Knowledge

Hörmander's condition

Source 📝

591: 1200: 769: 288: 1024: 1439: 1340: 1484:
The great achievement of Hörmander's 1967 paper was to show that a smooth fundamental solution exists under a considerably weaker assumption: the parabolic version of the condition that now bears his name.
1004: 195: 1630: 903:
interpretation of the SDE. Hörmander's theorem asserts that if the SDE above satisfies the parabolic Hörmander condition, then its solutions admit a smooth density with respect to Lebesgue measure.
293: 655: 897: 870: 1541: 818: 586:{\displaystyle {\begin{aligned}&A_{j_{0}}(x)~,\\&~,\\&,A_{j_{2}}(x)]~,\\&\quad \vdots \quad \end{aligned}}\qquad 0\leq j_{0},j_{1},\ldots ,j_{n}\leq n} 1195:{\displaystyle {\begin{cases}{\dfrac {\partial u}{\partial t}}(t,x)=Fu(t,x),&t>0,x\in \mathbf {R} ^{d};\\u(t,\cdot )\to f,&{\text{as }}t\to 0;\end{cases}}} 631: 1636: 1355: 1243: 1762: 924: 92: 1757: 1009:
An important problem in the theory of partial differential equations is to determine sufficient conditions on the vector fields
1553: 1687: 764:{\displaystyle \operatorname {d} x=A_{0}(x)\operatorname {d} t+\sum _{i=1}^{n}A_{i}(x)\circ \operatorname {d} W_{i}} 646: 33: 879: 29: 823: 83: 1345:
satisfies the Cauchy problem above. It had been known for some time that a smooth solution exists in the
1644: 1500: 777: 1033: 1648: 912: 900: 1547:. Assuming that these vector fields satisfy Hörmander's condition, then the control system 209: 1742: 1697: 1206: 609: 225: 8: 1660: 1730: 1683: 1478: 1346: 1704: 43: 1720: 1739: 1694: 76: 55: 1434:{\displaystyle A_{i}=\sum _{j=1}^{d}a_{ji}{\frac {\partial }{\partial x_{j}}},} 1751: 1734: 40: 25: 1335:{\displaystyle u(t,x)=\int _{\mathbf {R} ^{d}}p(t,x,y)f(y)\,\mathrm {d} y} 1665: 596: 17: 1725: 1708: 73: 640: 28:
that, if satisfied, has many useful consequences in the theory of
999:{\displaystyle F={\frac {1}{2}}\sum _{i=1}^{n}A_{i}^{2}+A_{0}.} 37: 190:{\displaystyle (x)=\mathrm {D} V(x)W(x)-\mathrm {D} W(x)V(x),} 1188: 1682:. Mineola, NY: Dover Publications Inc. pp. x+113. 1625:{\displaystyle {\dot {x}}=\sum _{i=0}^{n}u_{i}A_{i}(x)} 911:
With the same notation as above, define a second-order
1556: 1503: 1358: 1246: 1037: 1027: 927: 882: 826: 780: 658: 612: 291: 95: 906: 1709:"Hypoelliptic second order differential equations" 1624: 1535: 1433: 1334: 1194: 998: 891: 864: 812: 763: 625: 585: 189: 1488: 1749: 641:Application to stochastic differential equations 606:if the same holds true, but with the index 1213: (0, +∞) ×  1724: 1703: 1323: 892:{\displaystyle \circ \operatorname {d} } 820:are assumed to have bounded derivative, 1750: 865:{\displaystyle (W_{1},\dotsc ,W_{n})} 1677: 36:. The condition is named after the 1536:{\displaystyle A_{0},\dotsc ,A_{n}} 813:{\displaystyle A_{0},\dotsc ,A_{n}} 13: 1412: 1408: 1325: 1048: 1040: 886: 745: 690: 659: 156: 124: 86:, another vector field defined by 14: 1774: 1763:Stochastic differential equations 907:Application to the Cauchy problem 876:-dimensional Brownian motion and 34:stochastic differential equations 1275: 1122: 647:stochastic differential equation 1229:, ·, ·) is smooth on 602:. They are said to satisfy the 528: 523: 519: 224:, which can be thought of as a 1758:Partial differential equations 1639:in any time at every point of 1619: 1613: 1489:Application to control systems 1320: 1314: 1308: 1290: 1262: 1250: 1209:, i.e. a real-valued function 1176: 1157: 1154: 1142: 1094: 1082: 1070: 1058: 859: 827: 739: 733: 687: 681: 503: 500: 494: 471: 468: 462: 439: 433: 413: 410: 394: 391: 385: 362: 356: 336: 320: 314: 228:that is applied to the vector 181: 175: 169: 163: 149: 143: 137: 131: 117: 111: 108: 96: 1: 1671: 604:parabolic Hörmander condition 49: 633:taking only values in 1,..., 270:. They are said to satisfy 7: 1654: 1543:be smooth vector fields on 10: 1779: 1497:be a smooth manifold and 774:where the vectors fields 1678:Bell, Denis R. (2006). 1645:Chow–Rashevskii theorem 1643:. This is known as the 1457:), 1 ≤  1018:for the Cauchy problem 1700:(See the introduction) 1680:The Malliavin calculus 1649:Orbit (control theory) 1626: 1592: 1537: 1465:, 1 ≤  1435: 1392: 1336: 1196: 1000: 964: 893: 866: 814: 765: 722: 627: 587: 191: 1627: 1572: 1538: 1436: 1372: 1337: 1197: 1001: 944: 913:differential operator 901:Stratonovich integral 894: 867: 815: 766: 702: 628: 626:{\displaystyle j_{0}} 588: 272:Hörmander's condition 192: 22:Hörmander's condition 1637:locally controllable 1554: 1501: 1356: 1244: 1207:fundamental solution 1025: 925: 880: 824: 778: 656: 610: 289: 274:if, for every point 266:be vector fields on 93: 82:, let denote their 1469: ≤  1461: ≤  979: 278: ∈  220: ∈  1726:10.1007/BF02392081 1661:Malliavin calculus 1622: 1533: 1431: 1332: 1192: 1187: 1056: 996: 965: 889: 862: 810: 761: 623: 583: 526: 210:Fréchet derivative 187: 1566: 1479:invertible matrix 1477:is everywhere an 1426: 1205:to have a smooth 1171: 1055: 942: 508: 399: 325: 24:is a property of 1770: 1738: 1728: 1693: 1631: 1629: 1628: 1623: 1612: 1611: 1602: 1601: 1591: 1586: 1568: 1567: 1559: 1542: 1540: 1539: 1534: 1532: 1531: 1513: 1512: 1440: 1438: 1437: 1432: 1427: 1425: 1424: 1423: 1407: 1405: 1404: 1391: 1386: 1368: 1367: 1341: 1339: 1338: 1333: 1328: 1286: 1285: 1284: 1283: 1278: 1201: 1199: 1198: 1193: 1191: 1190: 1172: 1169: 1131: 1130: 1125: 1057: 1054: 1046: 1038: 1005: 1003: 1002: 997: 992: 991: 978: 973: 963: 958: 943: 935: 898: 896: 895: 890: 871: 869: 868: 863: 858: 857: 839: 838: 819: 817: 816: 811: 809: 808: 790: 789: 770: 768: 767: 762: 760: 759: 732: 731: 721: 716: 680: 679: 632: 630: 629: 624: 622: 621: 592: 590: 589: 584: 576: 575: 557: 556: 544: 543: 527: 515: 506: 493: 492: 491: 490: 461: 460: 459: 458: 432: 431: 430: 429: 406: 397: 384: 383: 382: 381: 355: 354: 353: 352: 332: 323: 313: 312: 311: 310: 295: 196: 194: 193: 188: 159: 127: 1778: 1777: 1773: 1772: 1771: 1769: 1768: 1767: 1748: 1747: 1705:Hörmander, Lars 1690: 1674: 1657: 1607: 1603: 1597: 1593: 1587: 1576: 1558: 1557: 1555: 1552: 1551: 1527: 1523: 1508: 1504: 1502: 1499: 1498: 1491: 1456: 1444:and the matrix 1419: 1415: 1411: 1406: 1397: 1393: 1387: 1376: 1363: 1359: 1357: 1354: 1353: 1349:case, in which 1324: 1279: 1274: 1273: 1272: 1268: 1245: 1242: 1241: 1186: 1185: 1168: 1166: 1136: 1135: 1126: 1121: 1120: 1100: 1047: 1039: 1036: 1029: 1028: 1026: 1023: 1022: 1017: 987: 983: 974: 969: 959: 948: 934: 926: 923: 922: 909: 899:stands for the 881: 878: 877: 872:the normalized 853: 849: 834: 830: 825: 822: 821: 804: 800: 785: 781: 779: 776: 775: 755: 751: 727: 723: 717: 706: 675: 671: 657: 654: 653: 643: 617: 613: 611: 608: 607: 571: 567: 552: 548: 539: 535: 525: 524: 513: 512: 486: 482: 481: 477: 454: 450: 449: 445: 425: 421: 420: 416: 404: 403: 377: 373: 372: 368: 348: 344: 343: 339: 330: 329: 306: 302: 301: 297: 292: 290: 287: 286: 265: 256: 249: 155: 123: 94: 91: 90: 77:Euclidean space 52: 12: 11: 5: 1776: 1766: 1765: 1760: 1746: 1745: 1701: 1688: 1673: 1670: 1669: 1668: 1663: 1656: 1653: 1633: 1632: 1621: 1618: 1615: 1610: 1606: 1600: 1596: 1590: 1585: 1582: 1579: 1575: 1571: 1565: 1562: 1530: 1526: 1522: 1519: 1516: 1511: 1507: 1490: 1487: 1452: 1448: = ( 1442: 1441: 1430: 1422: 1418: 1414: 1410: 1403: 1400: 1396: 1390: 1385: 1382: 1379: 1375: 1371: 1366: 1362: 1343: 1342: 1331: 1327: 1322: 1319: 1316: 1313: 1310: 1307: 1304: 1301: 1298: 1295: 1292: 1289: 1282: 1277: 1271: 1267: 1264: 1261: 1258: 1255: 1252: 1249: 1203: 1202: 1189: 1184: 1181: 1178: 1175: 1167: 1165: 1162: 1159: 1156: 1153: 1150: 1147: 1144: 1141: 1138: 1137: 1134: 1129: 1124: 1119: 1116: 1113: 1110: 1107: 1104: 1101: 1099: 1096: 1093: 1090: 1087: 1084: 1081: 1078: 1075: 1072: 1069: 1066: 1063: 1060: 1053: 1050: 1045: 1042: 1035: 1034: 1032: 1013: 1007: 1006: 995: 990: 986: 982: 977: 972: 968: 962: 957: 954: 951: 947: 941: 938: 933: 930: 908: 905: 888: 885: 861: 856: 852: 848: 845: 842: 837: 833: 829: 807: 803: 799: 796: 793: 788: 784: 772: 771: 758: 754: 750: 747: 744: 741: 738: 735: 730: 726: 720: 715: 712: 709: 705: 701: 698: 695: 692: 689: 686: 683: 678: 674: 670: 667: 664: 661: 642: 639: 620: 616: 594: 593: 582: 579: 574: 570: 566: 563: 560: 555: 551: 547: 542: 538: 534: 531: 522: 518: 516: 514: 511: 505: 502: 499: 496: 489: 485: 480: 476: 473: 470: 467: 464: 457: 453: 448: 444: 441: 438: 435: 428: 424: 419: 415: 412: 409: 407: 405: 402: 396: 393: 390: 387: 380: 376: 371: 367: 364: 361: 358: 351: 347: 342: 338: 335: 333: 331: 328: 322: 319: 316: 309: 305: 300: 296: 294: 282:, the vectors 261: 254: 247: 208:) denotes the 198: 197: 186: 183: 180: 177: 174: 171: 168: 165: 162: 158: 154: 151: 148: 145: 142: 139: 136: 133: 130: 126: 122: 119: 116: 113: 110: 107: 104: 101: 98: 51: 48: 44:Lars Hörmander 9: 6: 4: 3: 2: 1775: 1764: 1761: 1759: 1756: 1755: 1753: 1744: 1741: 1736: 1732: 1727: 1722: 1718: 1714: 1710: 1706: 1702: 1699: 1696: 1691: 1689:0-486-44994-7 1685: 1681: 1676: 1675: 1667: 1664: 1662: 1659: 1658: 1652: 1650: 1646: 1642: 1638: 1616: 1608: 1604: 1598: 1594: 1588: 1583: 1580: 1577: 1573: 1569: 1563: 1560: 1550: 1549: 1548: 1546: 1528: 1524: 1520: 1517: 1514: 1509: 1505: 1496: 1486: 1482: 1480: 1476: 1473:is such that 1472: 1468: 1464: 1460: 1455: 1451: 1447: 1428: 1420: 1416: 1401: 1398: 1394: 1388: 1383: 1380: 1377: 1373: 1369: 1364: 1360: 1352: 1351: 1350: 1348: 1329: 1317: 1311: 1305: 1302: 1299: 1296: 1293: 1287: 1280: 1269: 1265: 1259: 1256: 1253: 1247: 1240: 1239: 1238: 1236: 1232: 1228: 1224: 1220: 1217: →  1216: 1212: 1208: 1182: 1179: 1173: 1163: 1160: 1151: 1148: 1145: 1139: 1132: 1127: 1117: 1114: 1111: 1108: 1105: 1102: 1097: 1091: 1088: 1085: 1079: 1076: 1073: 1067: 1064: 1061: 1051: 1043: 1030: 1021: 1020: 1019: 1016: 1012: 993: 988: 984: 980: 975: 970: 966: 960: 955: 952: 949: 945: 939: 936: 931: 928: 921: 920: 919: 917: 914: 904: 902: 883: 875: 854: 850: 846: 843: 840: 835: 831: 805: 801: 797: 794: 791: 786: 782: 756: 752: 748: 742: 736: 728: 724: 718: 713: 710: 707: 703: 699: 696: 693: 684: 676: 672: 668: 665: 662: 652: 651: 650: 648: 645:Consider the 638: 636: 618: 614: 605: 601: 598: 580: 577: 572: 568: 564: 561: 558: 553: 549: 545: 540: 536: 532: 529: 520: 517: 509: 497: 487: 483: 478: 474: 465: 455: 451: 446: 442: 436: 426: 422: 417: 408: 400: 388: 378: 374: 369: 365: 359: 349: 345: 340: 334: 326: 317: 307: 303: 298: 285: 284: 283: 281: 277: 273: 269: 264: 260: 253: 246: 241: 239: 235: 231: 227: 223: 219: 215: 211: 207: 203: 184: 178: 172: 166: 160: 152: 146: 140: 134: 128: 120: 114: 105: 102: 99: 89: 88: 87: 85: 81: 78: 75: 71: 67: 63: 60: 59:vector fields 58: 47: 45: 42: 41:mathematician 39: 35: 31: 27: 26:vector fields 23: 19: 1716: 1712: 1679: 1640: 1634: 1544: 1494: 1492: 1483: 1474: 1470: 1466: 1462: 1458: 1453: 1449: 1445: 1443: 1344: 1234: 1230: 1226: 1222: 1218: 1214: 1210: 1204: 1014: 1010: 1008: 915: 910: 873: 773: 644: 634: 603: 599: 595: 279: 275: 271: 267: 262: 258: 251: 244: 242: 237: 233: 229: 221: 217: 213: 205: 201: 199: 79: 69: 65: 61: 56: 53: 21: 15: 1719:: 147–171. 1666:Lie algebra 84:Lie bracket 74:dimensional 18:mathematics 1752:Categories 1672:References 1221:such that 238:vice versa 54:Given two 50:Definition 1735:0001-5962 1713:Acta Math 1574:∑ 1564:˙ 1518:… 1413:∂ 1409:∂ 1374:∑ 1270:∫ 1233:for each 1177:→ 1158:→ 1152:⋅ 1118:∈ 1049:∂ 1041:∂ 946:∑ 884:∘ 844:… 795:… 749:⁡ 743:∘ 704:∑ 694:⁡ 663:⁡ 578:≤ 562:… 533:≤ 521:⋮ 153:− 1707:(1967). 1655:See also 1347:elliptic 1170:as  200:where D 1743:0222474 1698:2250060 1647:. See 236:), and 38:Swedish 30:partial 1733:  1686:  649:(SDE) 507:  398:  324:  257:, ... 226:matrix 1731:ISSN 1684:ISBN 1493:Let 1237:and 1106:> 597:span 243:Let 64:and 32:and 1721:doi 1717:119 1635:is 918:by 216:at 212:of 68:on 16:In 1754:: 1740:MR 1729:. 1715:. 1711:. 1695:MR 1651:. 1481:. 1475:AA 1454:ji 637:. 250:, 240:. 46:. 20:, 1737:. 1723:: 1692:. 1641:M 1620:) 1617:x 1614:( 1609:i 1605:A 1599:i 1595:u 1589:n 1584:0 1581:= 1578:i 1570:= 1561:x 1545:M 1529:n 1525:A 1521:, 1515:, 1510:0 1506:A 1495:M 1471:n 1467:i 1463:d 1459:j 1450:a 1446:A 1429:, 1421:j 1417:x 1402:i 1399:j 1395:a 1389:d 1384:1 1381:= 1378:j 1370:= 1365:i 1361:A 1330:y 1326:d 1321:) 1318:y 1315:( 1312:f 1309:) 1306:y 1303:, 1300:x 1297:, 1294:t 1291:( 1288:p 1281:d 1276:R 1266:= 1263:) 1260:x 1257:, 1254:t 1251:( 1248:u 1235:t 1231:R 1227:t 1225:( 1223:p 1219:R 1215:R 1211:p 1183:; 1180:0 1174:t 1164:, 1161:f 1155:) 1149:, 1146:t 1143:( 1140:u 1133:; 1128:d 1123:R 1115:x 1112:, 1109:0 1103:t 1098:, 1095:) 1092:x 1089:, 1086:t 1083:( 1080:u 1077:F 1074:= 1071:) 1068:x 1065:, 1062:t 1059:( 1052:t 1044:u 1031:{ 1015:i 1011:A 994:. 989:0 985:A 981:+ 976:2 971:i 967:A 961:n 956:1 953:= 950:i 940:2 937:1 932:= 929:F 916:F 887:d 874:n 860:) 855:n 851:W 847:, 841:, 836:1 832:W 828:( 806:n 802:A 798:, 792:, 787:0 783:A 757:i 753:W 746:d 740:) 737:x 734:( 729:i 725:A 719:n 714:1 711:= 708:i 700:+ 697:t 691:d 688:) 685:x 682:( 677:0 673:A 669:= 666:x 660:d 635:n 619:0 615:j 600:R 581:n 573:n 569:j 565:, 559:, 554:1 550:j 546:, 541:0 537:j 530:0 510:, 504:] 501:) 498:x 495:( 488:2 484:j 479:A 475:, 472:] 469:) 466:x 463:( 456:1 452:j 447:A 443:, 440:) 437:x 434:( 427:0 423:j 418:A 414:[ 411:[ 401:, 395:] 392:) 389:x 386:( 379:1 375:j 370:A 366:, 363:) 360:x 357:( 350:0 346:j 341:A 337:[ 327:, 321:) 318:x 315:( 308:0 304:j 299:A 280:R 276:x 268:R 263:n 259:A 255:1 252:A 248:0 245:A 234:x 232:( 230:W 222:R 218:x 214:V 206:x 204:( 202:V 185:, 182:) 179:x 176:( 173:V 170:) 167:x 164:( 161:W 157:D 150:) 147:x 144:( 141:W 138:) 135:x 132:( 129:V 125:D 121:= 118:) 115:x 112:( 109:] 106:W 103:, 100:V 97:[ 80:R 72:- 70:d 66:W 62:V 57:C

Index

mathematics
vector fields
partial
stochastic differential equations
Swedish
mathematician
Lars Hörmander
C vector fields
dimensional
Euclidean space
Lie bracket
Fréchet derivative
matrix
span
stochastic differential equation
Stratonovich integral
differential operator
fundamental solution
elliptic
invertible matrix
locally controllable
Chow–Rashevskii theorem
Orbit (control theory)
Malliavin calculus
Lie algebra
ISBN
0-486-44994-7
MR
2250060
Hörmander, Lars

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.