Knowledge

Hilbert's syzygy theorem

Source 📝

2555: 129:
The syzygy theorem first appeared in Hilbert's seminal paper "Über die Theorie der algebraischen Formen" (1890). The paper is split into five parts: part I proves Hilbert's basis theorem over a field, while part II proves it over the integers. Part III contains the syzygy theorem (Theorem III), which
1157: 1459: 2353: 3549:
degree necessarily occurs. However such examples are extremely rare, and this sets the question of an algorithm that is efficient when the output is not too large. At the present time, the best algorithms for computing syzygies are
2665: 1076: 1381: 2022: 2883: 2121: 957: 3207: 3311: 2186: 94:. As the relations form a module, one may consider the relations between the relations; the theorem asserts that, if one continues in this way, starting with a module over a polynomial ring in 3004: 3110: 381: 777: 601: 470: 2550:{\displaystyle G_{i_{1}}\wedge \cdots \wedge G_{i_{t}}\mapsto \sum _{j=1}^{t}(-1)^{j+1}g_{i_{j}}G_{i_{1}}\wedge \cdots \wedge {\widehat {G}}_{i_{j}}\wedge \cdots \wedge G_{i_{t}},} 529: 300: 3370:
whose unknowns are the coefficients of these monomials. Therefore, any algorithm for linear systems implies an algorithm for syzygies, as soon as a bound of the degrees is known.
3362:
of the generators of the module of syzygies. In fact, the coefficients of the syzygies are unknown polynomials. If the degree of these polynomials is bounded, the number of their
1912: 2799: 1765: 713: 222: 2345: 3528: 670: 2560:
where the hat means that the factor is omitted. A straightforward computation shows that the composition of two consecutive such maps is zero, and thus that one has a
1578: 2283: 2219: 980: 3344: 3137: 3035: 2916: 2250: 2052: 1943: 1859: 1241: 1214: 1187: 888: 861: 834: 807: 634: 411: 3621: 2740: 1832: 3455: 3743: 3723: 3699: 3679: 3655: 1676: 1542: 1317: 2815: 2569: 1152:{\displaystyle 0\longrightarrow R_{n}\longrightarrow L_{n-1}\longrightarrow \cdots \longrightarrow L_{0}\longrightarrow M\longrightarrow 0,} 1454:{\displaystyle 0\longrightarrow L_{k}\longrightarrow L_{k-1}\longrightarrow \cdots \longrightarrow L_{0}\longrightarrow M\longrightarrow 0} 993:
module is the module of the relations between generators of the first syzygy module. By continuing in this way, one may define the
1954: 3554:
algorithms. They allow the computation of the first syzygy module, and also, with almost no extra cost, all syzygies modules.
2819: 2063: 896: 3763: 3146: 3810:
Die Frage der endlich vielen Schritte in der Theorie der Polynomideale. Unter Benutzung nachgelassener SĂ€tze von K. Hentzelt
3221: 2129: 2935: 3040: 314: 3874: 3866: 1702:
In the case of a single indeterminate, Hilbert's syzygy theorem is an instance of the theorem asserting that over a
1621:
of a ring is the supremum of the projective dimensions of all modules, Hilbert's syzygy theorem may be restated as:
724: 537: 3928: 1718:, also called "complex of exterior algebra", allows, in some cases, an explicit description of all syzygy modules. 1477:
This upper bound on the projective dimension is sharp, that is, there are modules of projective dimension exactly
3746: 3896: 420: 3918: 3913: 482: 253: 60: 1868: 3891: 3546: 2758: 1724: 675: 181: 3758: 3367: 1021:, then by taking a basis as a generating set, the next syzygy module (and every subsequent one) is the 176: 83: 48: 2304: 3923: 3886: 3796: 3634: 139: 3484: 3374: 3354:
At Hilbert's time, there was no method available for computing syzygies. It was only known that an
1325: 64: 56: 1025:. If one does not take a basis as a generating set, then all subsequent syzygy modules are free. 607: 642: 2748: 1696: 1547: 3783: 3481:
such that the degrees occurring in a generating system of the first syzygy module is at most
2255: 2191: 1946: 983: 965: 3880: 3322: 3115: 3013: 2894: 2228: 2030: 1921: 1837: 1703: 1691:
In the case of zero indeterminates, Hilbert's syzygy theorem is simply the fact that every
1357: 1219: 1192: 1165: 1057: 866: 839: 812: 785: 612: 389: 165: 151: 91: 79: 8: 3565: 2684: 1776: 1329: 1050:. The above property of invariance, up to the sum direct with free modules, implies that 836:
is the module that is obtained with another generating set, there exist two free modules
157: 118: 114: 87: 32: 3402: 3728: 3708: 3684: 3664: 3640: 1626: 1492: 1267: 169: 131: 44: 2804: 3870: 3862: 3007: 1047: 3861:. Graduate Texts in Mathematics, 150. Springer-Verlag, New York, 1995. xvi+785 pp. 3813: 2744: 2055: 1915: 1618: 135: 40: 3551: 1216:
is projective. It can be shown that one may always choose the generating sets for
3877: 3702: 3658: 1373: 1262: 1244: 161: 52: 28: 3854: 2675: 1715: 716: 3907: 3378: 2561: 2222: 1617:
The theorem is also true for modules that are not finitely generated. As the
36: 3828: 3624: 3359: 2891:
th syzygy module is free of dimension one (generated by the product of all
1692: 2660:{\displaystyle 0\to L_{t}\to L_{t-1}\to \cdots \to L_{1}\to L_{0}\to R/I.} 16:
Theorem about linear relations in ideals and modules over polynomial rings
1862: 1350: 1022: 414: 101: 68: 20: 3821: 3817: 637: 3623:
causes the Hilbert syzygy theorem to hold. It turns out that this is
2801:
is regular, and the Koszul complex is thus a projective resolution of
39:
in 1890, that were introduced for solving important open questions in
3355: 3218:
The same proof applies for proving that the projective dimension of
2926:
th syzygy module is thus the quotient of a free module of dimension
113:
Hilbert's syzygy theorem is now considered to be an early result of
3363: 1070:
if not. This is equivalent with the existence of an exact sequence
3745:
is equal to the Krull dimension. This result may be proven using
117:. It is the starting point of the use of homological methods in 3826:
The question of finitely many steps in polynomial ideal theory
3366:
is also bounded. Expressing that one has a syzygy provides a
477: 134:. The last part, part V, proves finite generation of certain 3627:, which is an algebraic formulation of the fact that affine 138:. Incidentally part III also contains a special case of the 2680:
it is an exact sequence if one works with a polynomial ring
3859:
Commutative algebra. With a view toward algebraic geometry
2017:{\displaystyle \Lambda (L_{1})=\bigoplus _{t=0}^{k}L_{t},} 1243:
being free, that is for the above exact sequence to be a
2878:{\displaystyle k=R/\langle x_{1},\ldots ,x_{n}\rangle .} 2116:{\displaystyle G_{i_{1}}\wedge \cdots \wedge G_{i_{t}},} 952:{\displaystyle R_{1}\oplus F_{1}\cong S_{1}\oplus F_{2}} 3812:, Mathematische Annalen, Volume 95, Number 1, 736-788, 3782:
D. Hilbert, Über die Theorie der algebraischen Formen,
3202:{\displaystyle k=R/\langle x_{1},\ldots ,x_{n}\rangle } 2807: 63:, which establishes a bijective correspondence between 1056:
does not depend on the choice of generating sets. The
3731: 3711: 3687: 3667: 3643: 3568: 3530:
The same bound applies for testing the membership to
3487: 3405: 3325: 3306:{\displaystyle k/\langle g_{1},\ldots ,g_{t}\rangle } 3224: 3149: 3118: 3043: 3016: 2938: 2897: 2822: 2761: 2687: 2572: 2356: 2307: 2258: 2231: 2194: 2132: 2066: 2033: 1957: 1924: 1871: 1840: 1779: 1727: 1629: 1550: 1495: 1384: 1270: 1222: 1195: 1168: 1079: 968: 899: 869: 842: 815: 788: 727: 678: 645: 615: 540: 485: 423: 392: 317: 256: 184: 3346:
form a regular sequence of homogeneous polynomials.
100:
indeterminates over a field, one eventually finds a
2181:{\displaystyle i_{1}<i_{2}<\cdots <i_{t}.} 1706:, every submodule of a free module is itself free. 809:depends on the choice of a generating set, but, if 3737: 3717: 3693: 3673: 3649: 3637:. In fact the following generalization holds: Let 3615: 3562:One might wonder which ring-theoretic property of 3522: 3449: 3338: 3305: 3201: 3131: 3104: 3029: 2998: 2910: 2877: 2809: 2793: 2734: 2659: 2549: 2339: 2277: 2244: 2213: 2180: 2115: 2046: 2016: 1937: 1906: 1853: 1826: 1759: 1670: 1572: 1536: 1453: 1311: 1235: 1208: 1181: 1151: 974: 951: 882: 855: 828: 801: 771: 707: 664: 628: 595: 523: 464: 405: 375: 294: 216: 164:, but the concept generalizes trivially to (left) 3373:The first bound for syzygies (as well as for the 2999:{\displaystyle (x_{1},-x_{2},\ldots ,\pm x_{n}).} 3905: 3725:is finite; in that case the global dimension of 3143:). This proves that the projective dimension of 3105:{\displaystyle p_{1}x_{1}+\cdots +p_{n}x_{n}=1,} 376:{\displaystyle a_{1}g_{1}+\cdots +a_{k}g_{k}=0.} 2054:is the free module, which has, as a basis, the 1034:be the smallest integer, if any, such that the 27:is one of the three fundamental theorems about 3545:On the other hand, there are examples where a 3010:, as otherwise, there would exist polynomials 772:{\displaystyle 0\to R_{1}\to L_{0}\to M\to 0.} 596:{\displaystyle a_{1}G_{1}+\cdots +a_{k}G_{k},} 3112:which is impossible (substituting 0 for the 3300: 3268: 3196: 3164: 2869: 2837: 3681:has finite global dimension if and only if 3358:may be deduced from any upper bound of the 3799:, but extends easily to arbitrary modules. 3557: 2674:. In general the Koszul complex is not an 1356:In modern language, this implies that the 3829:(review and English-language translation) 1255:Hilbert's syzygy theorem states that, if 156:Originally, Hilbert defined syzygies for 145: 3906: 3747:Serre's theorem on regular local rings 1602:th syzygy module is free, but not the 1261:is a finitely generated module over a 465:{\displaystyle (G_{1},\ldots ,G_{k}).} 82:in Hilbert's terminology, between the 74:Hilbert's syzygy theorem concerns the 3764:Hilbert series and Hilbert polynomial 524:{\displaystyle (a_{1},\ldots ,a_{k})} 295:{\displaystyle (a_{1},\ldots ,a_{k})} 55:of polynomial rings over a field are 3457:if the coefficients over a basis of 1907:{\displaystyle G_{1},\ldots ,G_{k}.} 1483:. The standard example is the field 531:may be identified with the element 2794:{\displaystyle x_{1},\ldots ,x_{n}} 1767:be a generating system of an ideal 1760:{\displaystyle g_{1},\ldots ,g_{k}} 1611: 708:{\displaystyle G_{i}\mapsto g_{i}.} 217:{\displaystyle g_{1},\ldots ,g_{k}} 13: 2221:(because of the definition of the 1958: 1066:is this integer, if it exists, or 1015:th syzygy module is free for some 130:is used in part IV to discuss the 14: 3940: 1709: 43:, and are at the basis of modern 3139:in the latter equality provides 2340:{\displaystyle L_{t}\to L_{t-1}} 1686: 1489:, which may be considered as a 1372:, and thus that there exists a 3833: 3802: 3789: 3776: 3610: 3578: 3523:{\displaystyle (td)^{2^{cn}}.} 3498: 3488: 3441: 3409: 3349: 3260: 3228: 2990: 2939: 2932:by the submodule generated by 2729: 2697: 2640: 2627: 2614: 2608: 2589: 2576: 2434: 2424: 2400: 2318: 2301:, one may define a linear map 1974: 1961: 1821: 1789: 1665: 1633: 1531: 1499: 1445: 1439: 1426: 1420: 1401: 1388: 1306: 1274: 1140: 1134: 1121: 1115: 1096: 1083: 763: 757: 744: 731: 689: 656: 518: 486: 456: 424: 289: 257: 1: 3769: 3387:a submodule of a free module 1040:th syzygy module of a module 47:. The two other theorems are 3795:The theory is presented for 3633:-space is a variety without 3469:have a total degree at most 2755:In particular, the sequence 2743:and an ideal generated by a 1250: 244:between the generators is a 104:of relations, after at most 7: 3892:Encyclopedia of Mathematics 3752: 3475:, then there is a constant 3006:This quotient may not be a 1000:for every positive integer 715:In other words, one has an 606:and the relations form the 10: 3945: 3797:finitely generated modules 3463:of a generating system of 3368:system of linear equations 2225:), the two definitions of 665:{\displaystyle L_{0}\to M} 149: 124: 65:affine algebraic varieties 3846:, but did not prove this. 1610:th one (for a proof, see 782:This first syzygy module 61:Hilbert's Nullstellensatz 51:, which asserts that all 3375:ideal membership problem 1623:the global dimension of 1573:{\displaystyle x_{i}c=0} 121:and algebraic geometry. 90:, or, more generally, a 25:Hilbert's syzygy theorem 3929:Theorems in ring theory 3558:Syzygies and regularity 3377:) was given in 1926 by 2749:homogeneous polynomials 2278:{\displaystyle L_{t}=0} 2214:{\displaystyle L_{0}=R} 2188:In particular, one has 1596:. For this module, the 975:{\displaystyle \oplus } 49:Hilbert's basis theorem 3824:in German language) — 3759:Quillen–Suslin theorem 3739: 3719: 3695: 3675: 3651: 3617: 3524: 3451: 3340: 3307: 3203: 3133: 3106: 3031: 3000: 2912: 2879: 2811: 2795: 2736: 2661: 2551: 2423: 2341: 2279: 2246: 2215: 2182: 2117: 2048: 2018: 2000: 1939: 1908: 1855: 1828: 1761: 1672: 1574: 1538: 1455: 1313: 1237: 1210: 1183: 1153: 976: 953: 884: 857: 830: 803: 773: 709: 666: 630: 597: 525: 466: 407: 377: 296: 218: 3784:Mathematische Annalen 3740: 3720: 3696: 3676: 3652: 3618: 3525: 3452: 3341: 3339:{\displaystyle g_{i}} 3308: 3204: 3134: 3132:{\displaystyle x_{i}} 3107: 3032: 3030:{\displaystyle p_{i}} 3001: 2913: 2911:{\displaystyle G_{i}} 2880: 2812: 2796: 2737: 2662: 2552: 2403: 2342: 2295:. For every positive 2280: 2247: 2245:{\displaystyle L_{1}} 2216: 2183: 2118: 2049: 2047:{\displaystyle L_{t}} 2019: 1980: 1940: 1938:{\displaystyle L_{1}} 1909: 1856: 1854:{\displaystyle L_{1}} 1829: 1773:in a polynomial ring 1762: 1673: 1612:§ Koszul complex 1575: 1539: 1456: 1314: 1238: 1236:{\displaystyle R_{n}} 1211: 1209:{\displaystyle R_{n}} 1184: 1182:{\displaystyle L_{i}} 1154: 984:direct sum of modules 977: 954: 885: 883:{\displaystyle F_{2}} 858: 856:{\displaystyle F_{1}} 831: 829:{\displaystyle S_{1}} 804: 802:{\displaystyle R_{1}} 774: 710: 667: 631: 629:{\displaystyle R_{1}} 598: 526: 467: 408: 406:{\displaystyle L_{0}} 378: 297: 219: 140:Hilbert–Burch theorem 71:of polynomial rings. 3729: 3709: 3685: 3665: 3641: 3566: 3485: 3403: 3323: 3222: 3147: 3116: 3041: 3014: 2936: 2895: 2820: 2805: 2759: 2685: 2570: 2354: 2305: 2256: 2229: 2192: 2130: 2064: 2031: 1955: 1922: 1869: 1838: 1777: 1725: 1704:principal ideal ring 1627: 1548: 1493: 1382: 1358:projective dimension 1343:th syzygy module of 1268: 1220: 1193: 1166: 1077: 1058:projective dimension 966: 897: 867: 840: 813: 786: 725: 676: 643: 613: 538: 483: 421: 390: 315: 254: 182: 152:syzygy (mathematics) 146:Syzygies (relations) 3919:Homological algebra 3914:Commutative algebra 3839:G. Hermann claimed 3701:is regular and the 3616:{\displaystyle A=k} 2735:{\displaystyle R=k} 1827:{\displaystyle R=k} 1544:-module by setting 136:rings of invariants 119:commutative algebra 115:homological algebra 3818:10.1007/BF01206635 3735: 3715: 3691: 3671: 3647: 3613: 3547:double exponential 3520: 3450:{\displaystyle k;} 3447: 3336: 3303: 3199: 3129: 3102: 3027: 2996: 2908: 2885:In this case, the 2875: 2791: 2732: 2657: 2547: 2337: 2275: 2242: 2211: 2178: 2113: 2044: 2014: 1935: 1904: 1851: 1824: 1757: 1668: 1570: 1534: 1451: 1309: 1233: 1206: 1179: 1162:where the modules 1149: 972: 949: 880: 853: 826: 799: 769: 705: 662: 626: 593: 521: 462: 403: 373: 292: 214: 132:Hilbert polynomial 57:finitely generated 45:algebraic geometry 35:, first proved by 3887:"Hilbert theorem" 3738:{\displaystyle A} 3718:{\displaystyle A} 3694:{\displaystyle A} 3674:{\displaystyle A} 3650:{\displaystyle A} 3536:of an element of 3008:projective module 2502: 2056:exterior products 1671:{\displaystyle k} 1537:{\displaystyle k} 1312:{\displaystyle k} 3936: 3924:Invariant theory 3900: 3847: 3845: 3837: 3831: 3806: 3800: 3793: 3787: 3780: 3744: 3742: 3741: 3736: 3724: 3722: 3721: 3716: 3700: 3698: 3697: 3692: 3680: 3678: 3677: 3672: 3656: 3654: 3653: 3648: 3632: 3622: 3620: 3619: 3614: 3609: 3608: 3590: 3589: 3541: 3535: 3529: 3527: 3526: 3521: 3516: 3515: 3514: 3513: 3480: 3474: 3468: 3462: 3456: 3454: 3453: 3448: 3440: 3439: 3421: 3420: 3398: 3392: 3386: 3345: 3343: 3342: 3337: 3335: 3334: 3318: 3312: 3310: 3309: 3304: 3299: 3298: 3280: 3279: 3267: 3259: 3258: 3240: 3239: 3214: 3208: 3206: 3205: 3200: 3195: 3194: 3176: 3175: 3163: 3142: 3138: 3136: 3135: 3130: 3128: 3127: 3111: 3109: 3108: 3103: 3092: 3091: 3082: 3081: 3063: 3062: 3053: 3052: 3036: 3034: 3033: 3028: 3026: 3025: 3005: 3003: 3002: 2997: 2989: 2988: 2967: 2966: 2951: 2950: 2931: 2925: 2917: 2915: 2914: 2909: 2907: 2906: 2890: 2884: 2882: 2881: 2876: 2868: 2867: 2849: 2848: 2836: 2816: 2814: 2813: 2810:{\displaystyle } 2808: 2800: 2798: 2797: 2792: 2790: 2789: 2771: 2770: 2745:regular sequence 2741: 2739: 2738: 2733: 2728: 2727: 2709: 2708: 2666: 2664: 2663: 2658: 2650: 2639: 2638: 2626: 2625: 2607: 2606: 2588: 2587: 2556: 2554: 2553: 2548: 2543: 2542: 2541: 2540: 2517: 2516: 2515: 2514: 2504: 2503: 2495: 2482: 2481: 2480: 2479: 2465: 2464: 2463: 2462: 2448: 2447: 2422: 2417: 2399: 2398: 2397: 2396: 2373: 2372: 2371: 2370: 2346: 2344: 2343: 2338: 2336: 2335: 2317: 2316: 2300: 2294: 2284: 2282: 2281: 2276: 2268: 2267: 2251: 2249: 2248: 2243: 2241: 2240: 2220: 2218: 2217: 2212: 2204: 2203: 2187: 2185: 2184: 2179: 2174: 2173: 2155: 2154: 2142: 2141: 2122: 2120: 2119: 2114: 2109: 2108: 2107: 2106: 2083: 2082: 2081: 2080: 2053: 2051: 2050: 2045: 2043: 2042: 2023: 2021: 2020: 2015: 2010: 2009: 1999: 1994: 1973: 1972: 1944: 1942: 1941: 1936: 1934: 1933: 1916:exterior algebra 1913: 1911: 1910: 1905: 1900: 1899: 1881: 1880: 1860: 1858: 1857: 1852: 1850: 1849: 1833: 1831: 1830: 1825: 1820: 1819: 1801: 1800: 1772: 1766: 1764: 1763: 1758: 1756: 1755: 1737: 1736: 1681: 1677: 1675: 1674: 1669: 1664: 1663: 1645: 1644: 1619:global dimension 1609: 1601: 1595: 1585: 1579: 1577: 1576: 1571: 1560: 1559: 1543: 1541: 1540: 1535: 1530: 1529: 1511: 1510: 1488: 1482: 1473: 1460: 1458: 1457: 1452: 1438: 1437: 1419: 1418: 1400: 1399: 1371: 1365: 1348: 1342: 1336: 1324: 1318: 1316: 1315: 1310: 1305: 1304: 1286: 1285: 1260: 1242: 1240: 1239: 1234: 1232: 1231: 1215: 1213: 1212: 1207: 1205: 1204: 1188: 1186: 1185: 1180: 1178: 1177: 1158: 1156: 1155: 1150: 1133: 1132: 1114: 1113: 1095: 1094: 1069: 1065: 1055: 1045: 1039: 1033: 1020: 1014: 1005: 998:th syzygy module 997: 981: 979: 978: 973: 958: 956: 955: 950: 948: 947: 935: 934: 922: 921: 909: 908: 889: 887: 886: 881: 879: 878: 862: 860: 859: 854: 852: 851: 835: 833: 832: 827: 825: 824: 808: 806: 805: 800: 798: 797: 778: 776: 775: 770: 756: 755: 743: 742: 714: 712: 711: 706: 701: 700: 688: 687: 671: 669: 668: 663: 655: 654: 635: 633: 632: 627: 625: 624: 602: 600: 599: 594: 589: 588: 579: 578: 560: 559: 550: 549: 530: 528: 527: 522: 517: 516: 498: 497: 475: 471: 469: 468: 463: 455: 454: 436: 435: 412: 410: 409: 404: 402: 401: 382: 380: 379: 374: 366: 365: 356: 355: 337: 336: 327: 326: 307: 301: 299: 298: 293: 288: 287: 269: 268: 249: 235: 229: 223: 221: 220: 215: 213: 212: 194: 193: 162:polynomial rings 109: 99: 41:invariant theory 29:polynomial rings 3944: 3943: 3939: 3938: 3937: 3935: 3934: 3933: 3904: 3903: 3885: 3851: 3850: 3840: 3838: 3834: 3808:Grete Hermann: 3807: 3803: 3794: 3790: 3781: 3777: 3772: 3755: 3730: 3727: 3726: 3710: 3707: 3706: 3703:Krull dimension 3686: 3683: 3682: 3666: 3663: 3662: 3659:Noetherian ring 3642: 3639: 3638: 3628: 3604: 3600: 3585: 3581: 3567: 3564: 3563: 3560: 3537: 3531: 3506: 3502: 3501: 3497: 3486: 3483: 3482: 3476: 3470: 3464: 3458: 3435: 3431: 3416: 3412: 3404: 3401: 3400: 3394: 3388: 3382: 3352: 3330: 3326: 3324: 3321: 3320: 3314: 3294: 3290: 3275: 3271: 3263: 3254: 3250: 3235: 3231: 3223: 3220: 3219: 3210: 3190: 3186: 3171: 3167: 3159: 3148: 3145: 3144: 3140: 3123: 3119: 3117: 3114: 3113: 3087: 3083: 3077: 3073: 3058: 3054: 3048: 3044: 3042: 3039: 3038: 3021: 3017: 3015: 3012: 3011: 2984: 2980: 2962: 2958: 2946: 2942: 2937: 2934: 2933: 2927: 2919: 2902: 2898: 2896: 2893: 2892: 2886: 2863: 2859: 2844: 2840: 2832: 2821: 2818: 2817: 2806: 2803: 2802: 2785: 2781: 2766: 2762: 2760: 2757: 2756: 2723: 2719: 2704: 2700: 2686: 2683: 2682: 2646: 2634: 2630: 2621: 2617: 2596: 2592: 2583: 2579: 2571: 2568: 2567: 2536: 2532: 2531: 2527: 2510: 2506: 2505: 2494: 2493: 2492: 2475: 2471: 2470: 2466: 2458: 2454: 2453: 2449: 2437: 2433: 2418: 2407: 2392: 2388: 2387: 2383: 2366: 2362: 2361: 2357: 2355: 2352: 2351: 2325: 2321: 2312: 2308: 2306: 2303: 2302: 2296: 2286: 2263: 2259: 2257: 2254: 2253: 2236: 2232: 2230: 2227: 2226: 2199: 2195: 2193: 2190: 2189: 2169: 2165: 2150: 2146: 2137: 2133: 2131: 2128: 2127: 2102: 2098: 2097: 2093: 2076: 2072: 2071: 2067: 2065: 2062: 2061: 2038: 2034: 2032: 2029: 2028: 2005: 2001: 1995: 1984: 1968: 1964: 1956: 1953: 1952: 1929: 1925: 1923: 1920: 1919: 1895: 1891: 1876: 1872: 1870: 1867: 1866: 1845: 1841: 1839: 1836: 1835: 1815: 1811: 1796: 1792: 1778: 1775: 1774: 1768: 1751: 1747: 1732: 1728: 1726: 1723: 1722: 1712: 1689: 1679: 1659: 1655: 1640: 1636: 1628: 1625: 1624: 1603: 1597: 1587: 1581: 1555: 1551: 1549: 1546: 1545: 1525: 1521: 1506: 1502: 1494: 1491: 1490: 1484: 1478: 1465: 1433: 1429: 1408: 1404: 1395: 1391: 1383: 1380: 1379: 1374:free resolution 1367: 1361: 1344: 1338: 1332: 1320: 1300: 1296: 1281: 1277: 1269: 1266: 1265: 1263:polynomial ring 1256: 1253: 1245:free resolution 1227: 1223: 1221: 1218: 1217: 1200: 1196: 1194: 1191: 1190: 1173: 1169: 1167: 1164: 1163: 1128: 1124: 1103: 1099: 1090: 1086: 1078: 1075: 1074: 1067: 1061: 1051: 1041: 1035: 1029: 1016: 1010: 1001: 995: 967: 964: 963: 943: 939: 930: 926: 917: 913: 904: 900: 898: 895: 894: 874: 870: 868: 865: 864: 847: 843: 841: 838: 837: 820: 816: 814: 811: 810: 793: 789: 787: 784: 783: 751: 747: 738: 734: 726: 723: 722: 696: 692: 683: 679: 677: 674: 673: 650: 646: 644: 641: 640: 620: 616: 614: 611: 610: 584: 580: 574: 570: 555: 551: 545: 541: 539: 536: 535: 512: 508: 493: 489: 484: 481: 480: 473: 450: 446: 431: 427: 422: 419: 418: 397: 393: 391: 388: 387: 361: 357: 351: 347: 332: 328: 322: 318: 316: 313: 312: 303: 302:of elements of 283: 279: 264: 260: 255: 252: 251: 245: 231: 225: 208: 204: 189: 185: 183: 180: 179: 154: 148: 127: 105: 95: 17: 12: 11: 5: 3942: 3932: 3931: 3926: 3921: 3916: 3902: 3901: 3883: 3855:David Eisenbud 3849: 3848: 3832: 3801: 3788: 3774: 3773: 3771: 3768: 3767: 3766: 3761: 3754: 3751: 3734: 3714: 3690: 3670: 3646: 3612: 3607: 3603: 3599: 3596: 3593: 3588: 3584: 3580: 3577: 3574: 3571: 3559: 3556: 3519: 3512: 3509: 3505: 3500: 3496: 3493: 3490: 3446: 3443: 3438: 3434: 3430: 3427: 3424: 3419: 3415: 3411: 3408: 3351: 3348: 3333: 3329: 3302: 3297: 3293: 3289: 3286: 3283: 3278: 3274: 3270: 3266: 3262: 3257: 3253: 3249: 3246: 3243: 3238: 3234: 3230: 3227: 3198: 3193: 3189: 3185: 3182: 3179: 3174: 3170: 3166: 3162: 3158: 3155: 3152: 3126: 3122: 3101: 3098: 3095: 3090: 3086: 3080: 3076: 3072: 3069: 3066: 3061: 3057: 3051: 3047: 3024: 3020: 2995: 2992: 2987: 2983: 2979: 2976: 2973: 2970: 2965: 2961: 2957: 2954: 2949: 2945: 2941: 2905: 2901: 2874: 2871: 2866: 2862: 2858: 2855: 2852: 2847: 2843: 2839: 2835: 2831: 2828: 2825: 2788: 2784: 2780: 2777: 2774: 2769: 2765: 2731: 2726: 2722: 2718: 2715: 2712: 2707: 2703: 2699: 2696: 2693: 2690: 2676:exact sequence 2672:Koszul complex 2668: 2667: 2656: 2653: 2649: 2645: 2642: 2637: 2633: 2629: 2624: 2620: 2616: 2613: 2610: 2605: 2602: 2599: 2595: 2591: 2586: 2582: 2578: 2575: 2558: 2557: 2546: 2539: 2535: 2530: 2526: 2523: 2520: 2513: 2509: 2501: 2498: 2491: 2488: 2485: 2478: 2474: 2469: 2461: 2457: 2452: 2446: 2443: 2440: 2436: 2432: 2429: 2426: 2421: 2416: 2413: 2410: 2406: 2402: 2395: 2391: 2386: 2382: 2379: 2376: 2369: 2365: 2360: 2334: 2331: 2328: 2324: 2320: 2315: 2311: 2274: 2271: 2266: 2262: 2252:coincide, and 2239: 2235: 2210: 2207: 2202: 2198: 2177: 2172: 2168: 2164: 2161: 2158: 2153: 2149: 2145: 2140: 2136: 2124: 2123: 2112: 2105: 2101: 2096: 2092: 2089: 2086: 2079: 2075: 2070: 2041: 2037: 2025: 2024: 2013: 2008: 2004: 1998: 1993: 1990: 1987: 1983: 1979: 1976: 1971: 1967: 1963: 1960: 1932: 1928: 1903: 1898: 1894: 1890: 1887: 1884: 1879: 1875: 1848: 1844: 1823: 1818: 1814: 1810: 1807: 1804: 1799: 1795: 1791: 1788: 1785: 1782: 1754: 1750: 1746: 1743: 1740: 1735: 1731: 1716:Koszul complex 1711: 1710:Koszul complex 1708: 1688: 1685: 1667: 1662: 1658: 1654: 1651: 1648: 1643: 1639: 1635: 1632: 1569: 1566: 1563: 1558: 1554: 1533: 1528: 1524: 1520: 1517: 1514: 1509: 1505: 1501: 1498: 1462: 1461: 1450: 1447: 1444: 1441: 1436: 1432: 1428: 1425: 1422: 1417: 1414: 1411: 1407: 1403: 1398: 1394: 1390: 1387: 1326:indeterminates 1308: 1303: 1299: 1295: 1292: 1289: 1284: 1280: 1276: 1273: 1252: 1249: 1230: 1226: 1203: 1199: 1176: 1172: 1160: 1159: 1148: 1145: 1142: 1139: 1136: 1131: 1127: 1123: 1120: 1117: 1112: 1109: 1106: 1102: 1098: 1093: 1089: 1085: 1082: 971: 960: 959: 946: 942: 938: 933: 929: 925: 920: 916: 912: 907: 903: 877: 873: 850: 846: 823: 819: 796: 792: 780: 779: 768: 765: 762: 759: 754: 750: 746: 741: 737: 733: 730: 717:exact sequence 704: 699: 695: 691: 686: 682: 661: 658: 653: 649: 623: 619: 604: 603: 592: 587: 583: 577: 573: 569: 566: 563: 558: 554: 548: 544: 520: 515: 511: 507: 504: 501: 496: 492: 488: 461: 458: 453: 449: 445: 442: 439: 434: 430: 426: 400: 396: 384: 383: 372: 369: 364: 360: 354: 350: 346: 343: 340: 335: 331: 325: 321: 291: 286: 282: 278: 275: 272: 267: 263: 259: 211: 207: 203: 200: 197: 192: 188: 177:generating set 150:Main article: 147: 144: 126: 123: 15: 9: 6: 4: 3: 2: 3941: 3930: 3927: 3925: 3922: 3920: 3917: 3915: 3912: 3911: 3909: 3898: 3894: 3893: 3888: 3884: 3882: 3879: 3876: 3875:0-387-94269-6 3872: 3868: 3867:0-387-94268-8 3864: 3860: 3856: 3853: 3852: 3843: 3836: 3830: 3827: 3823: 3819: 3815: 3811: 3805: 3798: 3792: 3785: 3779: 3775: 3765: 3762: 3760: 3757: 3756: 3750: 3748: 3732: 3712: 3704: 3688: 3668: 3660: 3644: 3636: 3635:singularities 3631: 3626: 3605: 3601: 3597: 3594: 3591: 3586: 3582: 3575: 3572: 3569: 3555: 3553: 3552:Gröbner basis 3548: 3543: 3540: 3534: 3517: 3510: 3507: 3503: 3494: 3491: 3479: 3473: 3467: 3461: 3444: 3436: 3432: 3428: 3425: 3422: 3417: 3413: 3406: 3397: 3393:of dimension 3391: 3385: 3380: 3379:Grete Hermann 3376: 3371: 3369: 3365: 3361: 3357: 3347: 3331: 3327: 3317: 3295: 3291: 3287: 3284: 3281: 3276: 3272: 3264: 3255: 3251: 3247: 3244: 3241: 3236: 3232: 3225: 3216: 3213: 3191: 3187: 3183: 3180: 3177: 3172: 3168: 3160: 3156: 3153: 3150: 3124: 3120: 3099: 3096: 3093: 3088: 3084: 3078: 3074: 3070: 3067: 3064: 3059: 3055: 3049: 3045: 3022: 3018: 3009: 2993: 2985: 2981: 2977: 2974: 2971: 2968: 2963: 2959: 2955: 2952: 2947: 2943: 2930: 2923: 2903: 2899: 2889: 2872: 2864: 2860: 2856: 2853: 2850: 2845: 2841: 2833: 2829: 2826: 2823: 2786: 2782: 2778: 2775: 2772: 2767: 2763: 2753: 2752: 2750: 2746: 2724: 2720: 2716: 2713: 2710: 2705: 2701: 2694: 2691: 2688: 2681: 2677: 2673: 2654: 2651: 2647: 2643: 2635: 2631: 2622: 2618: 2611: 2603: 2600: 2597: 2593: 2584: 2580: 2573: 2566: 2565: 2564: 2563: 2544: 2537: 2533: 2528: 2524: 2521: 2518: 2511: 2507: 2499: 2496: 2489: 2486: 2483: 2476: 2472: 2467: 2459: 2455: 2450: 2444: 2441: 2438: 2430: 2427: 2419: 2414: 2411: 2408: 2404: 2393: 2389: 2384: 2380: 2377: 2374: 2367: 2363: 2358: 2350: 2349: 2348: 2332: 2329: 2326: 2322: 2313: 2309: 2299: 2293: 2289: 2272: 2269: 2264: 2260: 2237: 2233: 2224: 2223:empty product 2208: 2205: 2200: 2196: 2175: 2170: 2166: 2162: 2159: 2156: 2151: 2147: 2143: 2138: 2134: 2110: 2103: 2099: 2094: 2090: 2087: 2084: 2077: 2073: 2068: 2060: 2059: 2058: 2057: 2039: 2035: 2011: 2006: 2002: 1996: 1991: 1988: 1985: 1981: 1977: 1969: 1965: 1951: 1950: 1949: 1948: 1930: 1926: 1917: 1901: 1896: 1892: 1888: 1885: 1882: 1877: 1873: 1864: 1846: 1842: 1816: 1812: 1808: 1805: 1802: 1797: 1793: 1786: 1783: 1780: 1771: 1752: 1748: 1744: 1741: 1738: 1733: 1729: 1719: 1717: 1707: 1705: 1700: 1698: 1694: 1687:Low dimension 1684: 1682: 1660: 1656: 1652: 1649: 1646: 1641: 1637: 1630: 1620: 1615: 1613: 1607: 1600: 1594: 1590: 1584: 1567: 1564: 1561: 1556: 1552: 1526: 1522: 1518: 1515: 1512: 1507: 1503: 1496: 1487: 1481: 1475: 1472: 1468: 1448: 1442: 1434: 1430: 1423: 1415: 1412: 1409: 1405: 1396: 1392: 1385: 1378: 1377: 1376: 1375: 1370: 1364: 1359: 1354: 1352: 1347: 1341: 1335: 1331: 1327: 1323: 1301: 1297: 1293: 1290: 1287: 1282: 1278: 1271: 1264: 1259: 1248: 1246: 1228: 1224: 1201: 1197: 1189:are free and 1174: 1170: 1146: 1143: 1137: 1129: 1125: 1118: 1110: 1107: 1104: 1100: 1091: 1087: 1080: 1073: 1072: 1071: 1064: 1059: 1054: 1049: 1044: 1038: 1032: 1026: 1024: 1019: 1013: 1007: 1004: 999: 992: 991:second syzygy 987: 985: 969: 944: 940: 936: 931: 927: 923: 918: 914: 910: 905: 901: 893: 892: 891: 875: 871: 848: 844: 821: 817: 794: 790: 766: 760: 752: 748: 739: 735: 728: 721: 720: 719: 718: 702: 697: 693: 684: 680: 659: 651: 647: 639: 621: 617: 609: 590: 585: 581: 575: 571: 567: 564: 561: 556: 552: 546: 542: 534: 533: 532: 513: 509: 505: 502: 499: 494: 490: 479: 459: 451: 447: 443: 440: 437: 432: 428: 416: 398: 394: 370: 367: 362: 358: 352: 348: 344: 341: 338: 333: 329: 323: 319: 311: 310: 309: 306: 284: 280: 276: 273: 270: 265: 261: 248: 243: 239: 234: 228: 209: 205: 201: 198: 195: 190: 186: 178: 173: 171: 167: 163: 159: 153: 143: 141: 137: 133: 122: 120: 116: 111: 108: 103: 98: 93: 89: 85: 81: 77: 72: 70: 66: 62: 58: 54: 50: 46: 42: 38: 37:David Hilbert 34: 30: 26: 22: 3890: 3858: 3841: 3835: 3825: 3809: 3804: 3791: 3786:36, 473–530. 3778: 3629: 3561: 3544: 3538: 3532: 3477: 3471: 3465: 3459: 3395: 3389: 3383: 3372: 3353: 3315: 3217: 3211: 2928: 2921: 2887: 2754: 2742: 2679: 2671: 2670:This is the 2669: 2559: 2297: 2291: 2287: 2125: 2026: 1769: 1720: 1713: 1701: 1693:vector space 1690: 1622: 1616: 1605: 1598: 1592: 1588: 1582: 1485: 1479: 1476: 1470: 1466: 1463: 1368: 1362: 1355: 1349:is always a 1345: 1339: 1333: 1321: 1257: 1254: 1161: 1062: 1052: 1042: 1036: 1030: 1027: 1017: 1011: 1008: 1002: 994: 990: 988: 961: 781: 605: 385: 304: 246: 241: 237: 232: 230:over a ring 226: 224:of a module 174: 155: 128: 112: 106: 96: 75: 73: 69:prime ideals 24: 18: 3350:Computation 3313:is exactly 3209:is exactly 1863:free module 1366:is at most 1351:free module 1337:, then the 1046:is free or 1023:zero module 982:denote the 890:such that 672:defined by 417:with basis 415:free module 102:zero module 21:mathematics 3908:Categories 3770:References 3625:regularity 3037:such that 2126:such that 1947:direct sum 1834:, and let 1614:, below). 1586:and every 1580:for every 1464:of length 1048:projective 638:linear map 308:such that 84:generators 3897:EMS Press 3595:… 3426:… 3364:monomials 3356:algorithm 3301:⟩ 3285:… 3269:⟨ 3245:… 3197:⟩ 3181:… 3165:⟨ 3068:⋯ 2978:± 2972:… 2956:− 2870:⟩ 2854:… 2838:⟨ 2776:… 2714:… 2641:→ 2628:→ 2615:→ 2612:⋯ 2609:→ 2601:− 2590:→ 2577:→ 2525:∧ 2522:⋯ 2519:∧ 2500:^ 2490:∧ 2487:⋯ 2484:∧ 2428:− 2405:∑ 2401:↦ 2381:∧ 2378:⋯ 2375:∧ 2330:− 2319:→ 2160:⋯ 2091:∧ 2088:⋯ 2085:∧ 1982:⨁ 1959:Λ 1886:… 1865:of basis 1806:… 1742:… 1650:… 1516:… 1446:⟶ 1440:⟶ 1427:⟶ 1424:⋯ 1421:⟶ 1413:− 1402:⟶ 1389:⟶ 1291:… 1251:Statement 1141:⟶ 1135:⟶ 1122:⟶ 1119:⋯ 1116:⟶ 1108:− 1097:⟶ 1084:⟶ 970:⊕ 937:⊕ 924:≅ 911:⊕ 764:→ 758:→ 745:→ 732:→ 690:↦ 657:→ 565:⋯ 503:… 441:… 342:⋯ 274:… 240:or first 199:… 168:over any 76:relations 3822:abstract 3753:See also 238:relation 175:Given a 80:syzygies 3899:, 2001 3881:1322960 3661:. Then 3319:if the 2918:); the 2562:complex 1945:is the 1328:over a 1009:If the 636:of the 250:-tuple 166:modules 125:History 110:steps. 3873:  3865:  3381:: Let 3360:degree 2678:, but 2027:where 1695:has a 962:where 608:kernel 242:syzygy 158:ideals 92:module 86:of an 78:, or 59:, and 53:ideals 33:fields 3657:be a 3399:over 3141:1 = 0 2290:> 1861:be a 1697:basis 1330:field 478:tuple 413:be a 88:ideal 31:over 3871:ISBN 3863:ISBN 2924:− 1) 2285:for 2163:< 2157:< 2144:< 1914:The 1721:Let 1714:The 1608:− 1) 1028:Let 989:The 863:and 472:The 386:Let 236:, a 170:ring 67:and 3844:= 1 3814:doi 3705:of 2747:of 2347:by 1918:of 1678:is 1360:of 1319:in 1060:of 160:in 19:In 3910:: 3895:, 3889:, 3878:MR 3869:; 3857:, 3749:. 3542:. 3215:. 1699:. 1683:. 1591:∈ 1474:. 1469:≀ 1353:. 1247:. 1006:. 986:. 767:0. 371:0. 172:. 142:. 23:, 3842:c 3820:( 3816:: 3733:A 3713:A 3689:A 3669:A 3645:A 3630:n 3611:] 3606:n 3602:x 3598:, 3592:, 3587:1 3583:x 3579:[ 3576:k 3573:= 3570:A 3539:L 3533:M 3518:. 3511:n 3508:c 3504:2 3499:) 3495:d 3492:t 3489:( 3478:c 3472:d 3466:M 3460:L 3445:; 3442:] 3437:n 3433:x 3429:, 3423:, 3418:1 3414:x 3410:[ 3407:k 3396:t 3390:L 3384:M 3332:i 3328:g 3316:t 3296:t 3292:g 3288:, 3282:, 3277:1 3273:g 3265:/ 3261:] 3256:n 3252:x 3248:, 3242:, 3237:1 3233:x 3229:[ 3226:k 3212:n 3192:n 3188:x 3184:, 3178:, 3173:1 3169:x 3161:/ 3157:R 3154:= 3151:k 3125:i 3121:x 3100:, 3097:1 3094:= 3089:n 3085:x 3079:n 3075:p 3071:+ 3065:+ 3060:1 3056:x 3050:1 3046:p 3023:i 3019:p 2994:. 2991:) 2986:n 2982:x 2975:, 2969:, 2964:2 2960:x 2953:, 2948:1 2944:x 2940:( 2929:n 2922:n 2920:( 2904:i 2900:G 2888:n 2873:. 2865:n 2861:x 2857:, 2851:, 2846:1 2842:x 2834:/ 2830:R 2827:= 2824:k 2787:n 2783:x 2779:, 2773:, 2768:1 2764:x 2751:. 2730:] 2725:n 2721:x 2717:, 2711:, 2706:1 2702:x 2698:[ 2695:k 2692:= 2689:R 2655:. 2652:I 2648:/ 2644:R 2636:0 2632:L 2623:1 2619:L 2604:1 2598:t 2594:L 2585:t 2581:L 2574:0 2545:, 2538:t 2534:i 2529:G 2512:j 2508:i 2497:G 2477:1 2473:i 2468:G 2460:j 2456:i 2451:g 2445:1 2442:+ 2439:j 2435:) 2431:1 2425:( 2420:t 2415:1 2412:= 2409:j 2394:t 2390:i 2385:G 2368:1 2364:i 2359:G 2333:1 2327:t 2323:L 2314:t 2310:L 2298:t 2292:k 2288:t 2273:0 2270:= 2265:t 2261:L 2238:1 2234:L 2209:R 2206:= 2201:0 2197:L 2176:. 2171:t 2167:i 2152:2 2148:i 2139:1 2135:i 2111:, 2104:t 2100:i 2095:G 2078:1 2074:i 2069:G 2040:t 2036:L 2012:, 2007:t 2003:L 1997:k 1992:0 1989:= 1986:t 1978:= 1975:) 1970:1 1966:L 1962:( 1931:1 1927:L 1902:. 1897:k 1893:G 1889:, 1883:, 1878:1 1874:G 1847:1 1843:L 1822:] 1817:n 1813:x 1809:, 1803:, 1798:1 1794:x 1790:[ 1787:k 1784:= 1781:R 1770:I 1753:k 1749:g 1745:, 1739:, 1734:1 1730:g 1680:n 1666:] 1661:n 1657:x 1653:, 1647:, 1642:1 1638:x 1634:[ 1631:k 1606:n 1604:( 1599:n 1593:k 1589:c 1583:i 1568:0 1565:= 1562:c 1557:i 1553:x 1532:] 1527:n 1523:x 1519:, 1513:, 1508:1 1504:x 1500:[ 1497:k 1486:k 1480:n 1471:n 1467:k 1449:0 1443:M 1435:0 1431:L 1416:1 1410:k 1406:L 1397:k 1393:L 1386:0 1369:n 1363:M 1346:M 1340:n 1334:k 1322:n 1307:] 1302:n 1298:x 1294:, 1288:, 1283:1 1279:x 1275:[ 1272:k 1258:M 1229:n 1225:R 1202:n 1198:R 1175:i 1171:L 1147:, 1144:0 1138:M 1130:0 1126:L 1111:1 1105:n 1101:L 1092:n 1088:R 1081:0 1068:∞ 1063:M 1053:n 1043:M 1037:n 1031:n 1018:k 1012:k 1003:k 996:k 945:2 941:F 932:1 928:S 919:1 915:F 906:1 902:R 876:2 872:F 849:1 845:F 822:1 818:S 795:1 791:R 761:M 753:0 749:L 740:1 736:R 729:0 703:. 698:i 694:g 685:i 681:G 660:M 652:0 648:L 622:1 618:R 591:, 586:k 582:G 576:k 572:a 568:+ 562:+ 557:1 553:G 547:1 543:a 519:) 514:k 510:a 506:, 500:, 495:1 491:a 487:( 476:- 474:k 460:. 457:) 452:k 448:G 444:, 438:, 433:1 429:G 425:( 399:0 395:L 368:= 363:k 359:g 353:k 349:a 345:+ 339:+ 334:1 330:g 324:1 320:a 305:R 290:) 285:k 281:a 277:, 271:, 266:1 262:a 258:( 247:k 233:R 227:M 210:k 206:g 202:, 196:, 191:1 187:g 107:n 97:n

Index

mathematics
polynomial rings
fields
David Hilbert
invariant theory
algebraic geometry
Hilbert's basis theorem
ideals
finitely generated
Hilbert's Nullstellensatz
affine algebraic varieties
prime ideals
syzygies
generators
ideal
module
zero module
homological algebra
commutative algebra
Hilbert polynomial
rings of invariants
Hilbert–Burch theorem
syzygy (mathematics)
ideals
polynomial rings
modules
ring
generating set
free module
tuple

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑