Knowledge

Inverse filter

Source đź“ť

73:. The glottal volume velocity waveform provides the link between movements of the vocal folds and the acoustical results of such movements, in that the glottis acts approximately as a source of volume velocity. That is, the impedance of the glottis is usually much higher than that of the vocal tract, and so glottal airflow is controlled mostly (but not entirely) by glottal area and subglottal pressure, and not by vocal-tract acoustics. This view of voiced speech production is often referred to as the 97:
moment. The transfer characteristic of the supraglottal vocal tract is defined with the input to the vocal tract considered to be the volume velocity at the glottis. For non-nasalized vowels, assuming a high-impedance volume velocity source at the glottis, the transfer function of the vocal tract below about 3000 Hz contains a number of pairs of complex-conjugate
120:, and not a CV mask or its equivalent, the inverse filter also must have a pole at zero frequency (an integration operation) to account for the radiation characteristic that connects volume velocity with acoustic pressure. Inverse filtering the output of a CV mask retains the level of zero flow, while inverse filtering a microphone signal does not. 96:
As practiced, inverse-filtering is usually limited to non-nasalized or slightly nasalized vowels, and the recorded waveform is passed through an “inverse-filter” having a transfer characteristic that is the inverse of the transfer characteristic of the supraglottal vocal tract configuration at that
92:
at the mouth having a linear response, little speech distortion, and a response time of under approximately 1/2 ms. A pneumotachograph having these properties was first described by Rothenberg and termed by him a circumferentially vented mask or CV mask.
57:
to a signal results in the original signal. Software or electronic inverse filters are often used to compensate for the effect of unwanted environmental filtering of signals.
89: 461: 213: 143:
Sengupta, Nandini; Sahidullah, Md; Saha, Goutam (August 2016). "Lung sound classification using cepstral-based statistical features".
74: 273: 531: 608: 304: 269: 526: 370: 206: 80:
A technique for obtaining an estimate of the glottal volume velocity waveform during voiced speech is the
264: 521: 36: 748: 536: 199: 506: 350: 697: 582: 451: 436: 106: 98: 28: 692: 646: 20: 661: 400: 283: 88:
having a good low frequency response, or the volume velocity at the mouth, as measured by a
656: 365: 323: 183:
A new inverse-filtering technique for deriving the glottal air flow waveform during voicing
8: 676: 666: 577: 123:
Inverse filtering depends on the source-filter model and a vocal tract filter that is
641: 160: 156: 16: 516: 466: 222: 152: 69:, an important variable is the waveform of the airflow, or volume velocity, at the 32: 360: 180: 110: 742: 727: 717: 636: 380: 230: 124: 722: 671: 511: 340: 164: 66: 651: 567: 375: 254: 486: 592: 557: 456: 446: 385: 117: 85: 587: 431: 410: 405: 259: 113:, for every vocal tract formant in the frequency range of interest. 618: 562: 481: 476: 395: 355: 249: 191: 142: 345: 278: 105:. Thus, an inverse-filter would have a pair of complex-conjugate 102: 70: 23:
subfield that focuses on analysing, modifying, and synthesizing
702: 572: 299: 245: 24: 712: 613: 541: 441: 415: 390: 309: 471: 84:
of either the radiated acoustic waveform, as measured by a
127:, however, the source and filter need not be independent. 35:, and scientific measurements. For example, with a 185:, J. Acoust. Soc. Amer., Vol. 53, #6, 1632 - 1645 740: 176: 174: 207: 101:, more commonly referred to as resonances or 65:In all proposed models for the production of 171: 214: 200: 49:is one such that the sequence of applying 741: 195: 221: 60: 13: 532:Texas Instruments LPC Speech Chips 109:, more commonly referred to as an 14: 760: 145:Computers in Biology and Medicine 609:Speech Synthesis Markup Language 270:Festival Speech Synthesis System 157:10.1016/j.compbiomed.2016.05.013 371:Microsoft text-to-speech voices 136: 1: 130: 7: 10: 765: 685: 627: 601: 550: 537:General Instrument SP0256 499: 424: 333: 322: 292: 238: 229: 351:Software Automatic Mouth 698:Concatenative synthesis 583:Microsoft Speech Server 452:NIAONiao Virtual Singer 116:If the input is from a 693:Articulatory synthesis 647:Franklin Seaney Cooper 21:electrical engineering 662:Wolfgang von Kempelen 442:CeVIO Creative Studio 401:CeVIO Creative Studio 284:Automatik Text Reader 657:Haskins Laboratories 366:Microsoft Speech API 82:“inverse-filtering” 75:source-filter model 667:Ignatius Mattingly 736: 735: 642:Catherine Browman 495: 494: 318: 317: 305:Lyricos / Flinger 61:In speech science 17:Signal processing 756: 749:Speech synthesis 578:Windows Narrator 517:Pattern playback 467:Symphonic Choirs 331: 330: 236: 235: 223:Speech synthesis 216: 209: 202: 193: 192: 187: 178: 169: 168: 140: 90:pneumotachograph 764: 763: 759: 758: 757: 755: 754: 753: 739: 738: 737: 732: 681: 629: 623: 597: 546: 491: 420: 361:Microsoft Agent 325: 314: 288: 225: 220: 190: 181:M. Rothenberg, 179: 172: 141: 137: 133: 63: 12: 11: 5: 762: 752: 751: 734: 733: 731: 730: 725: 720: 715: 710: 708:Inverse filter 705: 700: 695: 689: 687: 683: 682: 680: 679: 674: 669: 664: 659: 654: 649: 644: 639: 633: 631: 625: 624: 622: 621: 616: 611: 605: 603: 599: 598: 596: 595: 590: 585: 580: 575: 570: 565: 560: 554: 552: 548: 547: 545: 544: 539: 534: 529: 524: 519: 514: 509: 503: 501: 497: 496: 493: 492: 490: 489: 484: 479: 474: 469: 464: 459: 454: 449: 444: 439: 434: 428: 426: 422: 421: 419: 418: 413: 408: 403: 398: 393: 388: 383: 378: 373: 368: 363: 358: 353: 348: 343: 337: 335: 328: 320: 319: 316: 315: 313: 312: 307: 302: 296: 294: 290: 289: 287: 286: 281: 276: 267: 262: 257: 252: 242: 240: 233: 227: 226: 219: 218: 211: 204: 196: 189: 188: 170: 151:(1): 118–129. 134: 132: 129: 111:anti-resonance 62: 59: 44:inverse filter 9: 6: 4: 3: 2: 761: 750: 747: 746: 744: 729: 728:Voice cloning 726: 724: 721: 719: 718:Phase vocoder 716: 714: 711: 709: 706: 704: 701: 699: 696: 694: 691: 690: 688: 684: 678: 675: 673: 670: 668: 665: 663: 660: 658: 655: 653: 650: 648: 645: 643: 640: 638: 637:Alan W. Black 635: 634: 632: 626: 620: 617: 615: 612: 610: 607: 606: 604: 600: 594: 591: 589: 586: 584: 581: 579: 576: 574: 571: 569: 566: 564: 561: 559: 556: 555: 553: 549: 543: 540: 538: 535: 533: 530: 528: 525: 523: 520: 518: 515: 513: 510: 508: 505: 504: 502: 498: 488: 485: 483: 480: 478: 475: 473: 470: 468: 465: 463: 460: 458: 455: 453: 450: 448: 445: 443: 440: 438: 435: 433: 430: 429: 427: 423: 417: 414: 412: 409: 407: 404: 402: 399: 397: 394: 392: 389: 387: 384: 382: 381:Voice browser 379: 377: 374: 372: 369: 367: 364: 362: 359: 357: 354: 352: 349: 347: 344: 342: 339: 338: 336: 332: 329: 327: 321: 311: 308: 306: 303: 301: 298: 297: 295: 291: 285: 282: 280: 277: 275: 271: 268: 266: 263: 261: 258: 256: 253: 251: 247: 244: 243: 241: 237: 234: 232: 231:Free software 228: 224: 217: 212: 210: 205: 203: 198: 197: 194: 186: 184: 177: 175: 166: 162: 158: 154: 150: 146: 139: 135: 128: 126: 125:linear system 121: 119: 114: 112: 108: 104: 100: 94: 91: 87: 83: 78: 76: 72: 68: 58: 56: 52: 48: 45: 41: 38: 34: 30: 26: 22: 18: 723:Self-voicing 707: 672:Philip Rubin 551:Applications 512:Mockingboard 341:Amazon Polly 324:Proprietary 182: 148: 144: 138: 122: 115: 95: 81: 79: 67:human speech 64: 54: 50: 46: 43: 39: 15: 652:Gunnar Fant 630:Researchers 628:Developers/ 568:Dr. Sbaitso 376:Readspeaker 255:Gnopernicus 593:Voice font 558:AOLbyPhone 457:PPG Phonem 447:Chipspeech 386:CoolSpeech 131:References 118:microphone 86:microphone 602:Protocols 588:PlainTalk 432:Alter/Ego 411:LaLaVoice 406:Voiceroid 300:eCantorix 260:Gnuspeech 743:Category 619:VoiceXML 563:DialogOS 482:Vocaloid 477:Vocalina 462:Realivox 396:CereProc 356:Talk It! 334:Speaking 326:software 250:eSpeakNG 239:Speaking 165:27286184 103:formants 27:such as 686:Process 507:Echo II 500:Machine 487:Xiaoice 425:Singing 346:DECtalk 293:Singing 279:FreeTTS 71:glottis 25:signals 703:Currah 677:Yamaha 573:MBROLA 522:Phasor 437:Cantor 246:eSpeak 163:  107:zeroes 37:filter 33:images 19:is an 713:PSOLA 614:SABLE 542:TuVox 416:15.ai 391:IVONA 310:Sinsy 274:Flite 99:poles 53:then 42:, an 29:sound 527:RIAS 472:UTAU 265:Orca 161:PMID 153:doi 745:: 173:^ 159:. 149:75 147:. 77:. 31:, 272:/ 248:/ 215:e 208:t 201:v 167:. 155:: 55:h 51:g 47:h 40:g

Index

Signal processing
electrical engineering
signals
sound
images
filter
human speech
glottis
source-filter model
microphone
pneumotachograph
poles
formants
zeroes
anti-resonance
microphone
linear system
doi
10.1016/j.compbiomed.2016.05.013
PMID
27286184


M. Rothenberg, A new inverse-filtering technique for deriving the glottal air flow waveform during voicing, J. Acoust. Soc. Amer., Vol. 53, #6, 1632 - 1645
v
t
e
Speech synthesis
Free software
eSpeak

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑