Knowledge

Interval order

Source đź“ť

17: 53: 1510: 920: 297: 1395: 1292: 1008: 645: 443: 343: 1041: 383: 851: 214: 715: 966: 590: 564: 538: 512: 1540: 1327: 1224: 1081: 486: 86: 1569: 1140: 1589: 1160: 940: 874: 798: 774: 680: 403: 238: 1189: 1107: 800:. For interval orders, dimension can be arbitrarily large. And while the problem of determining the dimension of general partial orders is known to be 815:, which is defined analogously, but in terms of interval orders instead of linear orders. Thus, the interval dimension of a partially ordered set 1409: 1598: 746: 1762: 595:
The subclass of interval orders obtained by restricting the intervals to those of unit length, so they all have the form
1796: 879: 243: 1605:
1, 2, 5, 15, 53, 217, 1014, 5335, 31240, 201608, 1422074, 10886503, 89903100, 796713190, 7541889195, 75955177642, …
1691: 1332: 1229: 971: 598: 1401: 1142:. These are the involutions with no so-called left- or right-neighbor nestings where, for any involution 16: 408: 1682: 302: 1110: 1013: 348: 1113: 805: 818: 181: 1894: 688: 1889: 945: 1828:(2001), "Vassiliev invariants and a strange identity related to the Dedekind eta-function", 1754: 569: 543: 517: 491: 1853: 1817: 1783: 1722: 1518: 1297: 1194: 1054: 720:
Interval orders should not be confused with the interval-containment orders, which are the
459: 59: 1545: 8: 659: 1739: 1122: 1830: 1726: 1700: 1574: 1145: 925: 859: 783: 759: 665: 388: 223: 1844: 1165: 1086: 1868: 1809: 1791: 449: 1839: 1805: 1771: 1730: 1710: 655: 1849: 1813: 1779: 1718: 1689:(2010), "(2+2) free posets, ascent sequences and pattern avoiding permutations", 1043:. The interval dimension of an order is never greater than its order dimension. 753: 725: 721: 488:-free posets . Fully written out, this means that for any two pairs of elements 453: 448:
Such posets may be equivalently characterized as those with no induced subposet
1714: 743:
What is the complexity of determining the order dimension of an interval order?
683: 52: 1775: 804:, determining the dimension of an interval order remains a problem of unknown 1883: 1686: 173: 141: 45: 777: 133: 1794:(1970), "Intransitive indifference with unequal indifference intervals", 1117: 129: 1825: 735: 144:
corresponding to their left-to-right precedence relation—one interval,
1873:
Interval Orders and Interval Graphs: A Study of Partially Ordered Sets
648: 217: 88:
poset (black Hasse diagram) cannot be part of an interval order: if
1705: 1505:{\displaystyle F(t)=\sum _{n\geq 0}\prod _{i=1}^{n}(1-(1-t)^{i}).} 1681: 1656: 854: 801: 48:(left) and a collection of intervals that represents it (right). 1638: 176: 1755:"On the interplay between interval dimension and dimension" 1593: 724:
on intervals on the real line (equivalently, the orders of
1741:
Interval Orders: Combinatorial Structure and Algorithms
1571:
gives the number of unlabeled interval orders of size
140:
for a collection of intervals on the real line is the
1577: 1548: 1521: 1412: 1335: 1300: 1232: 1197: 1168: 1148: 1125: 1089: 1057: 1016: 974: 948: 928: 882: 862: 821: 786: 762: 691: 668: 601: 572: 546: 520: 494: 462: 411: 391: 351: 305: 246: 226: 184: 62: 1752: 1747:, Ph.D. dissertation, Technische Universität Berlin 1644: 216:is an interval order if and only if there exists a 1583: 1563: 1534: 1504: 1389: 1321: 1286: 1218: 1183: 1154: 1134: 1101: 1075: 1035: 1002: 960: 934: 914: 868: 845: 792: 768: 709: 674: 639: 584: 558: 532: 506: 480: 437: 397: 377: 337: 291: 232: 208: 80: 1400:Such involutions, according to semi-length, have 915:{\displaystyle \preceq _{1},\ldots ,\preceq _{k}} 1881: 731: 1753:Felsner, S.; Habib, M.; Möhring, R. H. (1994), 737: 292:{\displaystyle x_{i}\mapsto (\ell _{i},r_{i})} 752:An important parameter of partial orders is 1083:-free posets, unlabeled interval orders on 1591:. The sequence of these numbers (sequence 1390:{\displaystyle f(i)<f(i+1)<i<i+1} 1287:{\displaystyle i<i+1<f(i+1)<f(i)} 1843: 1704: 1867: 1790: 1621: 51: 15: 1737: 1632: 1109:are also in bijection with a subset of 1003:{\displaystyle x\preceq _{1}y,\ldots ,} 747:(more unsolved problems in mathematics) 640:{\displaystyle (\ell _{i},\ell _{i}+1)} 1882: 1824: 1667: 876:for which there exist interval orders 151:, being considered less than another, 1763:SIAM Journal on Discrete Mathematics 1645:Felsner, Habib & Möhring (1994) 1051:In addition to being isomorphic to 756:: the dimension of a partial order 13: 1861: 1797:Journal of Mathematical Psychology 438:{\displaystyle r_{i}<\ell _{j}} 14: 1906: 1685:; Claesson, Anders; Dukes, Mark; 1046: 338:{\displaystyle x_{i},x_{j}\in X} 1692:Journal of Combinatorial Theory 738:Unsolved problem in mathematics 240:to a set of real intervals, so 1661: 1650: 1626: 1615: 1558: 1552: 1496: 1487: 1474: 1465: 1422: 1416: 1366: 1354: 1345: 1339: 1316: 1307: 1281: 1275: 1266: 1254: 1213: 1204: 1178: 1169: 1096: 1090: 1070: 1058: 1036:{\displaystyle x\preceq _{k}y} 840: 828: 704: 692: 634: 602: 475: 463: 378:{\displaystyle x_{i}<x_{j}} 286: 260: 257: 203: 191: 75: 63: 1: 1845:10.1016/s0040-9383(00)00005-7 1675: 732:Interval orders and dimension 165:is completely to the left of 1810:10.1016/0022-2496(70)90062-3 1657:Bousquet-MĂ©lou et al. (2010) 1402:ordinary generating function 120:must be completely right of 20:A partial order on the set { 7: 846:{\displaystyle P=(X,\leq )} 452:to the pair of two-element 209:{\displaystyle P=(X,\leq )} 10: 1911: 1715:10.1016/j.jcta.2009.12.007 1294:and a right nesting is an 1776:10.1137/S089548019121885X 710:{\displaystyle (X,\cap )} 1683:Bousquet-MĂ©lou, Mireille 1609: 806:computational complexity 456:, in other words as the 1191:, a left nesting is an 961:{\displaystyle x\leq y} 811:A related parameter is 776:is the least number of 112:is completely right of 92:is completely right of 1585: 1565: 1536: 1506: 1464: 1391: 1323: 1288: 1220: 1185: 1156: 1136: 1103: 1077: 1037: 1004: 962: 936: 916: 870: 847: 794: 780:whose intersection is 770: 711: 676: 662:of an interval order ( 641: 586: 585:{\displaystyle c>b} 560: 559:{\displaystyle a>d} 534: 533:{\displaystyle c>d} 508: 507:{\displaystyle a>b} 482: 439: 399: 379: 339: 293: 234: 210: 125: 82: 49: 1586: 1566: 1537: 1535:{\displaystyle t^{n}} 1507: 1444: 1392: 1324: 1322:{\displaystyle i\in } 1289: 1221: 1219:{\displaystyle i\in } 1186: 1157: 1137: 1116:on ordered sets with 1104: 1078: 1076:{\displaystyle (2+2)} 1038: 1005: 963: 937: 917: 871: 848: 795: 771: 712: 677: 642: 587: 561: 535: 509: 483: 481:{\displaystyle (2+2)} 440: 400: 380: 340: 294: 235: 211: 83: 81:{\displaystyle (2+2)} 55: 44:} illustrated by its 19: 1738:Felsner, S. (1992), 1575: 1564:{\displaystyle F(t)} 1546: 1542:in the expansion of 1519: 1410: 1333: 1298: 1230: 1195: 1166: 1146: 1123: 1087: 1055: 1014: 972: 946: 926: 880: 860: 819: 784: 760: 689: 666: 599: 570: 544: 518: 492: 460: 409: 389: 349: 303: 299:, such that for any 244: 224: 182: 60: 1515:The coefficient of 660:comparability graph 647:, is precisely the 172:. More formally, a 100:overlaps with both 1792:Fishburn, Peter C. 1581: 1561: 1532: 1502: 1443: 1387: 1319: 1284: 1216: 1181: 1152: 1135:{\displaystyle 2n} 1132: 1099: 1073: 1033: 1000: 958: 932: 912: 866: 843: 813:interval dimension 790: 766: 707: 672: 637: 582: 556: 530: 504: 478: 435: 395: 375: 335: 289: 230: 206: 126: 124:(light gray edge). 78: 50: 1584:{\displaystyle n} 1428: 1155:{\displaystyle f} 935:{\displaystyle X} 869:{\displaystyle k} 793:{\displaystyle P} 769:{\displaystyle P} 675:{\displaystyle X} 398:{\displaystyle P} 233:{\displaystyle X} 1902: 1876: 1856: 1847: 1820: 1786: 1759: 1748: 1746: 1733: 1708: 1670: 1665: 1659: 1654: 1648: 1642: 1636: 1630: 1624: 1619: 1596: 1590: 1588: 1587: 1582: 1570: 1568: 1567: 1562: 1541: 1539: 1538: 1533: 1531: 1530: 1511: 1509: 1508: 1503: 1495: 1494: 1463: 1458: 1442: 1396: 1394: 1393: 1388: 1328: 1326: 1325: 1320: 1293: 1291: 1290: 1285: 1225: 1223: 1222: 1217: 1190: 1188: 1187: 1184:{\displaystyle } 1182: 1161: 1159: 1158: 1153: 1141: 1139: 1138: 1133: 1111:fixed-point-free 1108: 1106: 1105: 1102:{\displaystyle } 1100: 1082: 1080: 1079: 1074: 1042: 1040: 1039: 1034: 1029: 1028: 1009: 1007: 1006: 1001: 987: 986: 967: 965: 964: 959: 941: 939: 938: 933: 921: 919: 918: 913: 911: 910: 892: 891: 875: 873: 872: 867: 852: 850: 849: 844: 799: 797: 796: 791: 775: 773: 772: 767: 739: 722:inclusion orders 716: 714: 713: 708: 681: 679: 678: 673: 646: 644: 643: 638: 627: 626: 614: 613: 591: 589: 588: 583: 565: 563: 562: 557: 539: 537: 536: 531: 513: 511: 510: 505: 487: 485: 484: 479: 444: 442: 441: 436: 434: 433: 421: 420: 404: 402: 401: 396: 384: 382: 381: 376: 374: 373: 361: 360: 344: 342: 341: 336: 328: 327: 315: 314: 298: 296: 295: 290: 285: 284: 272: 271: 256: 255: 239: 237: 236: 231: 215: 213: 212: 207: 87: 85: 84: 79: 1910: 1909: 1905: 1904: 1903: 1901: 1900: 1899: 1880: 1879: 1869:Fishburn, Peter 1864: 1862:Further reading 1757: 1744: 1678: 1673: 1666: 1662: 1655: 1651: 1643: 1639: 1631: 1627: 1622:Fishburn (1970) 1620: 1616: 1612: 1592: 1576: 1573: 1572: 1547: 1544: 1543: 1526: 1522: 1520: 1517: 1516: 1490: 1486: 1459: 1448: 1432: 1411: 1408: 1407: 1334: 1331: 1330: 1299: 1296: 1295: 1231: 1228: 1227: 1196: 1193: 1192: 1167: 1164: 1163: 1147: 1144: 1143: 1124: 1121: 1120: 1088: 1085: 1084: 1056: 1053: 1052: 1049: 1024: 1020: 1015: 1012: 1011: 982: 978: 973: 970: 969: 947: 944: 943: 927: 924: 923: 906: 902: 887: 883: 881: 878: 877: 861: 858: 857: 820: 817: 816: 785: 782: 781: 761: 758: 757: 754:order dimension 750: 749: 744: 741: 734: 690: 687: 686: 667: 664: 663: 622: 618: 609: 605: 600: 597: 596: 571: 568: 567: 545: 542: 541: 519: 516: 515: 493: 490: 489: 461: 458: 457: 429: 425: 416: 412: 410: 407: 406: 390: 387: 386: 369: 365: 356: 352: 350: 347: 346: 323: 319: 310: 306: 304: 301: 300: 280: 276: 267: 263: 251: 247: 245: 242: 241: 225: 222: 221: 183: 180: 179: 171: 164: 157: 150: 61: 58: 57: 12: 11: 5: 1908: 1898: 1897: 1892: 1878: 1877: 1863: 1860: 1859: 1858: 1838:(5): 945–960, 1822: 1804:(1): 144–149, 1788: 1750: 1735: 1699:(7): 884–909, 1687:Kitaev, Sergey 1677: 1674: 1672: 1671: 1660: 1649: 1637: 1625: 1613: 1611: 1608: 1607: 1606: 1580: 1560: 1557: 1554: 1551: 1529: 1525: 1513: 1512: 1501: 1498: 1493: 1489: 1485: 1482: 1479: 1476: 1473: 1470: 1467: 1462: 1457: 1454: 1451: 1447: 1441: 1438: 1435: 1431: 1427: 1424: 1421: 1418: 1415: 1386: 1383: 1380: 1377: 1374: 1371: 1368: 1365: 1362: 1359: 1356: 1353: 1350: 1347: 1344: 1341: 1338: 1318: 1315: 1312: 1309: 1306: 1303: 1283: 1280: 1277: 1274: 1271: 1268: 1265: 1262: 1259: 1256: 1253: 1250: 1247: 1244: 1241: 1238: 1235: 1215: 1212: 1209: 1206: 1203: 1200: 1180: 1177: 1174: 1171: 1151: 1131: 1128: 1098: 1095: 1092: 1072: 1069: 1066: 1063: 1060: 1048: 1045: 1032: 1027: 1023: 1019: 999: 996: 993: 990: 985: 981: 977: 957: 954: 951: 931: 909: 905: 901: 898: 895: 890: 886: 865: 842: 839: 836: 833: 830: 827: 824: 789: 765: 745: 742: 736: 733: 730: 706: 703: 700: 697: 694: 684:interval graph 671: 636: 633: 630: 625: 621: 617: 612: 608: 604: 581: 578: 575: 555: 552: 549: 540:one must have 529: 526: 523: 503: 500: 497: 477: 474: 471: 468: 465: 432: 428: 424: 419: 415: 394: 372: 368: 364: 359: 355: 334: 331: 326: 322: 318: 313: 309: 288: 283: 279: 275: 270: 266: 262: 259: 254: 250: 229: 205: 202: 199: 196: 193: 190: 187: 169: 162: 155: 148: 138:interval order 77: 74: 71: 68: 65: 9: 6: 4: 3: 2: 1907: 1896: 1895:Combinatorics 1893: 1891: 1888: 1887: 1885: 1874: 1870: 1866: 1865: 1855: 1851: 1846: 1841: 1837: 1833: 1832: 1827: 1823: 1819: 1815: 1811: 1807: 1803: 1799: 1798: 1793: 1789: 1785: 1781: 1777: 1773: 1769: 1765: 1764: 1756: 1751: 1743: 1742: 1736: 1732: 1728: 1724: 1720: 1716: 1712: 1707: 1702: 1698: 1694: 1693: 1688: 1684: 1680: 1679: 1669: 1668:Zagier (2001) 1664: 1658: 1653: 1646: 1641: 1635:, p. 47) 1634: 1633:Felsner (1992 1629: 1623: 1618: 1614: 1604: 1603: 1602: 1600: 1595: 1578: 1555: 1549: 1527: 1523: 1499: 1491: 1483: 1480: 1477: 1471: 1468: 1460: 1455: 1452: 1449: 1445: 1439: 1436: 1433: 1429: 1425: 1419: 1413: 1406: 1405: 1404: 1403: 1398: 1384: 1381: 1378: 1375: 1372: 1369: 1363: 1360: 1357: 1351: 1348: 1342: 1336: 1313: 1310: 1304: 1301: 1278: 1272: 1269: 1263: 1260: 1257: 1251: 1248: 1245: 1242: 1239: 1236: 1233: 1210: 1207: 1201: 1198: 1175: 1172: 1149: 1129: 1126: 1119: 1115: 1112: 1093: 1067: 1064: 1061: 1047:Combinatorics 1044: 1030: 1025: 1021: 1017: 997: 994: 991: 988: 983: 979: 975: 968:exactly when 955: 952: 949: 929: 907: 903: 899: 896: 893: 888: 884: 863: 856: 853:is the least 837: 834: 831: 825: 822: 814: 809: 807: 803: 787: 779: 778:linear orders 763: 755: 748: 729: 727: 723: 718: 701: 698: 695: 685: 669: 661: 657: 652: 650: 631: 628: 623: 619: 615: 610: 606: 593: 579: 576: 573: 553: 550: 547: 527: 524: 521: 501: 498: 495: 472: 469: 466: 455: 451: 446: 430: 426: 422: 417: 413: 405:exactly when 392: 370: 366: 362: 357: 353: 332: 329: 324: 320: 316: 311: 307: 281: 277: 273: 268: 264: 252: 248: 227: 219: 200: 197: 194: 188: 185: 178: 175: 168: 161: 154: 147: 143: 142:partial order 139: 135: 132:, especially 131: 123: 119: 115: 111: 107: 103: 99: 95: 91: 72: 69: 66: 54: 47: 46:Hasse diagram 43: 39: 35: 31: 27: 23: 18: 1890:Order theory 1875:, John Wiley 1872: 1835: 1829: 1801: 1795: 1770:(1): 32–40, 1767: 1761: 1740: 1696: 1695:, Series A, 1690: 1663: 1652: 1640: 1628: 1617: 1514: 1399: 1050: 812: 810: 751: 719: 682:, ≤) is the 653: 594: 447: 166: 159: 152: 145: 137: 134:order theory 127: 121: 117: 113: 109: 105: 101: 97: 93: 89: 41: 37: 33: 29: 25: 21: 1826:Zagier, Don 1118:cardinality 1114:involutions 130:mathematics 1884:Categories 1676:References 1329:such that 1226:such that 656:complement 649:semiorders 450:isomorphic 1706:0806.0666 1601:) begins 1481:− 1472:− 1446:∏ 1437:≥ 1430:∑ 1305:∈ 1202:∈ 1022:⪯ 995:… 980:⪯ 953:≤ 904:⪯ 897:… 885:⪯ 838:≤ 726:dimension 702:∩ 620:ℓ 607:ℓ 427:ℓ 330:∈ 265:ℓ 258:↦ 218:bijection 201:≤ 174:countable 1871:(1985), 1831:Topology 345:we have 1854:1860536 1818:0253942 1784:1259007 1731:8677150 1723:2652101 1597:in the 1594:A022493 855:integer 802:NP-hard 658:of the 116:, then 1852:  1816:  1782:  1729:  1721:  728:≤ 2). 454:chains 136:, the 108:, and 96:, and 1758:(PDF) 1745:(PDF) 1727:S2CID 1701:arXiv 1610:Notes 942:with 220:from 177:poset 158:, if 1599:OEIS 1376:< 1370:< 1349:< 1270:< 1249:< 1237:< 1010:and 654:The 577:> 551:> 525:> 514:and 499:> 423:< 363:< 104:and 56:The 1840:doi 1806:doi 1772:doi 1711:doi 1697:117 1162:on 922:on 566:or 385:in 128:In 1886:: 1850:MR 1848:, 1836:40 1834:, 1814:MR 1812:, 1800:, 1780:MR 1778:, 1766:, 1760:, 1725:, 1719:MR 1717:, 1709:, 1397:. 808:. 717:. 651:. 592:. 445:. 40:, 36:, 32:, 28:, 24:, 1857:. 1842:: 1821:. 1808:: 1802:7 1787:. 1774:: 1768:7 1749:. 1734:. 1713:: 1703:: 1647:. 1579:n 1559:) 1556:t 1553:( 1550:F 1528:n 1524:t 1500:. 1497:) 1492:i 1488:) 1484:t 1478:1 1475:( 1469:1 1466:( 1461:n 1456:1 1453:= 1450:i 1440:0 1434:n 1426:= 1423:) 1420:t 1417:( 1414:F 1385:1 1382:+ 1379:i 1373:i 1367:) 1364:1 1361:+ 1358:i 1355:( 1352:f 1346:) 1343:i 1340:( 1337:f 1317:] 1314:n 1311:2 1308:[ 1302:i 1282:) 1279:i 1276:( 1273:f 1267:) 1264:1 1261:+ 1258:i 1255:( 1252:f 1246:1 1243:+ 1240:i 1234:i 1214:] 1211:n 1208:2 1205:[ 1199:i 1179:] 1176:n 1173:2 1170:[ 1150:f 1130:n 1127:2 1097:] 1094:n 1091:[ 1071:) 1068:2 1065:+ 1062:2 1059:( 1031:y 1026:k 1018:x 998:, 992:, 989:y 984:1 976:x 956:y 950:x 930:X 908:k 900:, 894:, 889:1 864:k 841:) 835:, 832:X 829:( 826:= 823:P 788:P 764:P 740:: 705:) 699:, 696:X 693:( 670:X 635:) 632:1 629:+ 624:i 616:, 611:i 603:( 580:b 574:c 554:d 548:a 528:d 522:c 502:b 496:a 476:) 473:2 470:+ 467:2 464:( 431:j 418:i 414:r 393:P 371:j 367:x 358:i 354:x 333:X 325:j 321:x 317:, 312:i 308:x 287:) 282:i 278:r 274:, 269:i 261:( 253:i 249:x 228:X 204:) 198:, 195:X 192:( 189:= 186:P 170:2 167:I 163:1 160:I 156:2 153:I 149:1 146:I 122:b 118:c 114:d 110:c 106:b 102:a 98:d 94:b 90:a 76:) 73:2 70:+ 67:2 64:( 42:f 38:e 34:d 30:c 26:b 22:a

Index

The Hasse diagram for a partial order alongside an interval representation of the order.
Hasse diagram

mathematics
order theory
partial order
countable
poset
bijection
isomorphic
chains
semiorders
complement
comparability graph
interval graph
inclusion orders
dimension
(more unsolved problems in mathematics)
order dimension
linear orders
NP-hard
computational complexity
integer
fixed-point-free
involutions
cardinality
ordinary generating function
A022493
OEIS
Fishburn (1970)

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑