: 2700: 2671: 2648: 2616: 2510: 2453: 2388: 2321: 2272: 2063: 2006: 1949: 1892: 1860: 1741: 1715: 1666: 1598: 1501: 1357:Gene Expression-2: Eukaryotic Chromosomes 1315:Gene Expression-2: Eukaryotic Chromosomes 1306: 1071: 948: 907: 866: 856: 723: 713: 576: 566: 525: 515: 457: 258:Some of the criticisms have been strong: 200:The other point of view was expressed by 3201:Liu G, Mattick JS, Taft RJ (July 2013). 2677:"Is junk DNA bunk? A critique of ENCODE" 2597: 2208: 2167: 1974: 826: 824: 593: 160: 87: 16:Those parts of a genome with no function 3251: 2734:Brunet TD, Doolittle WF (August 2014). 2533: 2182: 1924:Dover G, Doolittle WF (December 1980). 1629: 1572: 1557: 1542: 1297: 930: 784: 642: 417: 3343: 2409: 2129: 1404: 1170: 1017: 889: 3017: 2998: 2603: 2423: 2421: 2394: 2296:Graur D, Zheng Y, Azevedo RB (2015). 1866: 1672: 1490: 1354: 1327: 1312: 933:"The rate of mutation of human genes" 821: 551:"Factors behind junk DNA in bacteria" 2622: 1980: 1510: 652:Perspectives in Biology and Medicine 604: 428: 344:(20.4% of total genome), SVAs (SINE- 2136:National Institutes of Health (USA) 1185:10.1146/annurev.ge.05.120171.001321 498:Palazzo AF, Gregory TR (May 2014). 13: 2418: 2189:American Journal of Human Genetics 950:10.1111/j.1601-5223.1949.tb03339.x 896:American Journal of Human Genetics 336:(13.1% of total genome) including 305:The Encyclopedia of DNA Elements ( 14: 3362: 698:"Non-Darwinian Molecular Biology" 549:Gil R, Latorre A (October 2012). 312: 228:A book published in 2020 states: 2992: 2935: 2886: 2835: 2397:Evolution of the Human Genome I 2289: 2161: 2142: 2123: 1484: 3001:Molecular and Genome Evolution 2183:Comings DE (1972). "Review of 2130:Thomas J (December 29, 1979). 2038:Cavalier-Smith T (June 1980). 1513:Brookhaven Symposia in Biology 696:Palazzo AF, Kejiou NS (2022). 542: 317:Non-functional DNA is rare in 1: 3252:Mattick JS (September 2023). 2604:McKie R (February 24, 2013). 2548:10.1126/science.337.6099.1159 2412:Molecular Biology of the Gene 2185:Evolution of Genetics Systems 1547:. Springer. pp. 237–431. 410: 274: 149:some junk DNA clearly exists. 3043:10.1371/journal.pgen.1004525 2799:Genome Biology and Evolution 2302:Genome Biology and Evolution 2253:Genome Biology and Evolution 1497:(MA). University of Chicago. 1419:10.1016/0092-8674(74)90095-6 1342:10.1016/0092-8674(74)90125-1 1274:10.1126/science.165.3891.349 1231:10.1126/science.161.3841.529 1094:10.1126/science.164.3881.788 627:10.1016/0047-2484(72)90011-5 517:10.1371/journal.pgen.1004351 267:Functional vs non-functional 7: 3293:Palazzo AF, Lee ES (2015). 2399:. Springer. pp. 19–60. 1926:"Modes of genome evolution" 1573:Gilbert W (February 1978). 1562:. Harvard University Press. 1300:The Evolution of the Genome 378: 213:Junk DNA and non-coding DNA 10: 3367: 3160:10.1038/s41586-022-04965-x 2861:10.1186/s12859-020-03744-7 2736:"Getting "function" right" 2583:10.1051/medsci/20153106023 2223:10.1016/j.bbrc.2012.12.074 1545:Advances in human genetics 1302:. Elsevier. pp. 3–87. 607:Journal of Human Evolution 55: 44:functional elements. (See 2968:10.1038/s41586-020-2371-0 2650:10.1016/j.cub.2013.03.023 2132:"letter to Francis Crick" 1981:Jain HK (December 1980). 1173:Annual Review of Genetics 799:10.1016/j.tig.2022.11.001 761:10.1007/s10539-014-9441-3 715:10.3389/fgene.2022.831068 459:10.1016/j.cub.2012.10.002 3312:10.3389/fgene.2015.00002 2899:Nature Reviews. Genetics 1359:. John Wiley & Sons. 1317:. John Wiley & Sons. 749:Biology & Philosophy 350:Class II DNA transposons 332:(8.3% of total genome), 280:Protein-coding sequences 65:, and by Nobel laureate 3093:10.1126/science.abn3943 2761:10.1073/pnas.1409762111 2702:10.1073/pnas.1221376110 2354:The American Naturalist 2097:Journal of Cell Science 1652:10.1126/science.4001923 892:"Our load of mutations" 890:Muller HJ (June 1950). 858:10.1073/pnas.1318948111 500:"The case for junk DNA" 48:for more information.) 3271:10.1002/bies.202300080 2623:Eddy SR (April 2013). 1695:10.1126/science.373120 1575:"Why genes in pieces?" 1384:10.1038/newbio242052a0 296:origins of replication 290:DNA sequences such as 264: 256: 235: 226: 210: 198: 169: 100: 73:for more information) 3299:Frontiers in Genetics 3220:10.1186/1877-6566-7-2 2040:"How selfish is DNA?" 1867:Dover G (June 1980). 702:Frontiers in Genetics 664:10.1353/pbm.2014.0008 260: 251: 230: 222: 206: 194: 182:Thomas Cavalier-Smith 164: 122:nearly neutral theory 91: 2542:(6099): 1159, 1161. 2109:10.1242/jcs.34.1.247 1716:Doolittle W (1978). 568:10.3390/genes3040634 395:Comparative genomics 330:LTR retrotransposons 292:regulatory sequences 3152:2022Natur.607..732H 2960:2020Natur.583...83A 2752:2014PNAS..111E3365P 2693:2013PNAS..110.5294D 2641:2013CBio...23.R259E 2503:10.1038/nature11247 2495:2012Natur.489...57T 2168:McHughen A (2020). 2056:1980Natur.285..617C 1999:1980Natur.288..647J 1942:1980Natur.288..646D 1885:1980Natur.285..618D 1830:1980Natur.284..604O 1779:1980Natur.284..601D 1734:1978Natur.272..581D 1687:1979Sci...204..264C 1644:1985Sci...228..823G 1591:1978Natur.271..501G 1454:1971Natur.229..467K 1266:1969Sci...165..349B 1223:1968Sci...161..529B 1129:1971Natur.233..118O 1086:1969Sci...164..788L 1032:1968Natur.217..624K 849:2014PNAS..111.6131K 619:1972JHumE...1..651O 450:2012CBio...22.R898E 369:purifying selection 357:structural variants 3087:(6643): eabn3943. 2848:BMC Bioinformatics 2811:10.1093/gbe/evu098 2446:10.1101/gr.3715005 2314:10.1093/gbe/evv021 2265:10.1093/gbe/evt028 2151:American Scientist 931:Haldane J (1949). 787:Trends in Genetics 643:Morange M (2014). 365:selection pressure 170: 101: 26:non-functional DNA 3213:(13): 2061–2072. 3169:20.500.11815/3726 3146:(7920): 732–740. 2687:(14): 5294–5300. 2571:Medecine Sciences 2410:Watson J (1965). 2050:(5767): 617–618. 1993:(5792): 647–648. 1936:(5792): 646–647. 1879:(5767): 618–620. 1824:(5757): 604–607. 1773:(5757): 601–603. 1728:(5654): 581–582. 1681:(4390): 264–271. 1638:(4701): 823–824. 1448:(5285): 467–469. 1260:(3891): 349–357. 1217:(3841): 529–540. 1123:(5315): 118–119. 1080:(3881): 788–798. 1026:(5129): 624–626. 843:(17): 6131–6138. 444:(21): R898–R899. 432:(November 2012). 319:bacterial genomes 153:The discovery of 36:and fragments of 3358: 3335: 3334: 3324: 3314: 3290: 3284: 3283: 3273: 3249: 3243: 3242: 3232: 3222: 3198: 3192: 3191: 3181: 3171: 3131: 3125: 3124: 3114: 3104: 3072: 3066: 3065: 3055: 3045: 3021: 3015: 3014: 2999:Graur D (2016). 2996: 2990: 2989: 2979: 2939: 2933: 2932: 2922: 2890: 2884: 2883: 2873: 2863: 2839: 2833: 2832: 2822: 2805:(5): 1234–1237. 2790: 2784: 2783: 2773: 2763: 2731: 2725: 2724: 2714: 2704: 2669: 2663: 2662: 2652: 2635:(7): R259–R261. 2620: 2614: 2613: 2601: 2595: 2594: 2577:(6–7): 680–686. 2566: 2560: 2559: 2531: 2525: 2524: 2514: 2474: 2468: 2467: 2457: 2440:(8): 1034–1050. 2425: 2416: 2415: 2407: 2401: 2400: 2392: 2386: 2385: 2351: 2342: 2336: 2335: 2325: 2293: 2287: 2286: 2276: 2244: 2235: 2234: 2217:(4): 1340–1343. 2206: 2197: 2196: 2180: 2174: 2173: 2165: 2159: 2158: 2146: 2140: 2139: 2127: 2121: 2120: 2092: 2086: 2085: 2067: 2065:10.1038/285617a0 2035: 2029: 2028: 2010: 2008:10.1038/288647a0 1983:"Incidental DNA" 1978: 1972: 1971: 1953: 1951:10.1038/288646a0 1921: 1915: 1914: 1896: 1894:10.1038/285618a0 1864: 1858: 1857: 1838:10.1038/284604a0 1813: 1807: 1806: 1787:10.1038/284601a0 1762: 1756: 1755: 1745: 1743:10.1038/272581a0 1713: 1707: 1706: 1670: 1664: 1663: 1627: 1621: 1620: 1602: 1600:10.1038/271501a0 1570: 1564: 1563: 1555: 1549: 1548: 1540: 1529: 1528: 1508: 1499: 1498: 1491:Sweet A (2022). 1488: 1482: 1481: 1462:10.1038/229467a0 1437: 1431: 1430: 1402: 1396: 1395: 1367: 1361: 1360: 1352: 1346: 1345: 1325: 1319: 1318: 1310: 1304: 1303: 1295: 1286: 1285: 1249: 1243: 1242: 1206: 1197: 1196: 1168: 1157: 1156: 1137:10.1038/233118a0 1112: 1106: 1105: 1069: 1060: 1059: 1040:10.1038/217624a0 1015: 1006: 1005: 972:(7): 8396–8404. 961: 955: 954: 952: 928: 922: 921: 911: 887: 881: 880: 870: 860: 828: 819: 818: 782: 773: 772: 744: 738: 737: 727: 717: 693: 684: 683: 649: 640: 631: 630: 602: 591: 590: 580: 570: 546: 540: 539: 529: 519: 495: 480: 479: 461: 426: 202:Roy John Britten 3366: 3365: 3361: 3360: 3359: 3357: 3356: 3355: 3341: 3340: 3339: 3338: 3291: 3287: 3264:(9): e2300080. 3250: 3246: 3199: 3195: 3132: 3128: 3073: 3069: 3036:(7): e1004525. 3022: 3018: 3011: 2997: 2993: 2954:(7814): 83–89. 2940: 2936: 2911:10.1038/nrg3117 2891: 2887: 2840: 2836: 2791: 2787: 2732: 2728: 2670: 2666: 2629:Current Biology 2621: 2617: 2602: 2598: 2567: 2563: 2532: 2528: 2489:(7414): 57–74. 2475: 2471: 2434:Genome Research 2426: 2419: 2408: 2404: 2393: 2389: 2349: 2343: 2339: 2294: 2290: 2245: 2238: 2207: 2200: 2181: 2177: 2166: 2162: 2147: 2143: 2128: 2124: 2093: 2089: 2036: 2032: 1979: 1975: 1922: 1918: 1869:"Ignorant DNA?" 1865: 1861: 1814: 1810: 1763: 1759: 1714: 1710: 1671: 1667: 1628: 1624: 1571: 1567: 1556: 1552: 1541: 1532: 1509: 1502: 1489: 1485: 1438: 1434: 1403: 1399: 1368: 1364: 1353: 1349: 1326: 1322: 1311: 1307: 1296: 1289: 1250: 1246: 1207: 1200: 1169: 1160: 1113: 1109: 1070: 1063: 1016: 1009: 962: 958: 929: 925: 888: 884: 829: 822: 783: 776: 745: 741: 694: 687: 647: 641: 634: 603: 594: 547: 543: 510:(5): e1004351. 496: 483: 438:Current Biology 427: 418: 413: 381: 315: 277: 269: 215: 108: 83:C-value paradox 58: 32:—mostly, 17: 12: 11: 5: 3364: 3354: 3353: 3337: 3336: 3285: 3244: 3193: 3126: 3067: 3016: 3009: 2991: 2934: 2885: 2834: 2785: 2726: 2675:(April 2013). 2664: 2615: 2596: 2561: 2526: 2469: 2417: 2402: 2387: 2366:10.1086/676588 2337: 2308:(3): 642–645. 2288: 2259:(3): 578–590. 2236: 2198: 2175: 2160: 2141: 2122: 2087: 2030: 1973: 1916: 1859: 1808: 1757: 1708: 1665: 1622: 1565: 1550: 1530: 1500: 1483: 1432: 1397: 1378:(115): 52–54. 1362: 1347: 1336:(3): 107–111. 1320: 1305: 1287: 1244: 1198: 1158: 1107: 1061: 1007: 978:10.1086/282445 966:Optics Express 956: 923: 902:(2): 111–176. 882: 820: 793:(3): 187–207. 774: 755:(6): 807–821. 739: 685: 658:(1): 162–171. 632: 613:(6): 651–662. 592: 561:(4): 634–650. 541: 481: 415: 414: 412: 409: 408: 407: 405:Non-coding RNA 402: 400:Non-coding DNA 397: 392: 387: 385:ENCODE Project 380: 377: 314: 313:Non-functional 311: 276: 273: 268: 265: 214: 211: 151: 150: 147: 144: 141: 118:neutral theory 106: 97:Crafoord Prize 67:Hermann Muller 63:J.B.S. Haldane 57: 54: 46:Non-coding DNA 15: 9: 6: 4: 3: 2: 3363: 3352: 3349: 3348: 3346: 3332: 3328: 3323: 3318: 3313: 3308: 3304: 3300: 3296: 3289: 3281: 3277: 3272: 3267: 3263: 3259: 3255: 3248: 3240: 3236: 3231: 3226: 3221: 3216: 3212: 3208: 3204: 3197: 3189: 3185: 3180: 3175: 3170: 3165: 3161: 3157: 3153: 3149: 3145: 3141: 3137: 3130: 3122: 3118: 3113: 3108: 3103: 3098: 3094: 3090: 3086: 3082: 3078: 3071: 3063: 3059: 3054: 3049: 3044: 3039: 3035: 3031: 3030:PLOS Genetics 3027: 3020: 3012: 3010:9781605354699 3006: 3002: 2995: 2987: 2983: 2978: 2973: 2969: 2965: 2961: 2957: 2953: 2949: 2945: 2938: 2930: 2926: 2921: 2916: 2912: 2908: 2904: 2900: 2896: 2889: 2881: 2877: 2872: 2867: 2862: 2857: 2853: 2849: 2845: 2838: 2830: 2826: 2821: 2816: 2812: 2808: 2804: 2800: 2796: 2789: 2781: 2777: 2772: 2767: 2762: 2757: 2753: 2749: 2746:(33): E3365. 2745: 2741: 2737: 2730: 2722: 2718: 2713: 2708: 2703: 2698: 2694: 2690: 2686: 2682: 2678: 2674: 2668: 2660: 2656: 2651: 2646: 2642: 2638: 2634: 2630: 2626: 2619: 2611: 2607: 2600: 2592: 2588: 2584: 2580: 2576: 2572: 2565: 2557: 2553: 2549: 2545: 2541: 2537: 2530: 2522: 2518: 2513: 2508: 2504: 2500: 2496: 2492: 2488: 2484: 2480: 2473: 2465: 2461: 2456: 2451: 2447: 2443: 2439: 2435: 2431: 2424: 2422: 2413: 2406: 2398: 2391: 2383: 2379: 2375: 2371: 2367: 2363: 2359: 2355: 2348: 2341: 2333: 2329: 2324: 2319: 2315: 2311: 2307: 2303: 2299: 2292: 2284: 2280: 2275: 2270: 2266: 2262: 2258: 2254: 2250: 2243: 2241: 2232: 2228: 2224: 2220: 2216: 2212: 2205: 2203: 2194: 2190: 2186: 2179: 2171: 2164: 2156: 2152: 2145: 2137: 2133: 2126: 2118: 2114: 2110: 2106: 2102: 2098: 2091: 2083: 2079: 2075: 2071: 2066: 2061: 2057: 2053: 2049: 2045: 2041: 2034: 2026: 2022: 2018: 2014: 2009: 2004: 2000: 1996: 1992: 1988: 1984: 1977: 1969: 1965: 1961: 1957: 1952: 1947: 1943: 1939: 1935: 1931: 1927: 1920: 1912: 1908: 1904: 1900: 1895: 1890: 1886: 1882: 1878: 1874: 1870: 1863: 1855: 1851: 1847: 1843: 1839: 1835: 1831: 1827: 1823: 1819: 1812: 1804: 1800: 1796: 1792: 1788: 1784: 1780: 1776: 1772: 1768: 1761: 1753: 1749: 1744: 1739: 1735: 1731: 1727: 1723: 1719: 1712: 1704: 1700: 1696: 1692: 1688: 1684: 1680: 1676: 1669: 1661: 1657: 1653: 1649: 1645: 1641: 1637: 1633: 1626: 1618: 1614: 1610: 1606: 1601: 1596: 1592: 1588: 1585:(5645): 501. 1584: 1580: 1576: 1569: 1561: 1554: 1546: 1539: 1537: 1535: 1526: 1522: 1518: 1514: 1507: 1505: 1496: 1495: 1487: 1479: 1475: 1471: 1467: 1463: 1459: 1455: 1451: 1447: 1443: 1436: 1428: 1424: 1420: 1416: 1412: 1408: 1401: 1393: 1389: 1385: 1381: 1377: 1373: 1366: 1358: 1351: 1343: 1339: 1335: 1331: 1324: 1316: 1309: 1301: 1294: 1292: 1283: 1279: 1275: 1271: 1267: 1263: 1259: 1255: 1248: 1240: 1236: 1232: 1228: 1224: 1220: 1216: 1212: 1205: 1203: 1194: 1190: 1186: 1182: 1178: 1174: 1167: 1165: 1163: 1154: 1150: 1146: 1142: 1138: 1134: 1130: 1126: 1122: 1118: 1111: 1103: 1099: 1095: 1091: 1087: 1083: 1079: 1075: 1068: 1066: 1057: 1053: 1049: 1045: 1041: 1037: 1033: 1029: 1025: 1021: 1014: 1012: 1003: 999: 995: 991: 987: 983: 979: 975: 971: 967: 960: 951: 946: 942: 938: 934: 927: 919: 915: 910: 905: 901: 897: 893: 886: 878: 874: 869: 864: 859: 854: 850: 846: 842: 838: 834: 827: 825: 816: 812: 808: 804: 800: 796: 792: 788: 781: 779: 770: 766: 762: 758: 754: 750: 743: 735: 731: 726: 721: 716: 711: 707: 703: 699: 692: 690: 681: 677: 673: 669: 665: 661: 657: 653: 646: 639: 637: 628: 624: 620: 616: 612: 608: 601: 599: 597: 588: 584: 579: 574: 569: 564: 560: 556: 552: 545: 537: 533: 528: 523: 518: 513: 509: 505: 504:PLOS Genetics 501: 494: 492: 490: 488: 486: 477: 473: 469: 465: 460: 455: 451: 447: 443: 439: 435: 431: 425: 423: 421: 416: 406: 403: 401: 398: 396: 393: 391: 388: 386: 383: 382: 376: 372: 370: 366: 361: 358: 353: 351: 347: 343: 339: 335: 331: 326: 322: 320: 310: 308: 303: 301: 297: 293: 289: 285: 281: 272: 263: 259: 255: 250: 247: 244: 240: 239:David Comings 234: 229: 225: 221: 218: 209: 205: 203: 197: 193: 191: 185: 183: 177: 175: 167: 166:Francis Crick 163: 159: 156: 148: 145: 142: 139: 135: 134: 133: 130: 125: 123: 119: 113: 110: 98: 94: 90: 86: 84: 78: 74: 72: 68: 64: 53: 49: 47: 41: 39: 35: 31: 27: 23: 19: 3302: 3298: 3288: 3261: 3257: 3247: 3210: 3206: 3196: 3143: 3139: 3129: 3084: 3080: 3070: 3033: 3029: 3019: 3000: 2994: 2951: 2947: 2937: 2905:(1): 36–46. 2902: 2898: 2888: 2851: 2847: 2837: 2802: 2798: 2788: 2743: 2739: 2729: 2684: 2680: 2673:Doolittle WF 2667: 2632: 2628: 2618: 2610:The Observer 2609: 2599: 2574: 2570: 2564: 2539: 2535: 2529: 2486: 2482: 2472: 2437: 2433: 2411: 2405: 2396: 2390: 2360:(1): 14–24. 2357: 2353: 2340: 2305: 2301: 2291: 2256: 2252: 2214: 2210: 2192: 2188: 2184: 2178: 2169: 2163: 2154: 2150: 2144: 2135: 2125: 2100: 2096: 2090: 2047: 2043: 2033: 1990: 1986: 1976: 1933: 1929: 1919: 1876: 1872: 1862: 1821: 1817: 1811: 1770: 1766: 1760: 1725: 1721: 1711: 1678: 1674: 1668: 1635: 1631: 1625: 1582: 1578: 1568: 1559: 1553: 1544: 1516: 1512: 1493: 1486: 1445: 1441: 1435: 1413:(2): 81–86. 1410: 1406: 1400: 1375: 1371: 1365: 1356: 1350: 1333: 1329: 1323: 1314: 1308: 1299: 1257: 1253: 1247: 1214: 1210: 1176: 1172: 1120: 1116: 1110: 1077: 1073: 1023: 1019: 969: 965: 959: 940: 936: 926: 899: 895: 885: 840: 836: 790: 786: 752: 748: 742: 705: 701: 655: 651: 610: 606: 558: 554: 544: 507: 503: 441: 437: 390:Human genome 373: 362: 354: 338:Alu elements 327: 323: 316: 304: 287: 283: 278: 270: 261: 257: 252: 248: 242: 236: 231: 227: 223: 219: 216: 207: 199: 195: 190:Thomas Jukes 186: 178: 171: 152: 126: 114: 102: 79: 75: 71:Genetic load 59: 50: 42: 25: 21: 20: 18: 3102:10230/59591 2103:: 247–278. 1519:: 366–370. 1179:: 237–256. 943:: 267–273. 300:centromeres 174:transposons 129:Susumu Ohno 93:Tomoko Ohta 38:transposons 34:pseudogenes 3207:Cell Cycle 2854:(1): 412. 2195:: 340–342. 2157:: 174–182. 708:: 831068. 411:References 348:-Alu) and 288:non-coding 284:functional 275:Functional 109:t analysis 3258:BioEssays 937:Hereditas 815:254768457 769:254277794 3345:Category 3331:25674102 3280:37318305 3239:23759593 3188:35859178 3121:37104599 3112:10250106 3062:25057982 2986:32460305 2929:22124482 2880:32957925 2829:24814287 2780:25107292 2721:23479647 2659:23578867 2591:26152174 2556:22955811 2521:22955616 2464:16024819 2382:14549993 2374:24921597 2332:25635041 2283:23431001 2231:23268340 2082:27111068 2025:31899622 1193:16097657 1153:13344748 1145:16063236 1002:84202145 994:24718213 918:14771033 877:24753594 807:36528415 734:35251134 680:27613442 672:25345709 587:24705080 536:24809441 476:28289437 468:23137679 379:See also 254:studies. 120:and the 22:Junk DNA 3322:4306305 3230:4685169 3179:9329122 3148:Bibcode 3081:Science 3053:4109858 2977:7547914 2956:Bibcode 2920:3324860 2871:7507296 2820:4041003 2771:4143013 2748:Bibcode 2712:3619371 2689:Bibcode 2637:Bibcode 2536:Science 2512:3439153 2491:Bibcode 2455:1182216 2323:5322545 2274:3622293 2074:7393317 2052:Bibcode 2017:7453799 1995:Bibcode 1968:8938434 1960:6256636 1938:Bibcode 1911:4261755 1903:7393318 1881:Bibcode 1854:4233826 1846:7366731 1826:Bibcode 1803:4311366 1795:6245369 1775:Bibcode 1752:4162765 1730:Bibcode 1683:Bibcode 1675:Science 1660:4001923 1640:Bibcode 1632:Science 1617:4216649 1587:Bibcode 1525:5065367 1478:4290427 1470:4925204 1450:Bibcode 1427:4616752 1392:4512011 1282:5789433 1262:Bibcode 1254:Science 1239:4874239 1219:Bibcode 1211:Science 1125:Bibcode 1102:5767777 1082:Bibcode 1074:Science 1056:4161261 1048:5637732 1028:Bibcode 986:2459205 909:1716299 868:4035993 845:Bibcode 725:8888898 615:Bibcode 578:3899985 527:4014423 446:Bibcode 430:Eddy SR 155:introns 138:paradox 56:History 30:genomes 3329:  3319:  3278:  3237:  3227:  3186:  3176:  3140:Nature 3119:  3109:  3060:  3050:  3007:  2984:  2974:  2948:Nature 2927:  2917:  2878:  2868:  2827:  2817:  2778:  2768:  2719:  2709:  2657:  2589:  2554:  2519:  2509:  2483:Nature 2462:  2452:  2380:  2372:  2330:  2320:  2281:  2271:  2229:  2117:372199 2115:  2080:  2072:  2044:Nature 2023:  2015:  1987:Nature 1966:  1958:  1930:Nature 1909:  1901:  1873:Nature 1852:  1844:  1818:Nature 1801:  1793:  1767:Nature 1750:  1722:Nature 1703:373120 1701:  1658:  1615:  1609:622185 1607:  1579:Nature 1523:  1476:  1468:  1442:Nature 1425:  1390:  1372:Nature 1280:  1237:  1191:  1151:  1143:  1117:Nature 1100:  1054:  1046:  1020:Nature 1000:  992:  984:  916:  906:  875:  865:  813:  805:  767:  732:  722:  678:  670:  585:  575:  534:  524:  474:  466:  307:ENCODE 298:, and 3305:: 2. 2378:S2CID 2350:(PDF) 2078:S2CID 2021:S2CID 1964:S2CID 1907:S2CID 1850:S2CID 1799:S2CID 1748:S2CID 1613:S2CID 1474:S2CID 1149:S2CID 1052:S2CID 998:S2CID 982:JSTOR 811:S2CID 765:S2CID 676:S2CID 648:(PDF) 555:Genes 472:S2CID 342:LINEs 334:SINEs 3327:PMID 3276:PMID 3235:PMID 3184:PMID 3117:PMID 3058:PMID 3005:ISBN 2982:PMID 2925:PMID 2876:PMID 2825:PMID 2776:PMID 2717:PMID 2655:PMID 2587:PMID 2552:PMID 2517:PMID 2460:PMID 2370:PMID 2328:PMID 2279:PMID 2227:PMID 2113:PMID 2070:PMID 2013:PMID 1956:PMID 1899:PMID 1842:PMID 1791:PMID 1699:PMID 1656:PMID 1605:PMID 1521:PMID 1466:PMID 1423:PMID 1407:Cell 1388:PMID 1330:Cell 1278:PMID 1235:PMID 1189:PMID 1141:PMID 1098:PMID 1044:PMID 990:PMID 914:PMID 873:PMID 803:PMID 730:PMID 668:PMID 583:PMID 532:PMID 464:PMID 346:VNTR 286:but 3351:DNA 3317:PMC 3307:doi 3266:doi 3225:PMC 3215:doi 3174:PMC 3164:hdl 3156:doi 3144:607 3107:PMC 3097:hdl 3089:doi 3085:380 3048:PMC 3038:doi 2972:PMC 2964:doi 2952:583 2915:PMC 2907:doi 2866:PMC 2856:doi 2815:PMC 2807:doi 2766:PMC 2756:doi 2744:111 2707:PMC 2697:doi 2685:110 2645:doi 2579:doi 2544:doi 2540:337 2507:PMC 2499:doi 2487:489 2450:PMC 2442:doi 2362:doi 2358:184 2318:PMC 2310:doi 2269:PMC 2261:doi 2219:doi 2215:430 2187:". 2155:109 2105:doi 2060:doi 2048:285 2003:doi 1991:288 1946:doi 1934:288 1889:doi 1877:285 1834:doi 1822:284 1783:doi 1771:284 1738:doi 1726:272 1691:doi 1679:204 1648:doi 1636:228 1595:doi 1583:271 1458:doi 1446:229 1415:doi 1380:doi 1376:242 1338:doi 1270:doi 1258:165 1227:doi 1215:161 1181:doi 1133:doi 1121:233 1090:doi 1078:164 1036:doi 1024:217 974:doi 945:doi 904:PMC 863:PMC 853:doi 841:111 795:doi 757:doi 720:PMC 710:doi 660:doi 623:doi 573:PMC 563:doi 522:PMC 512:doi 454:doi 243:all 3347:: 3325:. 3315:. 3301:. 3297:. 3274:. 3262:45 3260:. 3256:. 3233:. 3223:. 3211:12 3209:. 3205:. 3182:. 3172:. 3162:. 3154:. 3142:. 3138:. 3115:. 3105:. 3095:. 3083:. 3079:. 3056:. 3046:. 3034:10 3032:. 3028:. 2980:. 2970:. 2962:. 2950:. 2946:. 2923:. 2913:. 2903:13 2901:. 2897:. 2874:. 2864:. 2852:21 2850:. 2846:. 2823:. 2813:. 2801:. 2797:. 2774:. 2764:. 2754:. 2742:. 2738:. 2715:. 2705:. 2695:. 2683:. 2679:. 2653:. 2643:. 2633:23 2631:. 2627:. 2608:. 2585:. 2575:31 2573:. 2550:. 2538:. 2515:. 2505:. 2497:. 2485:. 2481:. 2458:. 2448:. 2438:15 2436:. 2432:. 2420:^ 2376:. 2368:. 2356:. 2352:. 2326:. 2316:. 2304:. 2300:. 2277:. 2267:. 2255:. 2251:. 2239:^ 2225:. 2213:. 2201:^ 2193:25 2191:. 2153:. 2134:. 2111:. 2101:34 2099:. 2076:. 2068:. 2058:. 2046:. 2042:. 2019:. 2011:. 2001:. 1989:. 1985:. 1962:. 1954:. 1944:. 1932:. 1928:. 1905:. 1897:. 1887:. 1875:. 1871:. 1848:. 1840:. 1832:. 1820:. 1797:. 1789:. 1781:. 1769:. 1746:. 1736:. 1724:. 1720:. 1697:. 1689:. 1677:. 1654:. 1646:. 1634:. 1611:. 1603:. 1593:. 1581:. 1577:. 1533:^ 1517:23 1515:. 1503:^ 1472:. 1464:. 1456:. 1444:. 1421:. 1409:. 1386:. 1374:. 1332:. 1290:^ 1276:. 1268:. 1256:. 1233:. 1225:. 1213:. 1201:^ 1187:. 1175:. 1161:^ 1147:. 1139:. 1131:. 1119:. 1096:. 1088:. 1076:. 1064:^ 1050:. 1042:. 1034:. 1022:. 1010:^ 996:. 988:. 980:. 970:22 968:. 941:35 939:. 935:. 912:. 898:. 894:. 871:. 861:. 851:. 839:. 835:. 823:^ 809:. 801:. 791:39 789:. 777:^ 763:. 753:29 751:. 728:. 718:. 706:13 704:. 700:. 688:^ 674:. 666:. 656:57 654:. 650:. 635:^ 621:. 609:. 595:^ 581:. 571:. 557:. 553:. 530:. 520:. 508:10 506:. 502:. 484:^ 470:. 462:. 452:. 442:22 440:. 436:. 419:^ 371:. 340:, 294:, 140:), 3333:. 3309:: 3303:6 3282:. 3268:: 3241:. 3217:: 3190:. 3166:: 3158:: 3150:: 3123:. 3099:: 3091:: 3064:. 3040:: 3013:. 2988:. 2966:: 2958:: 2931:. 2909:: 2882:. 2858:: 2831:. 2809:: 2803:6 2782:. 2758:: 2750:: 2723:. 2699:: 2691:: 2661:. 2647:: 2639:: 2612:. 2593:. 2581:: 2558:. 2546:: 2523:. 2501:: 2493:: 2466:. 2444:: 2384:. 2364:: 2334:. 2312:: 2306:7 2285:. 2263:: 2257:5 2233:. 2221:: 2138:. 2119:. 2107:: 2084:. 2062:: 2054:: 2027:. 2005:: 1997:: 1970:. 1948:: 1940:: 1913:. 1891:: 1883:: 1856:. 1836:: 1828:: 1805:. 1785:: 1777:: 1754:. 1740:: 1732:: 1705:. 1693:: 1685:: 1662:. 1650:: 1642:: 1619:. 1597:: 1589:: 1527:. 1480:. 1460:: 1452:: 1429:. 1417:: 1411:2 1394:. 1382:: 1344:. 1340:: 1334:1 1284:. 1272:: 1264:: 1241:. 1229:: 1221:: 1195:. 1183:: 1177:5 1155:. 1135:: 1127:: 1104:. 1092:: 1084:: 1058:. 1038:: 1030:: 1004:. 976:: 953:. 947:: 920:. 900:2 879:. 855:: 847:: 817:. 797:: 771:. 759:: 736:. 712:: 682:. 662:: 629:. 625:: 617:: 611:1 589:. 565:: 559:3 538:. 514:: 478:. 456:: 448:: 107:0 105:C 24:(

Index

genomes
pseudogenes
transposons
Non-coding DNA
J.B.S. Haldane
Hermann Muller
Genetic load
C-value paradox

Tomoko Ohta
Crafoord Prize
C0t analysis
neutral theory
nearly neutral theory
Susumu Ohno
paradox
introns

Francis Crick
transposons
Thomas Cavalier-Smith
Thomas Jukes
Roy John Britten
David Comings
Protein-coding sequences
regulatory sequences
origins of replication
centromeres
ENCODE
bacterial genomes

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑