Knowledge

Hales–Jewett theorem

Source 📝

534:, two of these elements must fall into the same class. Suppose for instance 111112 and 112222 fall into class (5), thus 11111211, 11111222, 11222211, 11222222 are crosses and 11111233, 11222233 are noughts. But now consider the position 11333233, which must be filled with either a cross or a nought. If it is filled with a cross, then the combinatorial line 11xxx2xx is filled entirely with crosses, contradicting our hypothesis. If instead it is filled with a nought, then the combinatorial line 11xxx233 is filled entirely with noughts, again contradicting our hypothesis. Similarly if any other two of the above seven elements of 135: 1245: 463:
two of them must be filled with the same symbol. Since any two of these positions are part of a combinatorial line, the third element of that line must be occupied by the opposite symbol (since we are assuming that no combinatorial line has all three elements filled with the same symbol). In other
379:
to, say, 8 (so that the board is now eight-dimensional, with 3 = 6561 positions), and partition this board into two sets (the "noughts" and "crosses"), then one of the two sets must contain a combinatorial line (i.e. no draw is possible in this variant of
362:
A typical combinatorial line would be the word 2x, which corresponds to the line 21, 22, 23; another combinatorial line is xx, which is the line 11, 22, 33. (Note that the line 13, 22, 31, while a valid line for the game
546:
fall into the same class. Since we have a contradiction in all cases, the original hypothesis must be false; thus there must exist at least one combinatorial line consisting entirely of noughts or entirely of crosses.
458:
board, for instance "132113??" gives such a board. For each such board "abcdef??", we consider the positions "abcdef11", "abcdef12", "abcdef22". Each of these must be filled with either a nought or a cross, so by the
641:
of length three, all of whose elements are the same color. This is simply because all of the combinatorial lines appearing in the above proof of the Hales–Jewett theorem, also form arithmetic progressions in
514:
into six classes, corresponding to each of the above six possibilities. (If an element abcdef obeys multiple possibilities, we can choose one arbitrarily, e.g. by choosing the highest one on the above list).
454:
and assume that neither the set of noughts nor the set of crosses contains a combinatorial line. If we fix the first six elements of such a string and let the last two vary, we obtain an ordinary
450:
is a string of eight numbers from 1 to 3, e.g. 13211321 is an element of the hypercube. We are assuming that this hypercube is completely filled with "noughts" and "crosses". We shall use a
404: = 8 discussed above. The idea is to reduce this task to that of proving simpler versions of the Hales–Jewett theorem (in this particular case, to the cases 371:
board into two sets, e.g. {11, 22, 23, 31} and {12, 13, 21, 32, 33}, neither of which contain a combinatorial line (and would correspond to a draw in the game of
665:, the Hales–Jewett theorem also has a density version. In this strengthened version of the Hales–Jewett theorem, instead of coloring the entire 367:, is not considered a combinatorial line.) In this particular case, the Hales–Jewett theorem does not apply; it is possible to divide the 1412: 114:
are playing, and no matter which player plays each turn, provided only that it is played on a board of sufficiently high dimension
1152: 1005: 1056:
Dodos, Pandelis; Kanellopoulos, Vassilis; Tyros, Konstantinos (2014). "A simple proof of the density Hales–Jewett theorem".
898: 1288: 1116: 1111: 992:. Bolyai Society Mathematical Studies. Vol. 21. Budapest: János Bolyai Mathematical Society. pp. 659–687. 43:, concerning the degree to which high-dimensional objects must necessarily exhibit some combinatorial structure. 1117:
A blog post by Steven Landsburg discussing how the proof of this theorem was improved collaboratively on a blog
735: 646:. A more general formulation of this argument can be used to show that the Hales–Jewett theorem generalizes 654: 647: 464:
words, for each choice of "abcdef" (which can be thought of as an element of the six-dimensional hypercube
1224: 122:, one can thus conclude that if two players alternate, then the first player has a winning strategy when 1298: 812: 428: = 6). One can prove the general case of the Hales–Jewett theorem by similar methods, using 1417: 1145: 1058: 662: 984:
Gowers, William Timothy (2010). "Polymath and the density Hales-Jewett theorem". In Bárány, Imre;
764: 1407: 727:
developed a new proof of the density Hales–Jewett theorem based on ideas from the proof of the
638: 451: 429: 1351: 1308: 1105: 947: 1324: 1229: 1169: 1138: 1089: 1042: 1015: 970: 919: 875: 825: 786: 719:
The density Hales–Jewett theorem was originally proved by Furstenberg and Katznelson using
531: 460: 126:
is sufficiently large, though no practical algorithm for obtaining this strategy is known.
518:
Now consider the seven elements 111111, 111112, 111122, 111222, 112222, 122222, 222222 in
82:
colors, there must be one row, column, or certain diagonal (more details below) of length
8: 1345: 1283: 1214: 845: 587: 1067: 1029:
Ajtai, Miklós; Szemerédi, Endre (1974). "Sets of lattice points that form no squares".
923: 893: 889: 863: 739: 583: 230: 985: 777: 759: 247:; combinatorial lines correspond to rows, columns, and (some of the) diagonals of the 1001: 927: 119: 1376: 1234: 1112:
Science News article on the collaborative proof of the density Hales-Jewett theorem
1077: 993: 956: 907: 853: 772: 731:. Dodos, Kanellopoulos, and Tyros gave a simplified version of the Polymath proof. 724: 40: 1204: 1199: 1085: 1038: 1011: 997: 966: 915: 871: 821: 782: 728: 46:
An informal geometric statement of the theorem is that for any positive integers
36: 1244: 961: 942: 625:
be the set of all eight-digit numbers whose digits are all either 1, 2, 3 (thus
1177: 720: 591: 1121: 621:
Observe that the above argument also gives the following corollary: if we let
289:
parts, there is at least one part that contains an entire combinatorial line.
1401: 32: 28: 1366: 800: 1081: 1381: 1361: 1303: 1192: 1161: 804: 575: 455: 381: 372: 368: 364: 319: 251:. The Hales–Jewett theorem then states that for given positive integers 172:. This set forms the hypercube that is the subject of the theorem. A 99: 20: 134: 1356: 1329: 1259: 911: 867: 650:. Indeed the Hales–Jewett theorem is substantially a stronger theorem. 558: = 4. If one extends the above argument to general values of 704:
with some given density 0 < δ < 1. The theorem states that if
666: 500: 436: 248: 858: 840: 387: 1371: 551: 1072: 1386: 1339: 1275: 1187: 643: 86:
all of whose cells are the same color. In other words, assuming
1182: 1130: 1219: 1209: 221:) obtained by replacing all instances of the special element 554:
was somewhat wasteful; in fact the same theorem holds for
392:
We now prove the Hales–Jewett theorem in the special case
1125: 896:(1991). "A density version of the Hales–Jewett theorem". 841:"Primitive recursive bounds for van der Waerden numbers" 495:
abcdef12 and abcdef22 are crosses; abcdef32 is a nought.
492:
abcdef11 and abcdef22 are crosses; abcdef33 is a nought.
489:
abcdef11 and abcdef12 are crosses; abcdef13 is a nought.
1055: 716:
must necessarily contain an entire combinatorial line.
594:, and is still the best known bound in general for the 486:
abcdef12 and abcdef22 are noughts; abcdef32 is a cross.
483:
abcdef11 and abcdef22 are noughts; abcdef33 is a cross.
480:
abcdef11 and abcdef12 are noughts; abcdef13 is a cross.
164:
letters; that is, the set of sequences of {1, 2, ...,
888: 205:
in place of at least one of the letters. The words
805:"The first nontrivial Hales-Jewett number is four" 616: 106:players cannot end in a draw, no matter how large 943:"A new proof of the density Hales–Jewett theorem" 940: 629:contains numbers such as 11333233), and we color 582:given by the above argument grows as fast as the 388:Proof of Hales–Jewett theorem (in a special case) 94:are fixed, the higher-dimensional, multi-player, 16:Fundamental combinatorial result of Ramsey theory 1399: 574: = 2 (which corresponds to two-player 799: 1028: 476:), there are six (overlapping) possibilities: 1146: 758:Hales, Alfred W.; Jewett, Robert I. (1963). 757: 1153: 1139: 499:Thus we can partition the six-dimensional 1071: 960: 857: 776: 686:colors, one is given an arbitrary subset 133: 734:The Hales–Jewett is generalized by the 1400: 983: 838: 375:). On the other hand, if we increase 98:-in-a-row generalization of a game of 1134: 708:is sufficiently large depending on 129: 13: 318:in this case is just the standard 259:, there exists a positive integer 14: 1429: 1099: 778:10.1090/S0002-9947-1963-0143712-1 760:"Regularity and positional games" 271:, such that for any partition of 201:but includes the special element 1413:Theorems in discrete mathematics 1289:Harary's generalized tic-tac-toe 1243: 1160: 617:Connections with other theorems 570:will grow very fast; even when 1122:Higher-Dimensional Tic-Tac-Toe 1049: 1022: 977: 934: 899:Journal d'Analyse Mathématique 882: 832: 793: 751: 156:be the set of words of length 110:is, no matter how many people 1: 745: 138:Combinatorical line in a cube 998:10.1007/978-3-642-14444-8_21 384:). For a proof, see below. 322:board, with nine positions: 58:such that if the cells of a 7: 962:10.4007/annals.2012.175.3.6 10: 1434: 1299:Strategy-stealing argument 941:D. H. J. Polymath (2012). 120:strategy-stealing argument 1317: 1252: 1241: 1168: 1059:Int. Math. Res. Not. IMRN 803:; Tressler, Eric (2014). 736:Graham–Rothschild theorem 655:van der Waerden's theorem 648:van der Waerden's theorem 839:Shelah, Saharon (1988). 738:, on higher-dimensional 1031:Stud. Sci. Math. Hungar 765:Trans. Amer. Math. Soc. 639:arithmetic progression 637:contains at least one 633:with two colors, then 452:proof by contradiction 430:mathematical induction 160:over an alphabet with 139: 78:cube are colored with 1309:Paper-and-pencil game 1124:| Infinite Series by 948:Annals of Mathematics 137: 1294:Hales–Jewett theorem 1230:Ultimate tic-tac-toe 1108:- begins on slide 57 712:and δ, then the set 532:pigeonhole principle 461:pigeonhole principle 435:Each element of the 304:= 2. The hypercube 25:Hales–Jewett theorem 1215:Quantum tic-tac-toe 1082:10.1093/imrn/rnt041 894:Katznelson, Yitzhak 890:Furstenberg, Hillel 846:J. Amer. Math. Soc. 740:combinatorial cubes 663:Szemerédi's theorem 596:Hales–Jewett number 588:primitive recursive 416: = 2 and 1352:Three men's morris 912:10.1007/BF03041066 584:Ackermann function 292:For example, take 231:combinatorial line 140: 54:there is a number 1395: 1394: 1325:Nine men's morris 1106:Full proof of HJT 1066:(12): 3340–3352. 1007:978-963-9453-14-2 990:An irregular mind 690:of the hypercube 360: 359: 197:still has length 118:. By a standard 27:is a fundamental 1425: 1418:Positional games 1284:Kaplansky's game 1253:Related concepts 1247: 1235:Wild tic-tac-toe 1155: 1148: 1141: 1132: 1131: 1094: 1093: 1075: 1053: 1047: 1046: 1026: 1020: 1019: 986:Solymosi, József 981: 975: 974: 964: 955:(3): 1283–1327. 938: 932: 931: 886: 880: 879: 861: 836: 830: 829: 813:Ars Combinatoria 809: 797: 791: 790: 780: 755: 725:Polymath Project 723:. In 2009, the 703: 702: 681: 680: 644:decimal notation 590:bound is due to 545: 544: 529: 528: 513: 512: 475: 474: 449: 448: 424: = 6, 420: = 2, 412: = 2, 408: = 2, 400: = 2, 396: = 3, 325: 324: 317: 316: 284: 283: 246: 245: 225:with 1, 2, ..., 196: 195: 155: 154: 130:Formal statement 41:Robert I. Jewett 1433: 1432: 1428: 1427: 1426: 1424: 1423: 1422: 1398: 1397: 1396: 1391: 1313: 1248: 1239: 1205:Order and Chaos 1200:Number Scrabble 1164: 1159: 1102: 1097: 1054: 1050: 1027: 1023: 1008: 982: 978: 939: 935: 887: 883: 859:10.2307/1990952 837: 833: 807: 798: 794: 756: 752: 748: 729:corners theorem 701: 696: 695: 694: 679: 674: 673: 672: 659:density version 657:has a stronger 619: 543: 540: 539: 538: 527: 524: 523: 522: 511: 508: 507: 506: 473: 470: 469: 468: 447: 444: 443: 442: 390: 315: 310: 309: 308: 282: 277: 276: 275: 263:, depending on 244: 239: 238: 237: 194: 189: 188: 187: 153: 148: 147: 146: 132: 37:Alfred W. Hales 17: 12: 11: 5: 1431: 1421: 1420: 1415: 1410: 1393: 1392: 1390: 1389: 1384: 1379: 1374: 1369: 1364: 1359: 1354: 1349: 1342: 1337: 1336: 1335: 1327: 1321: 1319: 1315: 1314: 1312: 1311: 1306: 1301: 1296: 1291: 1286: 1281: 1273: 1256: 1254: 1250: 1249: 1242: 1240: 1238: 1237: 1232: 1227: 1222: 1217: 1212: 1207: 1202: 1197: 1196: 1195: 1185: 1180: 1178:3D tic-tac-toe 1174: 1172: 1166: 1165: 1158: 1157: 1150: 1143: 1135: 1129: 1128: 1119: 1114: 1109: 1101: 1100:External links 1098: 1096: 1095: 1048: 1021: 1006: 976: 933: 881: 852:(3): 683–697. 831: 792: 771:(2): 222–229. 749: 747: 744: 721:ergodic theory 697: 675: 618: 615: 592:Saharon Shelah 541: 525: 509: 497: 496: 493: 490: 487: 484: 481: 471: 445: 389: 386: 358: 357: 354: 351: 347: 346: 343: 340: 336: 335: 332: 329: 311: 278: 240: 190: 149: 131: 128: 15: 9: 6: 4: 3: 2: 1430: 1419: 1416: 1414: 1411: 1409: 1408:Ramsey theory 1406: 1405: 1403: 1388: 1385: 1383: 1380: 1378: 1375: 1373: 1370: 1368: 1365: 1363: 1360: 1358: 1355: 1353: 1350: 1348: 1347: 1343: 1341: 1338: 1333: 1332: 1331: 1328: 1326: 1323: 1322: 1320: 1318:Similar games 1316: 1310: 1307: 1305: 1302: 1300: 1297: 1295: 1292: 1290: 1287: 1285: 1282: 1280: 1278: 1274: 1272: 1270: 1266: 1262: 1258: 1257: 1255: 1251: 1246: 1236: 1233: 1231: 1228: 1226: 1223: 1221: 1218: 1216: 1213: 1211: 1208: 1206: 1203: 1201: 1198: 1194: 1191: 1190: 1189: 1186: 1184: 1181: 1179: 1176: 1175: 1173: 1171: 1167: 1163: 1156: 1151: 1149: 1144: 1142: 1137: 1136: 1133: 1127: 1123: 1120: 1118: 1115: 1113: 1110: 1107: 1104: 1103: 1091: 1087: 1083: 1079: 1074: 1069: 1065: 1061: 1060: 1052: 1044: 1040: 1036: 1032: 1025: 1017: 1013: 1009: 1003: 999: 995: 991: 987: 980: 972: 968: 963: 958: 954: 950: 949: 944: 937: 929: 925: 921: 917: 913: 909: 906:(1): 64–119. 905: 901: 900: 895: 891: 885: 877: 873: 869: 865: 860: 855: 851: 848: 847: 842: 835: 827: 823: 819: 815: 814: 806: 802: 801:Hindman, Neil 796: 788: 784: 779: 774: 770: 767: 766: 761: 754: 750: 743: 741: 737: 732: 730: 726: 722: 717: 715: 711: 707: 700: 693: 689: 685: 678: 671: 668: 664: 660: 656: 651: 649: 645: 640: 636: 632: 628: 624: 614: 612: 608: 604: 601: =  600: 597: 593: 589: 586:. The first 585: 581: 577: 573: 569: 565: 561: 557: 553: 548: 537: 533: 521: 516: 505: 502: 494: 491: 488: 485: 482: 479: 478: 477: 467: 462: 457: 453: 441: 438: 433: 431: 427: 423: 419: 415: 411: 407: 403: 399: 395: 385: 383: 378: 374: 370: 366: 355: 352: 349: 348: 344: 341: 338: 337: 333: 330: 327: 326: 323: 321: 314: 307: 303: 299: 295: 290: 288: 281: 274: 270: 266: 262: 258: 254: 250: 243: 236: 233:in the space 232: 228: 224: 220: 216: 212: 208: 204: 200: 193: 186: 182: 178: 175: 174:variable word 171: 167: 163: 159: 152: 145: 136: 127: 125: 121: 117: 113: 109: 105: 101: 97: 93: 89: 85: 81: 77: 73: 69: 65: 62:-dimensional 61: 57: 53: 49: 44: 42: 38: 34: 33:Ramsey theory 30: 29:combinatorial 26: 22: 1367:Connect Four 1344: 1334:Tic-Stac-Toe 1293: 1276: 1268: 1264: 1260: 1063: 1057: 1051: 1034: 1030: 1024: 989: 979: 952: 946: 936: 903: 897: 884: 849: 844: 834: 817: 811: 795: 768: 763: 753: 733: 718: 713: 709: 705: 698: 691: 687: 683: 676: 669: 658: 652: 634: 630: 626: 622: 620: 610: 606: 602: 598: 595: 579: 571: 567: 563: 559: 555: 549: 535: 519: 517: 503: 498: 465: 439: 434: 425: 421: 417: 413: 409: 405: 401: 397: 393: 391: 376: 361: 312: 305: 301: 297: 293: 291: 286: 279: 272: 268: 264: 260: 256: 252: 241: 234: 226: 222: 218: 214: 210: 206: 202: 198: 191: 184: 180: 176: 173: 169: 168:} of length 165: 161: 157: 150: 143: 141: 123: 115: 111: 107: 103: 95: 91: 87: 83: 79: 75: 71: 67: 63: 59: 55: 51: 47: 45: 35:named after 24: 18: 1382:Toss Across 1304:Futile game 1193:Treblecross 1162:Tic-tac-toe 820:: 385–390. 576:tic-tac-toe 456:tic-tac-toe 382:tic-tac-toe 373:tic-tac-toe 369:tic-tac-toe 365:tic-tac-toe 320:tic-tac-toe 100:tic-tac-toe 21:mathematics 1402:Categories 1357:Nine Holes 1330:Score Four 746:References 550:The above 530:. By the 213:(2), ..., 31:result of 1073:1209.4986 928:123036744 667:hypercube 501:hypercube 437:hypercube 300:= 2, and 249:hypercube 229:, form a 1372:Connect6 1170:Variants 1037:: 9–11. 988:(eds.). 653:Just as 552:argument 1387:Pentago 1340:Gobblet 1188:Notakto 1090:3217664 1043:0369299 1016:2815619 971:2912706 920:1191743 876:0929498 868:1990952 826:3186481 787:0143712 609:,  566:, then 183:) over 1346:Quarto 1183:Gomoku 1088:  1041:  1014:  1004:  969:  926:  918:  874:  866:  824:  785:  578:) the 23:, the 1271:-game 1220:Renju 1210:Pente 1068:arXiv 924:S2CID 864:JSTOR 808:(PDF) 682:into 296:= 3, 285:into 209:(1), 102:with 74:×...× 1362:Achi 1279:game 1064:2014 1002:ISBN 562:and 267:and 255:and 142:Let 90:and 50:and 39:and 1377:OXO 1225:SOS 1126:PBS 1078:doi 994:doi 957:doi 953:175 908:doi 854:doi 818:113 773:doi 769:106 661:in 613:). 356:33 345:23 334:13 19:In 1404:: 1086:MR 1084:. 1076:. 1062:. 1039:MR 1033:. 1012:MR 1010:. 1000:. 967:MR 965:. 951:. 945:. 922:. 916:MR 914:. 904:57 902:. 892:; 872:MR 870:. 862:. 843:. 822:MR 816:. 810:. 783:MR 781:. 762:. 742:. 432:. 353:32 350:31 342:22 339:21 331:12 328:11 1277:n 1269:k 1267:, 1265:n 1263:, 1261:m 1154:e 1147:t 1140:v 1092:. 1080:: 1070:: 1045:. 1035:9 1018:. 996:: 973:. 959:: 930:. 910:: 878:. 856:: 850:1 828:. 789:. 775:: 714:A 710:n 706:H 699:n 692:W 688:A 684:c 677:n 670:W 635:A 631:A 627:A 623:A 611:c 607:n 605:( 603:H 599:H 580:H 572:c 568:H 564:c 560:n 556:H 542:3 536:W 526:3 520:W 510:3 504:W 472:3 466:W 446:3 440:W 426:H 422:c 418:n 414:H 410:c 406:n 402:H 398:c 394:n 377:H 313:n 306:W 302:c 298:H 294:n 287:c 280:n 273:W 269:c 265:n 261:H 257:c 253:n 242:n 235:W 227:n 223:x 219:n 217:( 215:w 211:w 207:w 203:x 199:H 192:n 185:W 181:x 179:( 177:w 170:H 166:n 162:n 158:H 151:n 144:W 124:H 116:H 112:c 108:n 104:c 96:n 92:c 88:n 84:n 80:c 76:n 72:n 70:× 68:n 66:× 64:n 60:H 56:H 52:c 48:n

Index

mathematics
combinatorial
Ramsey theory
Alfred W. Hales
Robert I. Jewett
tic-tac-toe
strategy-stealing argument

combinatorial line
hypercube
tic-tac-toe
tic-tac-toe
tic-tac-toe
tic-tac-toe
tic-tac-toe
mathematical induction
hypercube
proof by contradiction
tic-tac-toe
pigeonhole principle
hypercube
pigeonhole principle
argument
tic-tac-toe
Ackermann function
primitive recursive
Saharon Shelah
arithmetic progression
decimal notation
van der Waerden's theorem

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.