Knowledge

Hardy field

Source 📝

363:
Every element of a Hardy field is eventually either strictly positive, strictly negative, or zero. This follows fairly immediately from the facts that the elements in a Hardy field are eventually differentiable and hence
425: 529:. But they both tend to infinity. In this sense the ordering tells us how quickly all the unbounded functions diverge to infinity. Even finite limits being equal is not enough: consider 315:
Another example is the field of functions that can be expressed using the standard arithmetic operations, exponents, and logarithms, and are well-defined on some interval of the form
345: 368:
and eventually either have a multiplicative inverse or are zero. This means periodic functions such as the sine and cosine functions cannot exist in Hardy fields.
371:
This avoidance of periodic functions also means that every element in a Hardy field has a (possibly infinite) limit at infinity, so if
52:
Initially at least, Hardy fields were defined in terms of germs of real functions at infinity. Specifically we consider a collection
151:
modulo this equivalence relation under the induced addition and multiplication operations. Moreover, if every function in
557:
The modern theory of Hardy fields doesn't restrict to real functions but to those defined in certain structures expanding
688: 385: 178:. However, in practice the elements are normally just denoted by the representatives themselves, so instead of 285: 749: 37: 744: 734: 600: 77: 318: 581:). The properties of Hardy fields in the real setting still hold in this more general setting. 351:. Much bigger Hardy fields (that contain Hardy L-functions as a subfield) can be defined using 739: 140:
is eventually zero. The equivalence classes of this relation are called germs at infinity.
117: 33: 598:
Boshernitzan, Michael (1986), "Hardy fields and existence of transexponential functions",
174:
to denote the class of functions that are eventually equal to the representative function
8: 365: 25: 711: 670: 617: 29: 621: 558: 241: 300:. Adding and multiplying rational functions gives more rational functions, and the 147:
forms a field under the usual addition and multiplication of functions then so will
715: 703: 660: 609: 566: 233:
is, and since the derivative of every function in this field is 0 which must be in
170:
Elements of a Hardy field are thus equivalence classes and should be denoted, say,
573:
that are defined for all sufficiently large elements forms a Hardy field denoted
461:
is eventually strictly positive. Note that this is not the same as stating that
199: 304:
shows that the derivative of rational function is again a rational function, so
707: 728: 301: 56:
of functions that are defined for all large real numbers, that is functions
438: 352: 76:. Here and in the rest of the article we say a function has a property " 41: 17: 206:
then we can consider it as a Hardy field by considering the elements of
674: 613: 288:, such a rational function will be defined for all sufficiently large 665: 569:
expansion of a field, then the set of unary definable functions in
155:
is eventually differentiable and the derivative of any function in
477:. For example, if we consider the germs of the identity function 167:
modulo the above equivalence relation is called a Hardy field.
280:
are polynomials with real coefficients. Since the polynomial
210:
as constant functions, that is by considering the number α in
651:
Rosenlicht, Maxwell (1983), "The Rank of a Hardy Field",
240:
A less trivial example of a Hardy field is the field of
388: 321: 80:" if it has the property for all sufficiently large 419: 339: 40:. They are named after the English mathematician 653:Transactions of the American Mathematical Society 726: 689:"Valuation theory of exponential Hardy fields I" 687:Kuhlmann, Franz-Viktor; Kuhlmann, Salma (2003), 686: 635:Properties of Logarithmico-Exponential Functions 420:{\displaystyle \lim _{x\rightarrow \infty }f(x)} 390: 256:). This is the set of functions of the form 597: 650: 664: 284:can have only finitely many zeros by the 727: 637:, Proc. London Math. Soc. (2), 54–90, 347:. Such functions are sometimes called 296:larger than the largest real root of 84:, so for example we say a function 13: 552: 400: 331: 36:at infinity that are closed under 14: 761: 680: 644: 627: 591: 437:It also means we can place an 414: 408: 397: 334: 322: 286:fundamental theorem of algebra 1: 584: 489:and the exponential function 358: 229:to α. This is a field since 96:if there is some real number 47: 434: ∪ {−∞,+∞}. 7: 517:) > 0 for all 340:{\displaystyle (x,\infty )} 189: 10: 766: 473:is less than the limit of 708:10.1007/s00209-002-0460-4 696:Mathematische Zeitschrift 214:as the constant function 601:Aequationes Mathematicae 108:) = 0 for all 64:,∞) to the real numbers 312:) forms a Hardy field. 292:, specifically for all 68:, for some real number 421: 341: 422: 342: 237:it is a Hardy field. 182:one would just write 34:real-valued functions 750:Algebraic structures 509:) −  386: 319: 118:equivalence relation 745:Field (mathematics) 735:Asymptotic analysis 457: −  136: −  614:10.1007/BF02189932 559:real closed fields 417: 404: 337: 242:rational functions 116:. We can form an 549:) = 0. 389: 375:is an element of 349:Hardy L-functions 128:is equivalent to 757: 719: 718: 693: 684: 678: 677: 668: 648: 642: 631: 625: 624: 595: 537:) = 1/ 525: >  469:if the limit of 465: <  449: <  426: 424: 423: 418: 403: 346: 344: 343: 338: 221:that maps every 765: 764: 760: 759: 758: 756: 755: 754: 725: 724: 723: 722: 691: 685: 681: 666:10.2307/1999639 649: 645: 632: 628: 596: 592: 587: 555: 553:In model theory 393: 387: 384: 383: 361: 320: 317: 316: 220: 192: 181: 173: 132:if and only if 94:eventually zero 50: 38:differentiation 12: 11: 5: 763: 753: 752: 747: 742: 737: 721: 720: 702:(4): 671–688, 679: 659:(2): 659–671, 643: 626: 608:(1): 258–280, 589: 588: 586: 583: 561:. Indeed, if 554: 551: 497:) =  485:) =  428: 427: 416: 413: 410: 407: 402: 399: 396: 392: 360: 357: 336: 333: 330: 327: 324: 218: 191: 188: 179: 171: 49: 46: 28:consisting of 9: 6: 4: 3: 2: 762: 751: 748: 746: 743: 741: 738: 736: 733: 732: 730: 717: 713: 709: 705: 701: 697: 690: 683: 676: 672: 667: 662: 658: 654: 647: 640: 636: 633:G. H. Hardy, 630: 623: 619: 615: 611: 607: 603: 602: 594: 590: 582: 580: 576: 572: 568: 564: 560: 550: 548: 544: 540: 536: 532: 528: 524: 521:we have that 520: 516: 512: 508: 504: 500: 496: 492: 488: 484: 480: 476: 472: 468: 464: 460: 456: 452: 448: 444: 440: 435: 433: 411: 405: 394: 382: 381: 380: 378: 374: 369: 367: 356: 354: 350: 328: 325: 313: 311: 307: 303: 302:quotient rule 299: 295: 291: 287: 283: 279: 275: 271: 267: 263: 259: 255: 251: 247: 243: 238: 236: 232: 228: 224: 217: 213: 209: 205: 201: 197: 187: 185: 177: 168: 166: 162: 158: 154: 150: 146: 141: 139: 135: 131: 127: 123: 119: 115: 112: ≥  111: 107: 103: 99: 95: 91: 87: 83: 79: 75: 72:depending on 71: 67: 63: 59: 55: 45: 43: 39: 35: 31: 27: 23: 19: 740:Model theory 699: 695: 682: 656: 652: 646: 638: 634: 629: 605: 599: 593: 578: 574: 570: 562: 556: 546: 542: 538: 534: 530: 526: 522: 518: 514: 510: 506: 502: 498: 494: 490: 486: 482: 478: 474: 470: 466: 462: 458: 454: 450: 446: 442: 436: 431: 429: 376: 372: 370: 362: 348: 314: 309: 305: 297: 293: 289: 281: 277: 273: 269: 265: 261: 257: 253: 249: 245: 239: 234: 230: 226: 222: 215: 211: 207: 203: 195: 193: 183: 175: 169: 164: 160: 156: 152: 148: 144: 142: 137: 133: 129: 125: 121: 113: 109: 105: 101: 97: 93: 89: 85: 81: 73: 69: 65: 61: 57: 53: 51: 21: 15: 501:then since 353:transseries 159:is also in 42:G. H. Hardy 22:Hardy field 18:mathematics 729:Categories 585:References 445:by saying 430:exists in 366:continuous 359:Properties 248:, denoted 124:by saying 100:such that 78:eventually 60:that map ( 48:Definition 622:121021048 567:o-minimal 401:∞ 398:→ 332:∞ 439:ordering 272:) where 200:subfield 190:Examples 716:6679449 675:1999639 641:, 1911 379:, then 714:  673:  620:  565:is an 712:S2CID 692:(PDF) 671:JSTOR 618:S2CID 198:is a 163:then 30:germs 26:field 24:is a 541:and 276:and 20:, a 704:doi 700:243 661:doi 657:280 610:doi 453:if 441:on 391:lim 244:on 225:in 202:of 194:If 143:If 120:on 92:is 88:in 32:of 16:In 731:: 710:, 698:, 694:, 669:, 655:, 639:10 616:, 606:30 604:, 355:. 264:)/ 186:. 44:. 706:: 663:: 612:: 579:R 577:( 575:H 571:R 563:R 547:x 545:( 543:g 539:x 535:x 533:( 531:f 527:f 523:g 519:x 515:x 513:( 511:f 507:x 505:( 503:g 499:e 495:x 493:( 491:g 487:x 483:x 481:( 479:f 475:g 471:f 467:g 463:f 459:f 455:g 451:g 447:f 443:H 432:R 415:) 412:x 409:( 406:f 395:x 377:H 373:f 335:) 329:, 326:x 323:( 310:x 308:( 306:R 298:Q 294:x 290:x 282:Q 278:Q 274:P 270:x 268:( 266:Q 262:x 260:( 258:P 254:x 252:( 250:R 246:R 235:F 231:F 227:R 223:x 219:α 216:f 212:F 208:F 204:R 196:F 184:f 180:∞ 176:f 172:∞ 165:H 161:H 157:H 153:H 149:H 145:H 138:g 134:f 130:g 126:f 122:H 114:U 110:x 106:x 104:( 102:f 98:U 90:H 86:f 82:x 74:f 70:u 66:R 62:u 58:f 54:H

Index

mathematics
field
germs
real-valued functions
differentiation
G. H. Hardy
eventually
equivalence relation
subfield
rational functions
fundamental theorem of algebra
quotient rule
transseries
continuous
ordering
real closed fields
o-minimal
Aequationes Mathematicae
doi
10.1007/BF02189932
S2CID
121021048
doi
10.2307/1999639
JSTOR
1999639
"Valuation theory of exponential Hardy fields I"
doi
10.1007/s00209-002-0460-4
S2CID

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.