Knowledge

Ion network

Source đź“ť

25: 126:: Electrolyte solutions, which contain dissolved ions, and ionic liquids, which are essentially molten salts at room temperature, are important systems for studying ion networks. Researchers have investigated the structure and dynamics of ion networks in these systems using a variety of experimental and theoretical techniques. 180:
have been applied to quantitatively study morphological characteristics of these structural patterns including ion networks. In this approach, the aggregate structures taken from MD trajectories are treated as mathematical structures called graphs, and their properties, such as graph spectrum, degree
114:
The study of ion networks and their implications in solution chemistry is an active and interdisciplinary field that has attracted attention from researchers across various disciplines, including chemistry, physics, materials science, and biology. Here are some key research subjects and activities in
105:
Overall, the concept of an ion network highlights the complex and dynamic interactions between ions and solvent molecules in solution, and its understanding is crucial for elucidating the behavior of electrolyte solutions in various contexts, ranging from biological systems to industrial processes,
81:
and coworkers in 2014. The notion of extended ion aggregates in electrolyte solutions, however, can be found in an earlier report. The ion network is particularly relevant in high-salt solutions where ions can aggregate and interact strongly and it has been investigated in an increasing number of
162:: The Hofmeister effect refers to the phenomenon where the addition of specific ions to a solution can significantly alter the solubility, stability, and other properties of solutes. Understanding the Hofmeister effect is essential for elucidating the role of ion networks in solution chemistry. 101:
ion networks can significantly affect the surrounding solvent molecules, particularly the water hydrogen-bonding networks in aqueous solutions that become intertwined with morphologically complementary ion networks. The presence of ion networks can disrupt the hydrogen-bonding network of water
181:
distribution, clustering coefficient, minimum path length, and graph entropy, are calculated and analyzed. For example, this approach has been used to identify two morphologically different ion aggregates, namely localized clusters and extended networks, in high-salt solutions of the
167:
Soft Matter Physics: Ion networks in solution are also of interest in the field of soft matter physics, where researchers study the behavior of complex fluids and materials. Understanding the structure and dynamics of ion networks is crucial for designing new materials with tailored
134:: Molecular dynamics simulations play a crucial role in understanding ion networks at the molecular level. By simulating the behavior of individual ions and solvent molecules over time, researchers can explore the formation, structure, and dynamics of ion networks in solution. 801:
Borodin, Oleg; Suo, Liumin; Gobet, Mallory; Ren, Xiaoming; Wang, Fei; Faraone, Antonio; Peng, Jing; Olguin, Marco; Schroeder, Marshall; Ding, Michael S.; Gobrogge, Eric; von Wald Cresce, Arthur; Munoz, Stephen; Dura, Joseph A.; Greenbaum, Steve (2017-10-24).
102:
molecules, altering the structure and properties of the solution. This disruption in water structure may have implications for various phenomena, including solvation dynamics, ion transport, and chemical reactions occurring in the solution.
85:
In high-salt solutions, ions can form clusters or aggregates due to their electrostatic interactions. These aggregates may further organize into spatially more extensive networks, where ions are connected through
49: 432:
Graham, Trent R.; Semrouni, David; Mamontov, Eugene; Ramirez-Cuesta, Anibal J.; Page, Katharine; Clark, Aurora; Schenter, Gregory K.; Pearce, Carolyn I.; Stack, Andrew G.; Wang, Hsiu-Wen (2018-12-20).
154:
are commonly used to study ion networks in solution. These techniques provide valuable information about the structure, composition, and dynamics of ion networks.
747: 315: 206: 629: 689: 630:"Ion aggregation in high salt solutions. IV. Graph-theoretical analyses of ion aggregate structure and water hydrogen bonding network" 316:"Ion aggregation in high salt solutions. II. Spectral graph analysis of water hydrogen-bonding network and ion aggregate structures" 690:"Ion aggregation in high salt solutions. V. Graph entropy analyses of ion aggregate structure and water hydrogen bonding network" 904:
Kim, Jungyu; Koo, Bonhyeop; Lim, Joonhyung; Jeon, Jonggu; Lim, Chaiho; Lee, Hochun; Kwak, Kyungwon; Cho, Minhaeng (2022-01-14).
434:"Coupled Multimodal Dynamics of Hydrogen-Containing Ion Networks in Water-Deficient, Sodium Hydroxide-Aluminate Solutions" 39: 566:
Yu, Deyang; Troya, Diego; Korovich, Andrew G.; Bostwick, Joshua E.; Colby, Ralph H.; Madsen, Louis A. (2023-04-14).
262:"Nanometer-Scale Ion Aggregates in Aqueous Electrolyte Solutions: Guanidinium Sulfate and Guanidinium Thiocyanate" 77:
is an interconnected network or structure composed of ions in a solution. The term "ion network" was coined by
498:
McEldrew, Michael; Goodwin, Zachary A. H.; Bi, Sheng; Kornyshev, Alexei A.; Bazant, Martin Z. (2021-05-01).
375: 151: 147: 849:
Lim, Joonhyung; Park, Kwanghee; Lee, Hochan; Kim, Jungyu; Kwak, Kyungwon; Cho, Minhaeng (2018-11-21).
906:"Dynamic Water Promotes Lithium-Ion Transport in Superconcentrated and Eutectic Aqueous Electrolytes" 943:
García-Domenech, Ramón; Gálvez, Jorge; de Julián-Ortiz, Jesus V.; Pogliani, Lionello (2008-03-01).
804:"Liquid Structure with Nano-Heterogeneity Promotes Cationic Transport in Concentrated Electrolytes" 748:"Ion aggregation in high salt solutions. VI. Spectral graph analysis of chaotropic ion aggregates" 499: 995: 143: 759: 701: 641: 521: 399: 387: 327: 218: 8: 905: 763: 705: 645: 600: 567: 525: 391: 331: 222: 886: 545: 511: 477: 176:
Analysis: Ions often self-assemble into large and polydisperse aggregates in solution.
131: 972: 964: 925: 890: 878: 870: 831: 823: 783: 775: 725: 717: 665: 657: 605: 587: 549: 537: 469: 461: 453: 411: 403: 351: 343: 289: 281: 242: 234: 182: 481: 433: 1000: 956: 917: 862: 815: 803: 767: 709: 649: 595: 579: 529: 445: 395: 335: 273: 226: 35: 921: 583: 54: 850: 533: 87: 989: 968: 944: 929: 874: 827: 779: 721: 661: 591: 541: 457: 449: 407: 347: 285: 261: 238: 91: 942: 851:"Nanometric Water Channels in Water-in-Salt Lithium Ion Battery Electrolyte" 819: 976: 882: 835: 787: 729: 669: 609: 473: 415: 355: 293: 246: 177: 173: 139: 123: 78: 866: 260:
Mason, P. E.; Dempsey, C. E.; Neilson, G. W.; Brady, J. W. (2005-12-01).
119: 98: 374:
Choi, Jun-Ho; Lee, Hochan; Choi, Hyung Ran; Cho, Minhaeng (2018-04-20).
207:"Ion aggregation in high salt solutions: Ion network versus ion cluster" 205:
Kim, Seongheun; Kim, Heejae; Choi, Jun-Ho; Cho, Minhaeng (2014-09-28).
960: 771: 713: 653: 465: 339: 277: 230: 568:"Uncorrelated Lithium-Ion Hopping in a Dynamic Solvent–Anion Network" 376:"Graph Theory and Ion and Molecular Aggregation in Aqueous Solutions" 44: 431: 516: 159: 24: 497: 500:"Ion Clusters and Networks in Water-in-Salt Electrolytes" 259: 565: 800: 90:and possibly other types of interactions, such as 987: 373: 903: 848: 204: 945:"Some New Trends in Chemical Graph Theory" 746:Choi, Jun-Ho; Cho, Minhaeng (2016-11-07). 688:Choi, Jun-Ho; Cho, Minhaeng (2016-05-28). 628:Choi, Jun-Ho; Cho, Minhaeng (2015-09-14). 314:Choi, Jun-Ho; Cho, Minhaeng (2014-10-21). 599: 515: 855:Journal of the American Chemical Society 745: 687: 627: 313: 988: 504:Journal of the Electrochemical Society 400:10.1146/annurev-physchem-050317-020915 741: 739: 683: 681: 679: 623: 621: 619: 561: 559: 493: 491: 427: 425: 369: 367: 365: 309: 307: 305: 303: 200: 198: 18: 438:The Journal of Physical Chemistry B 380:Annual Review of Physical Chemistry 266:The Journal of Physical Chemistry B 132:Molecular Dynamics (MD) Simulations 13: 736: 142:: Experimental techniques such as 14: 1012: 676: 616: 556: 488: 422: 362: 300: 195: 106:including lithium-ion batteries. 23: 936: 897: 842: 794: 752:The Journal of Chemical Physics 694:The Journal of Chemical Physics 634:The Journal of Chemical Physics 320:The Journal of Chemical Physics 211:The Journal of Chemical Physics 253: 82:research and review articles. 1: 922:10.1021/acsenergylett.1c02012 584:10.1021/acsenergylett.3c00454 189: 178:Graph-theoretical approaches 7: 109: 16:Ionic structure in solution 10: 1017: 148:nuclear magnetic resonance 183:Hofmeister series of ions 534:10.1149/1945-7111/abf975 450:10.1021/acs.jpcb.8b09375 150:(NMR) spectroscopy, and 140:Spectroscopic Techniques 820:10.1021/acsnano.7b05664 38:, as no other articles 144:infrared spectroscopy 867:10.1021/jacs.8b07696 88:electrostatic forces 861:(46): 15661–15667. 814:(10): 10462–10471. 764:2016JChPh.145q4501C 706:2016JChPh.144t4126C 646:2015JChPh.143j4110C 526:2021JElS..168e0514M 444:(50): 12097–12106. 392:2018ARPC...69..125C 332:2014JChPh.141o4502C 272:(50): 24185–24196. 223:2014JChPh.141l4510K 910:ACS Energy Letters 572:ACS Energy Letters 57:for suggestions. 47:to this page from 961:10.1021/cr0780006 772:10.1063/1.4966246 714:10.1063/1.4952648 654:10.1063/1.4930608 340:10.1063/1.4897638 278:10.1021/jp052799c 231:10.1063/1.4896227 160:Hofmeister Effect 97:The formation of 71: 70: 1008: 981: 980: 955:(3): 1127–1169. 949:Chemical Reviews 940: 934: 933: 901: 895: 894: 846: 840: 839: 798: 792: 791: 743: 734: 733: 685: 674: 673: 625: 614: 613: 603: 578:(4): 1944–1951. 563: 554: 553: 519: 495: 486: 485: 429: 420: 419: 371: 360: 359: 311: 298: 297: 257: 251: 250: 202: 152:X-ray scattering 92:hydrogen bonding 66: 63: 52: 50:related articles 27: 19: 1016: 1015: 1011: 1010: 1009: 1007: 1006: 1005: 986: 985: 984: 941: 937: 902: 898: 847: 843: 799: 795: 744: 737: 686: 677: 626: 617: 564: 557: 496: 489: 430: 423: 372: 363: 312: 301: 258: 254: 203: 196: 192: 112: 67: 61: 58: 48: 45:introduce links 28: 17: 12: 11: 5: 1014: 1004: 1003: 998: 983: 982: 935: 916:(1): 189–196. 896: 841: 793: 758:(17): 174501. 735: 700:(20): 204126. 675: 640:(10): 104110. 615: 555: 487: 421: 386:(1): 125–149. 361: 326:(15): 154502. 299: 252: 217:(12): 124510. 193: 191: 188: 187: 186: 170: 169: 164: 163: 156: 155: 136: 135: 128: 127: 122:Solutions and 111: 108: 69: 68: 55:Find link tool 31: 29: 22: 15: 9: 6: 4: 3: 2: 1013: 1002: 999: 997: 994: 993: 991: 978: 974: 970: 966: 962: 958: 954: 950: 946: 939: 931: 927: 923: 919: 915: 911: 907: 900: 892: 888: 884: 880: 876: 872: 868: 864: 860: 856: 852: 845: 837: 833: 829: 825: 821: 817: 813: 809: 805: 797: 789: 785: 781: 777: 773: 769: 765: 761: 757: 753: 749: 742: 740: 731: 727: 723: 719: 715: 711: 707: 703: 699: 695: 691: 684: 682: 680: 671: 667: 663: 659: 655: 651: 647: 643: 639: 635: 631: 624: 622: 620: 611: 607: 602: 597: 593: 589: 585: 581: 577: 573: 569: 562: 560: 551: 547: 543: 539: 535: 531: 527: 523: 518: 513: 510:(5): 050514. 509: 505: 501: 494: 492: 483: 479: 475: 471: 467: 463: 459: 455: 451: 447: 443: 439: 435: 428: 426: 417: 413: 409: 405: 401: 397: 393: 389: 385: 381: 377: 370: 368: 366: 357: 353: 349: 345: 341: 337: 333: 329: 325: 321: 317: 310: 308: 306: 304: 295: 291: 287: 283: 279: 275: 271: 267: 263: 256: 248: 244: 240: 236: 232: 228: 224: 220: 216: 212: 208: 201: 199: 194: 184: 179: 175: 172: 171: 166: 165: 161: 158: 157: 153: 149: 145: 141: 138: 137: 133: 130: 129: 125: 124:Ionic Liquids 121: 118: 117: 116: 107: 103: 100: 95: 93: 89: 83: 80: 76: 65: 56: 51: 46: 42: 41: 37: 32:This article 30: 26: 21: 20: 996:Electrolytes 952: 948: 938: 913: 909: 899: 858: 854: 844: 811: 807: 796: 755: 751: 697: 693: 637: 633: 575: 571: 507: 503: 441: 437: 383: 379: 323: 319: 269: 265: 255: 214: 210: 174:Graph Theory 115:this field: 113: 104: 96: 84: 74: 72: 59: 33: 168:properties. 120:Electrolyte 99:percolating 75:ion network 990:Categories 517:2103.04782 190:References 62:April 2024 53:; try the 40:link to it 969:0009-2665 930:2380-8195 891:207193956 875:0002-7863 828:1936-0851 780:0021-9606 722:0021-9606 662:0021-9606 592:2380-8195 550:232146868 542:0013-4651 458:1520-6106 408:0066-426X 348:0021-9606 286:1520-6106 239:0021-9606 43:. Please 977:18302420 883:30358996 836:29016112 808:ACS Nano 788:27825232 730:27250298 670:26374021 610:37090169 601:10112391 482:53212083 474:30404445 416:29401039 356:25338904 294:16375411 247:25273454 110:Research 1001:Liquids 760:Bibcode 702:Bibcode 642:Bibcode 522:Bibcode 466:1490569 388:Bibcode 328:Bibcode 219:Bibcode 975:  967:  928:  889:  881:  873:  834:  826:  786:  778:  728:  720:  668:  660:  608:  598:  590:  548:  540:  480:  472:  464:  456:  414:  406:  354:  346:  292:  284:  245:  237:  36:orphan 34:is an 887:S2CID 546:S2CID 512:arXiv 478:S2CID 973:PMID 965:ISSN 926:ISSN 879:PMID 871:ISSN 832:PMID 824:ISSN 784:PMID 776:ISSN 726:PMID 718:ISSN 666:PMID 658:ISSN 606:PMID 588:ISSN 538:ISSN 470:PMID 462:OSTI 454:ISSN 412:PMID 404:ISSN 352:PMID 344:ISSN 290:PMID 282:ISSN 243:PMID 235:ISSN 957:doi 953:108 918:doi 863:doi 859:140 816:doi 768:doi 756:145 710:doi 698:144 650:doi 638:143 596:PMC 580:doi 530:doi 508:168 446:doi 442:122 396:doi 336:doi 324:141 274:doi 270:109 227:doi 215:141 79:Cho 73:An 992:: 971:. 963:. 951:. 947:. 924:. 912:. 908:. 885:. 877:. 869:. 857:. 853:. 830:. 822:. 812:11 810:. 806:. 782:. 774:. 766:. 754:. 750:. 738:^ 724:. 716:. 708:. 696:. 692:. 678:^ 664:. 656:. 648:. 636:. 632:. 618:^ 604:. 594:. 586:. 574:. 570:. 558:^ 544:. 536:. 528:. 520:. 506:. 502:. 490:^ 476:. 468:. 460:. 452:. 440:. 436:. 424:^ 410:. 402:. 394:. 384:69 382:. 378:. 364:^ 350:. 342:. 334:. 322:. 318:. 302:^ 288:. 280:. 268:. 264:. 241:. 233:. 225:. 213:. 209:. 197:^ 146:, 94:. 979:. 959:: 932:. 920:: 914:7 893:. 865:: 838:. 818:: 790:. 770:: 762:: 732:. 712:: 704:: 672:. 652:: 644:: 612:. 582:: 576:8 552:. 532:: 524:: 514:: 484:. 448:: 418:. 398:: 390:: 358:. 338:: 330:: 296:. 276:: 249:. 229:: 221:: 185:. 64:) 60:(

Index


orphan
link to it
introduce links
related articles
Find link tool
Cho
electrostatic forces
hydrogen bonding
percolating
Electrolyte
Ionic Liquids
Molecular Dynamics (MD) Simulations
Spectroscopic Techniques
infrared spectroscopy
nuclear magnetic resonance
X-ray scattering
Hofmeister Effect
Graph Theory
Graph-theoretical approaches
Hofmeister series of ions


"Ion aggregation in high salt solutions: Ion network versus ion cluster"
Bibcode
2014JChPh.141l4510K
doi
10.1063/1.4896227
ISSN
0021-9606

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑