Knowledge

Henselian ring

Source đź“ť

592: 1608:, Interscience Tracts in Pure and Applied Mathematics, vol. 13 (reprint ed.), New York-London: Interscience Publishers a division of John Wiley & Sons, pp. xiii+234, 959: 843: 671: 503: 1056: 920: 1003: 887: 1424:"ÉlĂ©ments de gĂ©omĂ©trie algĂ©brique (rĂ©digĂ©s avec la collaboration de Jean DieudonnĂ©) : IV. Étude locale des schĂ©mas et des morphismes de schĂ©mas, Quatrième partie" 645: 612: 523: 455: 335: 302: 703: 435: 380: 731: 1023: 804: 771: 751: 543: 475: 400: 269: 249: 229: 205: 182: 1210:
of this separable algebraic closure correspond to automorphisms of the corresponding strict Henselization. For example, a strict Henselization of the field of
1098: 1423: 1238:
Every field is a Henselian local ring. (But not every field with valuation is "Henselian" in the sense of the fourth definition above.)
1462: 1647: 1613: 1172: 478: 1202:
isomorphism. More precisely it depends on the choice of a separable algebraic closure of the residue field of
1412: 548: 1673: 1407: 1183:
satisfying an algebraic equation). This can be thought of as the "algebraic" part of the completion.
79:
will be assumed to be commutative, though there is also a theory of non-commutative Henselian rings.
925: 809: 650: 1443: 1634:, Lecture Notes in Mathematics, vol. 169, Berlin-New York: Springer-Verlag, pp. v+129, 1402: 340:
A ring is called Henselian if it is a direct product of a finite number of Henselian local rings.
1028: 892: 1419: 964: 848: 483: 617: 597: 508: 440: 307: 274: 1058:
is an isomorphism. In fact, this property characterises Henselian rings, resp. local rings.
676: 1657: 1623: 1597: 1560: 1515: 1470: 1394: 1305: 1226: 1126: 594:. This follows from the fourth definition, and from the fact that for every K-automorphism 408: 353: 45: 922:
is an isomorphism. This should be compared to the fact that for any Zariski open covering
8: 1176: 1166: 708: 185: 161: 149: 123: 1008: 789: 783: 756: 736: 528: 460: 385: 254: 234: 214: 190: 167: 76: 1643: 1609: 1548: 1503: 1382: 156: 33: 1062: 1635: 1583: 1567: 1538: 1522: 1493: 1477: 1435: 1372: 1270: 134: 103: 49: 705:. The converse of this assertion also holds, because for a normal field extension 1653: 1619: 1593: 1571: 1556: 1526: 1511: 1481: 1466: 1390: 1360: 1242: 1154: 1198:. The strict Henselization is not quite universal: it is unique, but only up to 1260: 1246: 1218: 1162: 1061:
Likewise strict Henselian rings are the local rings of geometric points in the
208: 1543: 1498: 1377: 1667: 1588: 1576:
Memoirs of the College of Science, University of Kyoto. Series A: Mathematics
1552: 1507: 1386: 1280: 1211: 145: 88: 1356: 1291: 1207: 1180: 1158: 133:
A local ring is Henselian if and only if every finite ring extension is a
1316: 1256: 1142: 1118: 41: 17: 1639: 1439: 29: 1165:
then so is its Henselization. For example, the Henselization of the
1347:, Springer monographs of mathematics, 2005, thm. 3.2.15, p. 69. 1217:
is given by the maximal unramified extension, generated by all
1252:
and rings of formal power series over a field, are Henselian.
1114: 1276:
The Henselization of a local ring is a Henselian local ring.
1266:
Rings of algebraic power series over a field are Henselian.
1186:
Similarly there is a strictly Henselian ring generated by
782:
Henselian rings are the local rings with respect to the
777: 382:
is a Henselian field. Then every algebraic extension of
126:
monic polynomials can be lifted to a factorization in
1031: 1011: 967: 928: 895: 851: 812: 792: 759: 739: 711: 679: 653: 620: 600: 551: 531: 511: 486: 463: 443: 411: 388: 356: 310: 277: 257: 237: 217: 193: 170: 1461:, Mathematische Monographien, vol. II, Berlin: 44:. Azumaya originally allowed Henselian rings to be 1456: 1050: 1017: 997: 953: 914: 881: 837: 798: 765: 745: 725: 697: 665: 639: 606: 586: 537: 517: 497: 469: 449: 429: 394: 374: 329: 296: 263: 243: 223: 199: 176: 1665: 1175:at the point (0,0,...) is the ring of algebraic 1105:to a Henselian ring can be extended uniquely to 55:Some standard references for Hensel rings are ( 1255:The rings of convergent power series over the 402:is henselian (by the fourth definition above). 251:(resp. to every finite separable extension of 231:extends uniquely to every finite extension of 211:is Henselian. That is the case if and only if 1137:has the same completion and residue field as 98:if Hensel's lemma holds. This means that if 1418: 948: 929: 832: 813: 64: 1459:Henselsche Ringe und algebraische Geometrie 1457:Kurke, H.; Pfister, G.; Roczen, M. (1975), 1290:is Henselian if and only if the associated 48:, but most authors now restrict them to be 1587: 1542: 1497: 1376: 1629: 1572:"On the theory of Henselian rings. III" 1463:VEB Deutscher Verlag der Wissenschaften 1400: 1355: 60: 37: 1666: 1603: 1566: 1527:"On the theory of Henselian rings. II" 1521: 1476: 1300:is Henselian (this is the quotient of 1094: 587:{\displaystyle v(\alpha ')=v(\alpha )} 110:, then any factorization of its image 56: 778:Henselian rings in algebraic geometry 1428:Publications MathĂ©matiques de l'IHÉS 1077:there is a universal Henselian ring 1273:over a Henselian ring is Henselian. 1125:is an algebraic substitute for the 13: 1482:"On the theory of Henselian rings" 1225:. It is not "universal" as it has 14: 1685: 1283:of a Henselian ring is Henselian. 1245:local rings, such as the ring of 140:A Henselian local ring is called 1361:"On maximally central algebras." 1068: 806:is a Henselian local ring, and 207:is said to be Henselian if its 36:holds. They were introduced by 1337: 1042: 992: 986: 954:{\displaystyle \{U_{i}\to X\}} 942: 906: 876: 870: 838:{\displaystyle \{U_{i}\to X\}} 826: 685: 666:{\displaystyle v\circ \sigma } 581: 575: 566: 555: 424: 412: 369: 357: 70: 1: 1330: 344: 7: 1604:Nagata, Masayoshi (1975) , 1531:Nagoya Mathematical Journal 1486:Nagoya Mathematical Journal 1408:Encyclopedia of Mathematics 1365:Nagoya Mathematical Journal 1319:then it is Henselian since 1306:ideal of nilpotent elements 1232: 845:is a Nisnevich covering of 773:are known to be conjugated. 10: 1690: 1343:A. J. Engler, A. Prestel, 1051:{\displaystyle U_{i}\to X} 915:{\displaystyle U_{i}\to X} 1632:Anneaux locaux hensĂ©liens 1544:10.1017/s002776300001802x 1499:10.1017/s0027763000015439 1378:10.1017/s0027763000010114 998:{\displaystyle X=Spec(R)} 882:{\displaystyle X=Spec(R)} 437:is a Henselian field and 1630:Raynaud, Michel (1970), 1401:Danilov, V. I. (2001) , 498:{\displaystyle \alpha '} 1420:Grothendieck, Alexandre 1133:. The Henselization of 1121:. The Henselization of 1109:. The Henselization of 640:{\displaystyle K^{alg}} 607:{\displaystyle \sigma } 518:{\displaystyle \alpha } 450:{\displaystyle \alpha } 330:{\displaystyle K^{sep}} 297:{\displaystyle K^{alg}} 40:, who named them after 1589:10.1215/kjm/1250776700 1161:, normal, regular, or 1052: 1019: 999: 955: 916: 883: 839: 800: 767: 747: 727: 699: 698:{\displaystyle v|_{K}} 667: 641: 608: 588: 539: 519: 499: 471: 451: 431: 396: 376: 331: 298: 265: 245: 225: 201: 178: 1269:A local ring that is 1053: 1020: 1000: 956: 917: 884: 840: 801: 786:in the sense that if 768: 748: 728: 700: 668: 642: 609: 589: 540: 520: 500: 472: 452: 432: 430:{\displaystyle (K,v)} 397: 377: 375:{\displaystyle (K,v)} 332: 299: 266: 246: 226: 202: 179: 1192:strict Henselization 1029: 1009: 965: 926: 893: 849: 810: 790: 757: 737: 733:, the extensions of 709: 677: 651: 618: 598: 549: 529: 509: 484: 461: 441: 409: 386: 354: 308: 275: 255: 235: 215: 191: 168: 157:abuse of terminology 122:) into a product of 1674:Commutative algebra 1177:formal power series 1167:ring of polynomials 1073:For any local ring 726:{\displaystyle L/K} 673:is an extension of 1640:10.1007/BFb0069571 1440:10.1007/BF02732123 1221:of order prime to 1099:local homomorphism 1048: 1015: 995: 951: 912: 889:, then one of the 879: 835: 796: 784:Nisnevich topology 763: 743: 723: 695: 663: 637: 604: 584: 535: 515: 495: 467: 457:is algebraic over 447: 427: 392: 372: 327: 294: 261: 241: 221: 197: 174: 142:strictly Henselian 1649:978-3-540-05283-8 1615:978-0-88275-228-0 1568:Nagata, Masayoshi 1523:Nagata, Masayoshi 1478:Nagata, Masayoshi 1018:{\displaystyle R} 799:{\displaystyle R} 766:{\displaystyle L} 746:{\displaystyle v} 538:{\displaystyle K} 477:, then for every 470:{\displaystyle K} 395:{\displaystyle K} 264:{\displaystyle K} 244:{\displaystyle K} 224:{\displaystyle v} 200:{\displaystyle v} 177:{\displaystyle K} 65:Grothendieck 1967 59:, Chapter VII), ( 1681: 1660: 1626: 1600: 1591: 1563: 1546: 1518: 1501: 1473: 1453: 1452: 1451: 1442:, archived from 1415: 1397: 1380: 1348: 1341: 1097:, such that any 1093:, introduced by 1057: 1055: 1054: 1049: 1041: 1040: 1024: 1022: 1021: 1016: 1005:of a local ring 1004: 1002: 1001: 996: 961:of the spectrum 960: 958: 957: 952: 941: 940: 921: 919: 918: 913: 905: 904: 888: 886: 885: 880: 844: 842: 841: 836: 825: 824: 805: 803: 802: 797: 772: 770: 769: 764: 752: 750: 749: 744: 732: 730: 729: 724: 719: 704: 702: 701: 696: 694: 693: 688: 672: 670: 669: 664: 646: 644: 643: 638: 636: 635: 613: 611: 610: 605: 593: 591: 590: 585: 565: 544: 542: 541: 536: 524: 522: 521: 516: 504: 502: 501: 496: 494: 476: 474: 473: 468: 456: 454: 453: 448: 436: 434: 433: 428: 401: 399: 398: 393: 381: 379: 378: 373: 336: 334: 333: 328: 326: 325: 303: 301: 300: 295: 293: 292: 270: 268: 267: 262: 250: 248: 247: 242: 230: 228: 227: 222: 206: 204: 203: 198: 183: 181: 180: 175: 150:separably closed 104:monic polynomial 75:In this article 1689: 1688: 1684: 1683: 1682: 1680: 1679: 1678: 1664: 1663: 1650: 1616: 1449: 1447: 1352: 1351: 1342: 1338: 1333: 1325: 1299: 1261:complex numbers 1235: 1229:automorphisms. 1071: 1036: 1032: 1030: 1027: 1026: 1010: 1007: 1006: 966: 963: 962: 936: 932: 927: 924: 923: 900: 896: 894: 891: 890: 850: 847: 846: 820: 816: 811: 808: 807: 791: 788: 787: 780: 758: 755: 754: 738: 735: 734: 715: 710: 707: 706: 689: 684: 683: 678: 675: 674: 652: 649: 648: 625: 621: 619: 616: 615: 599: 596: 595: 558: 550: 547: 546: 530: 527: 526: 510: 507: 506: 487: 485: 482: 481: 462: 459: 458: 442: 439: 438: 410: 407: 406: 387: 384: 383: 355: 352: 351: 347: 315: 311: 309: 306: 305: 282: 278: 276: 273: 272: 256: 253: 252: 236: 233: 232: 216: 213: 212: 192: 189: 188: 169: 166: 165: 137:of local rings. 73: 67:, Chapter 18). 46:non-commutative 12: 11: 5: 1687: 1677: 1676: 1662: 1661: 1648: 1627: 1614: 1601: 1564: 1519: 1474: 1454: 1416: 1398: 1350: 1349: 1335: 1334: 1332: 1329: 1328: 1327: 1323: 1309: 1297: 1284: 1277: 1274: 1267: 1264: 1263:are Henselian. 1253: 1250:-adic integers 1239: 1234: 1231: 1219:roots of unity 1070: 1067: 1063:Ă©tale topology 1047: 1044: 1039: 1035: 1014: 994: 991: 988: 985: 982: 979: 976: 973: 970: 950: 947: 944: 939: 935: 931: 911: 908: 903: 899: 878: 875: 872: 869: 866: 863: 860: 857: 854: 834: 831: 828: 823: 819: 815: 795: 779: 776: 775: 774: 762: 742: 722: 718: 714: 692: 687: 682: 662: 659: 656: 634: 631: 628: 624: 603: 583: 580: 577: 574: 571: 568: 564: 561: 557: 554: 534: 514: 493: 490: 466: 446: 426: 423: 420: 417: 414: 403: 391: 371: 368: 365: 362: 359: 346: 343: 342: 341: 338: 324: 321: 318: 314: 291: 288: 285: 281: 260: 240: 220: 209:valuation ring 196: 173: 153: 138: 131: 72: 69: 38:Azumaya (1951) 34:Hensel's lemma 22:Henselian ring 9: 6: 4: 3: 2: 1686: 1675: 1672: 1671: 1669: 1659: 1655: 1651: 1645: 1641: 1637: 1633: 1628: 1625: 1621: 1617: 1611: 1607: 1602: 1599: 1595: 1590: 1585: 1581: 1577: 1573: 1569: 1565: 1562: 1558: 1554: 1550: 1545: 1540: 1536: 1532: 1528: 1524: 1520: 1517: 1513: 1509: 1505: 1500: 1495: 1491: 1487: 1483: 1479: 1475: 1472: 1468: 1464: 1460: 1455: 1446:on 2016-03-03 1445: 1441: 1437: 1433: 1429: 1425: 1421: 1417: 1414: 1410: 1409: 1404: 1403:"Hensel ring" 1399: 1396: 1392: 1388: 1384: 1379: 1374: 1370: 1366: 1362: 1358: 1357:Azumaya, GorĂ´ 1354: 1353: 1346: 1345:Valued fields 1340: 1336: 1322: 1318: 1315:has only one 1314: 1310: 1307: 1303: 1296: 1293: 1289: 1285: 1282: 1278: 1275: 1272: 1268: 1265: 1262: 1258: 1254: 1251: 1249: 1244: 1240: 1237: 1236: 1230: 1228: 1224: 1220: 1216: 1215:-adic numbers 1214: 1209: 1208:automorphisms 1205: 1201: 1197: 1193: 1190:, called the 1189: 1184: 1182: 1178: 1174: 1171: 1168: 1164: 1160: 1156: 1152: 1148: 1144: 1140: 1136: 1132: 1128: 1124: 1120: 1116: 1112: 1108: 1104: 1100: 1096: 1095:Nagata (1953) 1092: 1088: 1087:Henselization 1085:, called the 1084: 1081:generated by 1080: 1076: 1069:Henselization 1066: 1064: 1059: 1045: 1037: 1033: 1025:, one of the 1012: 989: 983: 980: 977: 974: 971: 968: 945: 937: 933: 909: 901: 897: 873: 867: 864: 861: 858: 855: 852: 829: 821: 817: 793: 785: 760: 740: 720: 716: 712: 690: 680: 660: 657: 654: 632: 629: 626: 622: 601: 578: 572: 569: 562: 559: 552: 532: 512: 491: 488: 480: 464: 444: 421: 418: 415: 404: 389: 366: 363: 360: 349: 348: 339: 322: 319: 316: 312: 289: 286: 283: 279: 258: 238: 218: 210: 194: 187: 171: 164: 163: 158: 154: 151: 147: 146:residue field 143: 139: 136: 132: 129: 125: 121: 117: 113: 109: 105: 101: 97: 93: 90: 89:maximal ideal 86: 83:A local ring 82: 81: 80: 78: 68: 66: 62: 58: 53: 51: 47: 43: 39: 35: 31: 27: 23: 19: 1631: 1605: 1579: 1575: 1534: 1530: 1489: 1485: 1458: 1448:, retrieved 1444:the original 1431: 1427: 1406: 1368: 1364: 1344: 1339: 1320: 1312: 1301: 1294: 1292:reduced ring 1287: 1247: 1222: 1212: 1203: 1199: 1195: 1191: 1187: 1185: 1181:power series 1179:(the formal 1169: 1150: 1146: 1138: 1134: 1130: 1122: 1110: 1106: 1102: 1090: 1086: 1082: 1078: 1074: 1072: 1060: 781: 350:Assume that 160: 141: 127: 119: 115: 111: 107: 99: 95: 91: 84: 74: 61:Raynaud 1970 54: 25: 21: 15: 1606:Local rings 1371:: 119–150, 1326:is a field. 1317:prime ideal 1227:non-trivial 1143:flat module 1119:isomorphism 304:, resp. to 271:, resp. to 71:Definitions 57:Nagata 1975 50:commutative 42:Kurt Hensel 26:Hensel ring 18:mathematics 1582:: 93–101, 1450:2007-12-09 1331:References 1200:non-unique 1155:Noetherian 1127:completion 1113:is unique 345:Properties 94:is called 30:local ring 1553:0027-7630 1508:0027-7630 1492:: 45–57, 1434:: 5–361, 1413:EMS Press 1387:0027-7630 1243:Hausdorff 1241:Complete 1173:localized 1163:excellent 1141:and is a 1043:→ 943:→ 907:→ 827:→ 661:σ 658:∘ 602:σ 579:α 560:α 513:α 489:α 479:conjugate 445:α 186:valuation 96:Henselian 32:in which 1668:Category 1570:(1959), 1537:: 1–19, 1525:(1954), 1480:(1953), 1422:(1967), 1359:(1951), 1281:quotient 1271:integral 1233:Examples 563:′ 492:′ 63:), and ( 28:) is a 1658:0277519 1624:0155856 1598:0109835 1561:0067865 1516:0051821 1471:0491694 1395:0040287 1304:by the 1286:A ring 1159:reduced 1117:unique 144:if its 135:product 124:coprime 1656:  1646:  1622:  1612:  1596:  1559:  1551:  1514:  1506:  1469:  1393:  1385:  1279:Every 1206:, and 1149:. If 1145:over 1115:up to 1101:from 525:over 184:with 162:field 102:is a 87:with 77:rings 1644:ISBN 1610:ISBN 1549:ISSN 1504:ISSN 1383:ISSN 1257:real 159:, a 114:in ( 24:(or 20:, a 1636:doi 1584:doi 1539:doi 1494:doi 1436:doi 1373:doi 1324:red 1311:If 1298:red 1259:or 1194:of 1153:is 1129:of 1089:of 753:to 614:of 505:of 405:If 155:By 148:is 106:in 16:In 1670:: 1654:MR 1652:, 1642:, 1620:MR 1618:, 1594:MR 1592:, 1580:32 1578:, 1574:, 1557:MR 1555:, 1547:, 1533:, 1529:, 1512:MR 1510:, 1502:, 1488:, 1484:, 1467:MR 1465:, 1432:32 1430:, 1426:, 1411:, 1405:, 1391:MR 1389:, 1381:, 1367:, 1363:, 1308:). 1157:, 1065:. 647:, 545:, 337:). 52:. 1638:: 1586:: 1541:: 1535:7 1496:: 1490:5 1438:: 1375:: 1369:2 1321:A 1313:A 1302:A 1295:A 1288:A 1248:p 1223:p 1213:p 1204:A 1196:A 1188:A 1170:k 1151:A 1147:A 1139:A 1135:A 1131:A 1123:A 1111:A 1107:B 1103:A 1091:A 1083:A 1079:B 1075:A 1046:X 1038:i 1034:U 1013:R 993:) 990:R 987:( 984:c 981:e 978:p 975:S 972:= 969:X 949:} 946:X 938:i 934:U 930:{ 910:X 902:i 898:U 877:) 874:R 871:( 868:c 865:e 862:p 859:S 856:= 853:X 833:} 830:X 822:i 818:U 814:{ 794:R 761:L 741:v 721:K 717:/ 713:L 691:K 686:| 681:v 655:v 633:g 630:l 627:a 623:K 582:) 576:( 573:v 570:= 567:) 556:( 553:v 533:K 465:K 425:) 422:v 419:, 416:K 413:( 390:K 370:) 367:v 364:, 361:K 358:( 323:p 320:e 317:s 313:K 290:g 287:l 284:a 280:K 259:K 239:K 219:v 195:v 172:K 152:. 130:. 128:R 120:m 118:/ 116:R 112:P 108:R 100:P 92:m 85:R

Index

mathematics
local ring
Hensel's lemma
Azumaya (1951)
Kurt Hensel
non-commutative
commutative
Nagata 1975
Raynaud 1970
Grothendieck 1967
rings
maximal ideal
monic polynomial
coprime
product
residue field
separably closed
abuse of terminology
field
valuation
valuation ring
conjugate
Nisnevich topology
Ă©tale topology
Nagata (1953)
local homomorphism
up to
isomorphism
completion
flat module

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑