Knowledge

Groupoid

Source πŸ“

12507: 12376: 12301: 12407: 5915: 6100: 11331: 8501: 5747: 11697: 1579: 237: 11988: 12306: 12231: 11572: 12502:{\displaystyle {\begin{matrix}\bullet &\to &\bullet \\\downarrow &&\downarrow \\\bullet &\xrightarrow {a} &\bullet \\\downarrow &&\downarrow \\\bullet &\to &\bullet \end{matrix}}} 1682: 6214: 5237: 5813: 12160: 7656: 5997: 12220: 6286: 8966: 9203: 12097: 11851: 11442: 8453: 5638: 4897:
The vertex groups of this groupoid are always trivial; moreover, this groupoid is in general not transitive and its orbits are precisely the equivalence classes. There are two extreme examples:
10134:
Every transitive/connected groupoid - that is, as explained above, one in which any two objects are connected by at least one morphism - is isomorphic to an action groupoid (as defined above)
8428: 5621: 5494: 9447: 5564: 7564: 7492: 9537: 9050: 3020: 9114: 7603: 5802: 5390: 4357:
is transitive, and we recover the known fact that the fundamental groups at any base point are isomorphic. Moreover, in this case, the fundamental groupoid and the fundamental groups are
2073: 476: 6679: 5348: 107:, and similarly, a groupoid can be viewed as simply a typed group. The morphisms take one from one object to another, and form a dependent family of types, thus morphisms might be typed 11156: 1964: 1913: 1266: 3205: 275: 10692:. Thus when groupoids arise in terms of other structures, as in the above examples, it can be helpful to maintain the entire groupoid. Otherwise, one must choose a way to view each 1808: 1764: 8852: 7877: 3491: 3462: 8889: 8713: 8676: 11783: 11247: 8763: 7229: 6630: 5969: 2504: 9280: 9145: 8448: 8005: 6884: 2827: 1409: 8815: 8301: 169: 137: 2931: 2879: 2305: 2214: 1163: 435: 8209: 7943: 2333: 2274: 2242: 2140: 1104: 1054: 8601: 7721: 7294: 7145: 5633: 4476: 4408: 4272: 3589: 3409: 2686: 2365: 12225:
One way to think about these 2-groupoids is they contain objects, morphisms, and squares which can compose together vertically and horizontally. For example, given squares
5153: 2771: 12027: 8639: 8063: 8034: 4512: 4331: 4230: 4194: 2727: 1860: 6816: 6790: 5078: 4434: 2598: 970: 6764: 4989: 11578: 10261: 8568: 8536: 6720: 3663: 3621: 932: 4792: 2418: 836: 798: 760: 722: 11182: 8153: 7350: 3871: 3151: 2636: 2565: 11365: 11240: 10599: 10375: 10328: 10202: 10164: 9381: 9334: 9307: 9240: 8269: 7788: 7324: 6988: 6130: 5288: 5104: 4891: 4859: 4827: 4766: 4607: 4015: 3051: 2539: 2461: 2392: 2100: 543: 10719: 7017: 6913: 6552: 3776: 3303: 3274: 1444: 174: 13203:
Booksurge. Revised and extended edition of a book previously published in 1968 and 1988. Groupoids are introduced in the context of their topological application.
11208: 11118: 3533: 1192: 1004: 888: 862: 684: 658: 13194:: 113–34. Reviews the history of groupoids up to 1987, starting with the work of Brandt on quadratic forms. The downloadable version updates the many references. 11870: 10504: 3878: 12399: 11739: 11061: 11041: 11021: 11001: 10977: 10957: 10937: 10917: 10897: 10877: 10853: 10833: 10813: 10763: 10743: 10674: 10654: 10630: 10579: 10556: 10528: 10481: 10446: 10426: 10395: 10348: 10301: 10281: 10225: 9354: 8986: 8783: 8364: 8237: 7905: 7832: 7808: 7761: 7741: 7696: 7676: 7516: 7453: 7430: 7410: 7390: 7370: 7269: 7249: 7189: 7169: 7072: 7041: 6956: 6936: 6582: 6523: 6503: 6483: 6463: 6439: 6419: 6399: 6376: 6340: 6320: 5989: 5938: 5514: 5257: 5036: 5012: 4963: 4939: 4919: 4734: 4714: 4694: 4674: 4654: 4631: 4580: 4552: 4532: 4351: 4292: 4158: 4126: 4106: 4075: 4055: 4035: 3988: 3946: 3926: 3899: 3836: 3816: 3796: 3747: 3727: 3707: 3687: 3367: 3347: 3327: 3245: 3225: 623: 603: 583: 563: 520: 500: 388: 327: 8344: 8179: 8097: 7120: 13014: 3422:
as a category). In that case, all the vertex groups are isomorphic (on the other hand, this is not a sufficient condition for transitivity; see the section
12604: 3116:. It follows easily from the axioms above that these are indeed groups, as every pair of elements is composable and inverses are in the same vertex group. 12371:{\displaystyle {\begin{matrix}\bullet &\xrightarrow {a} &\bullet \\\downarrow &&\downarrow \\\bullet &\to &\bullet \end{matrix}}} 12296:{\displaystyle {\begin{matrix}\bullet &\to &\bullet \\\downarrow &&\downarrow \\\bullet &\xrightarrow {a} &\bullet \end{matrix}}} 10792: 10784: 3874: 12512:
which can be converted into another square by composing the vertical arrows. There is a similar composition law for horizontal attachments of squares.
11454: 13297: 10688:
The collapse of a groupoid into a mere collection of groups loses some information, even from a category-theoretic point of view, because it is not
4132:. Two such morphisms are composed by first following the first path, then the second; the homotopy equivalence guarantees that this composition is 5413:. Considered as a category, PER models are a cartesian closed category with natural numbers object and subobject classifier, giving rise to the 5409:
notions of equivalence on computable realisers for sets. This allows groupoids to be used as a computable approximation to set theory, called
1595: 13288: 6145: 12051:
is a 2-category, these objects form a 2-category instead of a 1-category since there is extra structure. Essentially, these are groupoids
12634: 7043:
for the given action (which is why vertex groups are also called isotropy groups). Similarly, the orbits of the action groupoid are the
2157:
The algebraic and category-theoretic definitions are equivalent, as we now show. Given a groupoid in the category-theoretic sense, let
13061: 13042: 5910:{\displaystyle {\mathcal {G}}_{n}={\mathcal {G}}_{1}\times _{{\mathcal {G}}_{0}}\cdots \times _{{\mathcal {G}}_{0}}{\mathcal {G}}_{1}} 9574: 6095:{\displaystyle {\begin{matrix}U_{ijk}&\to &U_{ij}\\\downarrow &&\downarrow \\U_{ik}&\to &U_{i}\end{matrix}}} 5169: 12551:
Groupoids arising from geometry often possess further structures which interact with the groupoid multiplication. For instance, in
12105: 7608: 12171: 6229: 13231: 9161: 13384:
with special emphasis on groupoids. Presents applications of groupoids in group theory, for example to a generalisation of
12054: 13077:
Mapping a group to the corresponding groupoid with one object is sometimes called delooping, especially in the context of
11802: 1278: 11396: 13199: 8376: 5576: 5443: 13323: 12998: 9386: 5522: 12926: 12668: 7521: 7458: 13397: 9455: 19:
This article is about groupoids in category theory. For the algebraic structure with a single binary operation, see
13365:", in Category theory (Gummersbach, 1981), Lecture Notes in Math., Volume 962. Springer, Berlin (1982), 115–122. 10772:
does not reduce to purely group theoretic considerations. This is analogous to the fact that the classification of
10463:
of unrelated groups. In other words, for equivalence instead of isomorphism, one does not need to specify the sets
2936: 13108:
Cegarra, Antonio M.; Heredia, BenjamΓ­n A.; Remedios, JosuΓ© (2010-03-19). "Double groupoids and homotopy 2-types".
7569: 5758: 5355: 2038: 443: 6635: 5293: 8894: 11123: 4082: 1918: 1867: 11210:
are just groups, then such arrows are the conjugacies of morphisms. The main result is that for any groupoids
8991: 1197: 13467: 13347: 13083: 13027: 12660: 9055: 3156: 242: 12043:
There is an additional structure which can be derived from groupoids internal to the category of groupoids,
1769: 1725: 13210:
Explains how the groupoid concept has led to higher-dimensional homotopy groupoids, having applications in
11387: 11326:{\displaystyle \operatorname {Grpd} (G\times H,K)\cong \operatorname {Grpd} (G,\operatorname {GPD} (H,K)).} 5440:
A Čech groupoid is a special kind of groupoid associated to an equivalence relation given by an open cover
8496:{\displaystyle {\begin{aligned}&&X\\&&\downarrow \\Y&\rightarrow &Z\end{aligned}}} 7837: 3470: 3441: 13342: 12655: 10177:
choice. Choosing such an isomorphism for a transitive groupoid essentially amounts to picking one object
8681: 8644: 3419: 11748: 8718: 7194: 6595: 5991:-tuples of composable arrows. The structure map of the fiber product is implicitly the target map, since 5943: 2466: 12650: 11742: 10633: 9245: 7948: 6821: 6351: 3901:
is unique. The covering morphisms of groupoids are especially useful because they can be used to model
2776: 1382: 306: 10725:, one would have to make a coherent choice of paths (or equivalence classes of paths) from each point 8788: 8277: 5742:{\displaystyle {\begin{aligned}s=\phi _{j}:U_{ij}\to U_{j}\\t=\phi _{i}:U_{ij}\to U_{i}\end{aligned}}} 142: 110: 13422:
R.T. Zivaljevic. "Groupoids in combinatorics—applications of a theory of local symmetries". In
10689: 8820: 8371: 4358: 2884: 2832: 2279: 2188: 1116: 396: 13240:
Dokuchaev, M.; Exel, R.; Piccione, P. (2000). "Partial Representations and Partial Group Algebras".
10459:) to a groupoid with a single object, that is, a single group. Thus any groupoid is equivalent to a 8857: 8184: 7918: 2310: 2251: 2219: 2105: 1059: 1009: 13477: 13472: 12529: 10535: 8573: 7701: 7274: 7125: 5159: 4439: 4371: 4235: 3538: 3372: 2645: 2345: 13361:
Higgins, P. J. and Taylor, J., "The fundamental groupoid and the homotopy crossed complex of an
11071:
The category whose objects are groupoids and whose morphisms are groupoid morphisms is called the
9119: 5119: 2732: 11996: 11797: 11692:{\displaystyle \hom _{\mathbf {Cat} }(i(G),C)\cong \hom _{\mathbf {Grpd} }(G,\mathrm {Core} (C))} 8606: 8431: 8039: 8010: 7048: 6220: 4481: 4300: 4199: 4163: 2691: 1815: 6795: 6769: 5041: 4413: 2570: 937: 9688: 6725: 4968: 1439: 894: 13337: 11857:
as a full subcategory of the category of simplicial sets. The nerve of a groupoid is always a
10230: 10119:. Using the algebraic definition, such a groupoid is literally just a group. Many concepts of 8541: 8509: 6684: 3636: 3594: 901: 13312: 10456: 10452: 9632: 9617: 9563: 7433: 4771: 2397: 1574:{\displaystyle \mathrm {comp} _{x,y,z}:G(y,z)\times G(x,y)\rightarrow G(x,z):(g,f)\mapsto gf} 1106:. (The previous two axioms already show that these expressions are defined and unambiguous.) 803: 765: 727: 689: 232:{\displaystyle \circ :(B\rightarrow C)\rightarrow (A\rightarrow B)\rightarrow A\rightarrow C} 13377: 11161: 8102: 7329: 3841: 3130: 2606: 2544: 13389: 13385: 13058: 13039: 12970:
Block, Jonathan; Daenzer, Calder (2009-01-09). "Mukai duality for gerbes with connection".
12590: 12525: 11983:{\displaystyle \hom _{\mathbf {Grpd} }(\pi _{1}(X),G)\cong \hom _{\mathbf {sSet} }(X,N(G))} 11338: 11213: 10677: 10584: 10353: 10306: 10180: 10167: 10137: 9637: 9622: 9359: 9312: 9285: 9218: 8242: 7766: 7302: 7044: 6961: 6557: 6108: 5266: 5083: 4864: 4832: 4800: 4739: 4592: 4587: 4354: 4137: 3993: 3962: 3029: 2517: 2446: 2377: 2078: 528: 294: 10695: 6993: 6889: 6528: 3752: 3279: 3250: 8: 13303: 12560: 12556: 11379: 11187: 11097: 10174: 10070: 8303:(since this is the group of automorphisms). Then, a quotient groupoid can be of the form 7495: 6300: 5435: 5431: 5156: 3512: 1171: 983: 867: 841: 663: 637: 59: 51: 13406:
Groupoids: unifying internal and external symmetry — A tour through some examples.
11043:, and this is a useful way of obtaining information about presentations of the subgroup 10486: 13275: 13249: 13184: 13173: 13109: 12971: 12384: 11705: 11046: 11026: 11006: 10986: 10962: 10942: 10922: 10902: 10882: 10862: 10838: 10818: 10798: 10788: 10748: 10728: 10659: 10639: 10615: 10564: 10541: 10513: 10466: 10431: 10411: 10380: 10333: 10286: 10266: 10210: 10128: 10048: 9590: 9339: 8971: 8768: 8349: 8222: 7890: 7817: 7793: 7746: 7726: 7681: 7661: 7501: 7438: 7415: 7395: 7375: 7355: 7254: 7234: 7174: 7154: 7057: 7047:
of the group action, and the groupoid is transitive if and only if the group action is
7026: 6941: 6921: 6567: 6508: 6488: 6468: 6448: 6424: 6404: 6384: 6361: 6325: 6305: 5974: 5923: 5499: 5242: 5021: 4997: 4948: 4924: 4904: 4719: 4699: 4679: 4659: 4639: 4616: 4565: 4537: 4517: 4336: 4277: 4143: 4111: 4091: 4060: 4040: 4020: 3973: 3931: 3911: 3884: 3821: 3801: 3781: 3732: 3712: 3692: 3672: 3352: 3332: 3312: 3230: 3210: 3065: 608: 588: 568: 548: 505: 485: 373: 312: 10779:
Morphisms of groupoids come in more kinds than those of groups: we have, for example,
8306: 8158: 8068: 7080: 6137: 366:
A groupoid can be viewed as an algebraic structure consisting of a set with a binary
13433: 13267: 13227: 13177: 12943: 12922: 12664: 12564: 12521: 11375: 10606: 10531: 10205: 9209: 7884: 7020: 5260: 4609:, then a groupoid "representing" this equivalence relation can be formed as follows: 4078: 3968: 3306: 290: 13279: 11063:. For further information, see the books by Higgins and by Brown in the References. 5807:
giving the structure of a groupoid. In fact, this can be further extended by setting
13405: 13319: 13259: 13165: 12600: 12595: 12568: 12552: 11445: 11091: 9644: 9627: 9586: 9543: 9212: 7811: 7075: 6561: 5163: 3506: 3502: 976: 479: 438: 367: 350: 68: 64: 13130: 10721:
in terms of a single group, and this choice can be arbitrary. In the example from
13381: 13355: 13211: 13065: 13046: 12714:). Substituting the first into the second and applying 3. two more times yields ( 12038: 10116: 9778: 9755: 9559: 5414: 4085: 3207:
containing every point that can be joined to x by a morphism in G. If two points
2146: 391: 342: 84: 75: 35: 31: 20: 11567:{\displaystyle \hom _{\mathbf {Grpd} }(C,G)\cong \hom _{\mathbf {Cat} }(C,i(G))} 13409: 13307: 13015:
An Introduction to Groups, Groupoids and Their Representations: An Introduction
12580: 11790: 10401: 9913: 9890: 9570: 6133: 2162: 838:
is defined, then they are both defined (and they are equal to each other), and
100: 13461: 13293: 13271: 12537: 10602: 10558:, but an isomorphism requires specifying the set of points in each component; 10092: 9594: 9593:
acting on 13 points such that the elements fixing a point form a copy of the
6818:
for a right action). Multiplication (or composition) in the groupoid is then
5418: 5406: 630: 4368:
An important extension of this idea is to consider the fundamental groupoid
3908:
It is also true that the category of covering morphisms of a given groupoid
13263: 12991: 12533: 10773: 10769: 10120: 9868: 9845: 9666: 8272: 3902: 92: 13362: 12610: 12545: 11858: 10768:
As a more illuminating example, the classification of groupoids with one
10681: 10115:
If a groupoid has only one object, then the set of its morphisms forms a
7148: 4133: 3465: 1286: 334: 83:
is invertible. A category of this sort can be viewed as augmented with a
27: 13207: 10609:, but an isomorphism requires specifying what each equivalence class is: 10173:
Note that the isomorphism just mentioned is not unique, and there is no
13215: 13169: 12520:
When studying geometrical objects, the arising groupoids often carry a
10451:
In category-theoretic terms, each connected component of a groupoid is
10004: 9981: 9823: 9800: 6132:
are the target maps. This construction can be seen as a model for some
3633:
Particular kinds of morphisms of groupoids are of interest. A morphism
2335:, which gives a groupoid in the algebraic sense. Explicit reference to 1677:{\displaystyle \mathrm {inv} :G(x,y)\rightarrow G(y,x):f\mapsto f^{-1}} 13224:
The group fixed by a family of injective endomorphisms of a free group
13156:
Brandt, H (1927), "Über eine Verallgemeinerung des Gruppenbegriffes",
12636:
The Group Fixed by a Family of Injective Endomorphisms of a Free Group
12536:. These last objects can be also studied in terms of their associated 9573:
form a groupoid (not a group, as not all moves can be composed). This
16:
Category where every morphism is invertible; generalization of a group
13445: 13416: 13254: 13226:, Mathematical Surveys and Monographs, vol. 195, AMS Bookstore, 12541: 10780: 9958: 9935: 7297: 6209:{\displaystyle \in {\check {H}}^{k}({\mathcal {U}},{\underline {A}})} 4129: 3666: 12454: 12401:
the same morphism, they can be vertically conjoined giving a diagram
12323: 12278: 11184:
and whose arrows are the natural equivalences of morphisms. Thus if
8366:
at the origin. Examples like these form the basis for the theory of
13078: 10722: 10460: 9547: 8367: 7880: 6442: 1282: 482:
because it is not necessarily defined for all pairs of elements of
338: 80: 13114: 12976: 4554:
may be chosen according to the geometry of the situation at hand.
12585: 10124: 3630:
is simply a functor between two (category-theoretic) groupoids.
10026: 4583: 3414:
Orbits form a partition of the set X, and a groupoid is called
285: 104: 5232:{\displaystyle X_{0}\times _{Y}X_{0}\subset X_{0}\times X_{0}} 10856: 9309:
while the target morphism is the addition of projection onto
5627:
The source and target maps are then given by the induced maps
5290:
under the surjective map of topological spaces. If we write,
1110:
Two easy and convenient properties follow from these axioms:
301: 95:. A groupoid where there is only one object is a usual group. 12155:{\displaystyle s,t:{\mathcal {G}}_{1}\to {\mathcal {G}}_{0}} 10400:
If a groupoid is not transitive, then it is isomorphic to a
13449: 13437: 7651:{\displaystyle \mathrm {Hom} (\mathrm {Gr} ,\mathrm {Gr} )} 4514:, where one considers only paths whose endpoints belong to 522:
is defined are not articulated here and vary by situation.
13135:
SΓ©minaire Ehresmann. Topologie et gΓ©omΓ©trie diffΓ©rentielle
12215:{\displaystyle i:{\mathcal {G}}_{0}\to {\mathcal {G}}_{1}} 12029:
denotes the fundamental groupoid of the simplicial set X.
9546:
on a scheme, then this construction can be used to form a
9215:
can be used to form a groupoid. It has as objects the set
6281:{\displaystyle \sigma :\coprod U_{i_{1}\cdots i_{k}}\to A} 2149:
in an arbitrary category admitting finite fiber products.
8099:
is the set of equivalence classes from this group action
6291:
giving an explicit representation of cohomology classes.
3928:
is equivalent to the category of actions of the groupoid
54:
in several equivalent ways. A groupoid can be seen as a:
5080:, and which is completely intransitive (every singleton 2829:. To see that this is well defined, observe that since 2374:
in the algebraic sense, define an equivalence relation
545:
and have the following axiomatic properties: For all
13324:
Nonlinear dynamics of networks: the groupoid formalism
13107: 13017:; Alberto Ibort, Miguel A. Rodriguez; CRC Press, 2019. 12563:. Similarly, one can have groupoids with a compatible 12515: 12412: 12311: 12236: 9542:
Of course, if the abelian category is the category of
9198:{\displaystyle C_{1}{\overset {d}{\rightarrow }}C_{0}} 6002: 2276:
will in fact be defined everywhere. We define βˆ— to be
13239: 12410: 12387: 12309: 12234: 12174: 12108: 12092:{\displaystyle {\mathcal {G}}_{1},{\mathcal {G}}_{0}} 12057: 11999: 11873: 11805: 11751: 11708: 11581: 11457: 11399: 11341: 11335:
This result is of interest even if all the groupoids
11250: 11216: 11190: 11164: 11126: 11100: 11049: 11029: 11009: 10989: 10965: 10945: 10925: 10905: 10885: 10865: 10841: 10821: 10801: 10751: 10731: 10698: 10662: 10642: 10618: 10587: 10567: 10544: 10516: 10489: 10469: 10434: 10414: 10383: 10356: 10336: 10309: 10289: 10269: 10233: 10213: 10183: 10140: 9458: 9389: 9362: 9342: 9315: 9288: 9248: 9221: 9164: 9122: 9058: 8994: 8974: 8897: 8860: 8823: 8791: 8771: 8721: 8684: 8647: 8609: 8576: 8544: 8512: 8451: 8442:
Given a diagram of groupoids with groupoid morphisms
8379: 8352: 8309: 8280: 8245: 8225: 8187: 8161: 8105: 8071: 8042: 8013: 7951: 7921: 7893: 7840: 7820: 7796: 7769: 7749: 7729: 7704: 7684: 7664: 7611: 7572: 7524: 7504: 7461: 7441: 7418: 7398: 7378: 7358: 7332: 7305: 7277: 7257: 7237: 7197: 7177: 7157: 7128: 7083: 7060: 7029: 6996: 6964: 6944: 6924: 6892: 6824: 6798: 6772: 6728: 6687: 6638: 6598: 6570: 6531: 6511: 6491: 6471: 6451: 6427: 6407: 6387: 6364: 6328: 6308: 6232: 6148: 6111: 6000: 5977: 5946: 5926: 5816: 5761: 5636: 5579: 5525: 5502: 5446: 5401:
If we relax the reflexivity requirement and consider
5358: 5296: 5269: 5245: 5172: 5122: 5086: 5044: 5024: 5000: 4971: 4951: 4927: 4907: 4867: 4835: 4803: 4774: 4742: 4722: 4702: 4682: 4662: 4642: 4619: 4595: 4568: 4540: 4520: 4484: 4442: 4416: 4374: 4339: 4303: 4280: 4238: 4202: 4166: 4146: 4114: 4094: 4063: 4043: 4023: 3996: 3976: 3934: 3914: 3887: 3844: 3824: 3804: 3784: 3755: 3735: 3715: 3695: 3675: 3639: 3597: 3541: 3515: 3473: 3444: 3375: 3355: 3335: 3315: 3282: 3253: 3233: 3213: 3159: 3133: 3032: 2939: 2887: 2835: 2779: 2735: 2694: 2648: 2609: 2573: 2547: 2520: 2469: 2449: 2400: 2380: 2348: 2313: 2282: 2254: 2222: 2191: 2108: 2081: 2041: 1921: 1870: 1818: 1772: 1728: 1598: 1447: 1385: 1200: 1174: 1119: 1062: 1012: 986: 940: 904: 870: 844: 806: 768: 730: 692: 666: 640: 611: 591: 571: 551: 531: 508: 488: 446: 399: 376: 315: 245: 177: 145: 113: 13430:., 305–324. Amer. Math. Soc., Providence, RI (2006) 13292:
Cambridge Univ. Press. Shows how generalisations of
12559:, which is a Lie groupoid endowed with a compatible 11846:{\displaystyle N:\mathbf {Grpd} \to \mathbf {sSet} } 9566:), certain puzzles are better modeled as groupoids. 13398:
General theory of Lie groupoids and Lie algebroids.
12632: 11437:{\displaystyle i:\mathbf {Grpd} \to \mathbf {Cat} } 8370:. Another commonly studied family of orbifolds are 3064:Sets in the definitions above may be replaced with 13412:, Notices of the AMS, July 1996, pp. 744–752. 13372:Van Nostrand Notes in Mathematics. Republished in 12682:Proof of first property: from 2. and 3. we obtain 12628: 12626: 12501: 12393: 12370: 12295: 12214: 12154: 12091: 12021: 11982: 11845: 11777: 11733: 11691: 11566: 11436: 11359: 11325: 11234: 11202: 11176: 11150: 11112: 11055: 11035: 11015: 10995: 10971: 10951: 10931: 10911: 10891: 10871: 10847: 10827: 10807: 10757: 10737: 10713: 10668: 10648: 10624: 10593: 10573: 10550: 10522: 10498: 10475: 10440: 10420: 10389: 10369: 10342: 10322: 10295: 10275: 10255: 10219: 10196: 10158: 9531: 9441: 9375: 9348: 9328: 9301: 9282:; the source morphism is just the projection onto 9274: 9234: 9197: 9139: 9108: 9044: 8980: 8960: 8883: 8846: 8809: 8785:. Morphisms can be defined as a pair of morphisms 8777: 8757: 8707: 8670: 8633: 8595: 8562: 8530: 8495: 8422: 8358: 8338: 8295: 8263: 8231: 8203: 8173: 8147: 8091: 8057: 8028: 7999: 7937: 7899: 7871: 7826: 7802: 7782: 7755: 7735: 7715: 7690: 7670: 7650: 7597: 7558: 7510: 7486: 7447: 7424: 7404: 7384: 7364: 7344: 7318: 7288: 7263: 7243: 7223: 7183: 7163: 7139: 7114: 7066: 7035: 7011: 6982: 6950: 6930: 6907: 6878: 6810: 6784: 6758: 6714: 6673: 6624: 6576: 6546: 6517: 6497: 6477: 6457: 6433: 6413: 6393: 6370: 6334: 6314: 6280: 6208: 6124: 6094: 5983: 5963: 5932: 5909: 5796: 5741: 5615: 5558: 5508: 5488: 5384: 5342: 5282: 5251: 5231: 5147: 5098: 5072: 5030: 5006: 4983: 4957: 4933: 4913: 4885: 4853: 4821: 4786: 4760: 4728: 4708: 4688: 4668: 4648: 4625: 4601: 4574: 4546: 4526: 4506: 4470: 4428: 4402: 4345: 4325: 4286: 4266: 4224: 4188: 4152: 4120: 4100: 4069: 4049: 4029: 4009: 3982: 3940: 3920: 3893: 3865: 3830: 3810: 3790: 3770: 3741: 3721: 3701: 3681: 3657: 3615: 3583: 3527: 3485: 3456: 3403: 3361: 3341: 3321: 3297: 3268: 3239: 3219: 3199: 3145: 3045: 3014: 2925: 2873: 2821: 2765: 2721: 2680: 2630: 2592: 2559: 2533: 2498: 2455: 2412: 2386: 2359: 2327: 2299: 2268: 2236: 2208: 2134: 2094: 2067: 1958: 1907: 1854: 1802: 1758: 1676: 1573: 1403: 1260: 1186: 1157: 1098: 1048: 998: 964: 926: 882: 856: 830: 792: 762:are defined and are equal. Conversely, if one of 754: 716: 678: 652: 617: 597: 577: 557: 537: 514: 494: 470: 429: 382: 321: 269: 231: 163: 131: 13374:Reprints in Theory and Applications of Categories 11023:can be "lifted" to presentations of the groupoid 10601:is equivalent (as a groupoid) to one copy of the 8423:{\displaystyle \mathbb {P} (n_{1},\ldots ,n_{k})} 6136:. Also, another artifact of this construction is 5616:{\displaystyle {\mathcal {G}}_{1}=\coprod U_{ij}} 5489:{\displaystyle {\mathcal {U}}=\{U_{i}\}_{i\in I}} 5014:is only in relation with itself, one obtains the 3418:if it has only one orbit (equivalently, if it is 2492: 2491: 103:, a category in general can be viewed as a typed 13459: 10404:of groupoids of the above type, also called its 9442:{\displaystyle c_{1}+c_{0}\in C_{1}\oplus C_{0}} 7147:is the groupoid (category) with one element and 5559:{\displaystyle {\mathcal {G}}_{0}=\coprod U_{i}} 4613:The objects of the groupoid are the elements of 2102:is the set of all morphisms, and the two arrows 1289:, i.e., invertible. More explicitly, a groupoid 13354:Higgins, P. J., "The fundamental groupoid of a 12623: 7559:{\displaystyle \mathrm {Hom} (\mathrm {Gr} ,-)} 7487:{\displaystyle \mathrm {Gr} \to \mathrm {Set} } 5398:of a surjective submersion of smooth manifolds. 3369:, then the isomorphism is given by the mapping 3068:, as is generally the case in category theory. 13358:", J. London Math. Soc. (2) 13 (1976) 145–149. 9532:{\displaystyle t(c_{1}+c_{0})=d(c_{1})+c_{0}.} 5516:. Its objects are given by the disjoint union 4128:, with two paths being equivalent if they are 13313:Geometric Models for Noncommutative Algebras. 12165:and an embedding given by an identity functor 11785:denotes the subcategory of all isomorphisms. 10980: 10656:is equivalent (as a groupoid) to one copy of 8437: 4353:. Accordingly, the fundamental groupoid of a 3429: 3015:{\displaystyle (1_{x}*f*1_{y})*(g*1_{z})=f*g} 171:, say. Composition is then a total function: 13221: 12969: 10123:generalize to groupoids, with the notion of 8142: 8106: 8007:which takes each number to its negative, so 7994: 7958: 7866: 7841: 7598:{\displaystyle \mathrm {ob} (\mathrm {Gr} )} 5797:{\displaystyle \varepsilon :U_{i}\to U_{ii}} 5471: 5457: 5385:{\displaystyle X_{1}\rightrightarrows X_{0}} 5093: 5087: 3247:are in the same orbits, their vertex groups 2152: 2068:{\displaystyle G_{1}\rightrightarrows G_{0}} 471:{\displaystyle *:G\times G\rightharpoonup G} 12992:"Localization and Gromov-Witten Invariants" 11090:is, like the category of small categories, 10684:requires specifying what set each orbit is. 7352:. The categorical structure of the functor 6674:{\displaystyle \mathrm {hom} (C)=G\times X} 5343:{\displaystyle X_{1}=X_{0}\times _{Y}X_{0}} 4921:is in relation with every other element of 3071: 13131:"CatΓ©gories et structures : extraits" 11003:. In this way, presentations of the group 10166:. By transitivity, there will only be one 8961:{\displaystyle (x,\phi ,y),(x',\phi ',y')} 4991:as set of arrows, and which is transitive. 13253: 13128: 13113: 12975: 11151:{\displaystyle \operatorname {GPD} (H,K)} 8381: 8315: 8283: 8189: 7923: 7518:. In fact, this functor is isomorphic to 6105:is a cartesian diagram where the maps to 3509:as a subcategory, i.e., respectively, if 1959:{\displaystyle f^{-1}f=\mathrm {id} _{x}} 1908:{\displaystyle ff^{-1}=\mathrm {id} _{y}} 333:Groupoids are often used to reason about 13185:From groups to groupoids: a brief survey 12921:, 1999, The University of Chicago Press 11066: 9045:{\displaystyle f(\alpha ):f(x)\to f(x')} 3493:that is itself a groupoid. It is called 3053:, and the category-theoretic inverse of 1261:{\displaystyle (a*b)^{-1}=b^{-1}*a^{-1}} 13004:from the original on February 12, 2020. 10530:is equivalent to the collection of the 9562:can be modeled using group theory (see 9109:{\displaystyle g(\beta ):g(y)\to g(y')} 5405:, then it becomes possible to consider 4557: 4436:is a chosen set of "base points". Here 4362: 4297:The orbits of the fundamental groupoid 4274:is then the vertex group for the point 3200:{\displaystyle s(t^{-1}(x))\subseteq X} 270:{\displaystyle h\circ g:A\rightarrow C} 13460: 13222:Dicks, Warren; Ventura, Enric (1996), 13155: 12919:A Concise Course in Algebraic Topology 10765:in the same path-connected component. 9150: 8346:, which has one point with stabilizer 1803:{\displaystyle \mathrm {id} _{y}\ f=f} 1759:{\displaystyle f\ \mathrm {id} _{x}=f} 502:. The precise conditions under which 349:) introduced groupoids implicitly via 346: 13424:Algebraic and geometric combinatorics 12852:is also defined. From 3. we obtain ( 12540:, in analogy to the relation between 10776:with one endomorphism is nontrivial. 9604: 6958:, the vertex group consists of those 5570:and its arrows are the intersections 4333:are the path-connected components of 2443:be the set of equivalence classes of 2142:represent the source and the target. 1272: 12965: 12963: 12032: 8968:, there is a commutative diagram in 7872:{\displaystyle \{F_{g}\mid g\in G\}} 3486:{\displaystyle H\rightrightarrows Y} 3457:{\displaystyle G\rightrightarrows X} 12516:Groupoids with geometric structures 11788: 9580: 8708:{\displaystyle y\in {\text{Ob}}(Y)} 8671:{\displaystyle x\in {\text{Ob}}(X)} 8214: 2177:) (i.e. the sets of morphisms from 2145:More generally, one can consider a 370:. Precisely, it is a non-empty set 13: 12201: 12184: 12141: 12124: 12078: 12061: 11778:{\displaystyle \mathrm {Core} (C)} 11762: 11759: 11756: 11753: 11673: 11670: 11667: 11664: 11385: 8758:{\displaystyle \phi :f(x)\to g(y)} 7709: 7706: 7641: 7638: 7630: 7627: 7619: 7616: 7613: 7588: 7585: 7577: 7574: 7543: 7540: 7532: 7529: 7526: 7480: 7477: 7474: 7466: 7463: 7282: 7279: 7224:{\displaystyle X=F(\mathrm {Gr} )} 7214: 7211: 7133: 7130: 7105: 7102: 7099: 7091: 7088: 6646: 6643: 6640: 6625:{\displaystyle \mathrm {ob} (C)=X} 6603: 6600: 6185: 5964:{\displaystyle {\mathcal {G}}_{n}} 5950: 5940:-iterated fiber product where the 5896: 5880: 5856: 5837: 5820: 5583: 5529: 5449: 4696:, there is a single morphism from 4204: 2499:{\displaystyle G_{0}:=G/\!\!\sim } 2353: 2350: 2321: 2318: 2315: 2293: 2290: 2287: 2284: 2262: 2259: 2256: 2230: 2227: 2224: 2202: 2199: 2196: 2193: 1946: 1943: 1895: 1892: 1778: 1775: 1740: 1737: 1606: 1603: 1600: 1459: 1456: 1453: 1450: 1391: 1388: 14: 13489: 12960: 12812:is also defined. Moreover since 11745:that inverts every morphism, and 9275:{\displaystyle C_{1}\oplus C_{0}} 8000:{\displaystyle X=\{-2,-1,0,1,2\}} 7658:which is by definition the "set" 6879:{\displaystyle (h,y)(g,x)=(hg,x)} 5259:has a topology isomorphic to the 5239:is an equivalence relation since 2822:{\displaystyle gf:=f*g\in G(x,z)} 1404:{\displaystyle \mathrm {id} _{x}} 13286:F. Borceux, G. Janelidze, 2001, 13208:Higher dimensional group theory. 12756:Proof of second property: since 11947: 11944: 11941: 11938: 11889: 11886: 11883: 11880: 11839: 11836: 11833: 11830: 11822: 11819: 11816: 11813: 11645: 11642: 11639: 11636: 11594: 11591: 11588: 11531: 11528: 11525: 11473: 11470: 11467: 11464: 11430: 11427: 11424: 11416: 11413: 11410: 11407: 11158:whose objects are the morphisms 10408:(possibly with different groups 8810:{\displaystyle (\alpha ,\beta )} 8296:{\displaystyle \mathbb {A} ^{n}} 6681:and with source and target maps 6358:The objects are the elements of 6223:can be represented as a function 5425: 164:{\displaystyle h:B\rightarrow C} 132:{\displaystyle g:A\rightarrow B} 13376:, No. 7 (2005) pp. 1–195; 13122: 13101: 13071: 13052: 13033: 10448:for each connected component). 8847:{\displaystyle \alpha :x\to x'} 8430:and subspaces of them, such as 7191:of this category defines a set 6294: 4361:as categories (see the section 4232:). The usual fundamental group 4037:. The morphisms from the point 2926:{\displaystyle 1_{y}*(g*1_{z})} 2874:{\displaystyle (1_{x}*f)*1_{y}} 2300:{\displaystyle \mathrm {comp} } 2209:{\displaystyle \mathrm {comp} } 1158:{\displaystyle (a^{-1})^{-1}=a} 430:{\displaystyle {}^{-1}:G\to G,} 13380:. Substantial introduction to 13028:Puzzles, Groups, and Groupoids 13020: 13008: 12984: 12944:"fundamental groupoid in nLab" 12936: 12911: 12676: 12643: 12487: 12475: 12469: 12438: 12432: 12420: 12356: 12344: 12338: 12262: 12256: 12244: 12195: 12135: 12016: 12010: 11977: 11974: 11968: 11956: 11926: 11917: 11911: 11898: 11826: 11772: 11766: 11728: 11712: 11686: 11683: 11677: 11654: 11624: 11615: 11609: 11603: 11561: 11558: 11552: 11540: 11513: 11504: 11488: 11482: 11420: 11370:Another important property of 11317: 11314: 11302: 11287: 11275: 11257: 11168: 11145: 11133: 10899:and hence a covering morphism 10708: 10702: 10581:with the equivalence relation 10250: 10237: 10153: 10141: 9510: 9497: 9488: 9462: 9177: 9103: 9092: 9086: 9083: 9077: 9068: 9062: 9039: 9028: 9022: 9019: 9013: 9004: 8998: 8955: 8922: 8916: 8898: 8884:{\displaystyle \beta :y\to y'} 8870: 8833: 8804: 8792: 8752: 8746: 8740: 8737: 8731: 8702: 8696: 8665: 8659: 8628: 8610: 8554: 8522: 8481: 8467: 8417: 8385: 8333: 8310: 8258: 8252: 8204:{\displaystyle \mathbb {Z} /2} 8168: 8162: 8139: 8133: 8127: 8121: 8115: 8109: 8086: 8072: 8046: 8020: 7938:{\displaystyle \mathbb {Z} /2} 7645: 7623: 7592: 7581: 7553: 7536: 7470: 7336: 7218: 7207: 7109: 7084: 6977: 6965: 6873: 6858: 6852: 6840: 6837: 6825: 6744: 6732: 6703: 6691: 6656: 6650: 6613: 6607: 6272: 6203: 6180: 6168: 6155: 6149: 6073: 6051: 6045: 6023: 5778: 5722: 5673: 5394:which is sometimes called the 5369: 5139: 4880: 4868: 4848: 4836: 4816: 4804: 4755: 4743: 4501: 4495: 4465: 4453: 4397: 4385: 4320: 4314: 4261: 4249: 4219: 4213: 4183: 4177: 4136:. This groupoid is called the 3854: 3848: 3765: 3759: 3649: 3578: 3566: 3557: 3545: 3477: 3448: 3379: 3292: 3286: 3263: 3257: 3188: 3185: 3179: 3163: 2997: 2978: 2972: 2940: 2920: 2901: 2855: 2836: 2816: 2804: 2773:their composite is defined as 2757: 2745: 2716: 2704: 2625: 2613: 2328:{\displaystyle \mathrm {inv} } 2269:{\displaystyle \mathrm {inv} } 2237:{\displaystyle \mathrm {inv} } 2135:{\displaystyle G_{1}\to G_{0}} 2119: 2052: 1849: 1840: 1828: 1819: 1658: 1649: 1637: 1631: 1628: 1616: 1562: 1559: 1547: 1541: 1529: 1523: 1520: 1508: 1499: 1487: 1214: 1201: 1137: 1120: 1099:{\displaystyle {a^{-1}}*a*b=b} 1049:{\displaystyle a*b*{b^{-1}}=a} 825: 813: 781: 769: 749: 737: 705: 693: 462: 418: 356: 261: 223: 217: 214: 208: 202: 199: 196: 190: 184: 155: 123: 1: 13149: 11864:The nerve has a left adjoint 11242:there is a natural bijection 8596:{\displaystyle X\times _{Z}Y} 7915:Consider the group action of 7910: 7716:{\displaystyle \mathrm {Gr} } 7289:{\displaystyle \mathrm {Gr} } 7140:{\displaystyle \mathrm {Gr} } 5403:partial equivalence relations 5110: 4471:{\displaystyle \pi _{1}(X,A)} 4403:{\displaystyle \pi _{1}(X,A)} 4267:{\displaystyle \pi _{1}(X,x)} 3584:{\displaystyle G(x,y)=H(x,y)} 3423: 3404:{\displaystyle g\to fgf^{-1}} 2681:{\displaystyle 1_{x}*f*1_{y}} 2370:Conversely, given a groupoid 2360:{\displaystyle \mathrm {id} } 2244:become partial operations on 12633:Dicks & Ventura (1996). 11444:has both a left and a right 11120:we can construct a groupoid 10510:The fundamental groupoid of 10003:Commutative-and-associative 9589:is a groupoid introduced by 9140:{\displaystyle \phi ,\phi '} 8271:gives a group action on the 7271:(i.e. for every morphism in 6560:of morphisms interprets the 5148:{\displaystyle f:X_{0}\to Y} 3096:are the subsets of the form 2766:{\displaystyle g\in G(y,z),} 361: 50:) generalises the notion of 7: 13395:Mackenzie, K. C. H., 2005. 13343:Encyclopedia of Mathematics 13129:Ehresmann, Charles (1964). 12656:Encyclopedia of Mathematics 12574: 12022:{\displaystyle \pi _{1}(X)} 9569:The transformations of the 8634:{\displaystyle (x,\phi ,y)} 8570:, we can form the groupoid 8058:{\displaystyle 1\mapsto -1} 8029:{\displaystyle -2\mapsto 2} 7834:is isomorphic to the group 6485:correspond to the elements 4507:{\displaystyle \pi _{1}(X)} 4478:is a (wide) subgroupoid of 4326:{\displaystyle \pi _{1}(X)} 4225:{\displaystyle \Pi _{1}(X)} 4189:{\displaystyle \pi _{1}(X)} 3956: 3951: 3022:. The identity morphism on 2722:{\displaystyle f\in G(x,y)} 2638:as the set of all elements 1855:{\displaystyle (hg)f=h(gf)} 1426:for each triple of objects 10: 13494: 13059:The 15-puzzle groupoid (2) 13040:The 15-puzzle groupoid (1) 12036: 11743:localization of a category 9558:While puzzles such as the 9553: 8603:whose objects are triples 8438:Fiber product of groupoids 8372:weighted projective spaces 6886:which is defined provided 6811:{\displaystyle X\rtimes G} 6785:{\displaystyle G\ltimes X} 5429: 5073:{\displaystyle s=t=id_{X}} 4429:{\displaystyle A\subset X} 3960: 3873:. A fibration is called a 3430:Subgroupoids and morphisms 2593:{\displaystyle x\in G_{0}} 965:{\displaystyle a*{a^{-1}}} 18: 13370:Categories and groupoids. 12603:(not to be confused with 6759:{\displaystyle t(g,x)=gx} 6592:is a small category with 4984:{\displaystyle X\times X} 4365:for the general theory). 3665:of groupoids is called a 2153:Comparing the definitions 1584:for each pair of objects 1308:for each pair of objects 87:on the morphisms, called 13417:The Geometry of Momentum 13388:, and in topology, e.g. 13030:, The Everything Seminar 12616: 12555:one has the notion of a 12530:differentiable structure 10536:path-connected component 10256:{\displaystyle G(x_{0})} 8563:{\displaystyle g:Y\to Z} 8531:{\displaystyle f:X\to Z} 8065:. The quotient groupoid 7171:. Indeed, every functor 7054:Another way to describe 6715:{\displaystyle s(g,x)=x} 3658:{\displaystyle p:E\to B} 3616:{\displaystyle x,y\in Y} 3072:Vertex groups and orbits 2035:is sometimes denoted as 927:{\displaystyle a^{-1}*a} 305:: sets equipped with an 13368:Higgins, P. J., 1971. 13200:Topology and groupoids. 13189:Bull. London Math. Soc. 6348:transformation groupoid 6342:, then we can form the 6221:sheaf of abelian groups 4965:, which has the entire 4787:{\displaystyle x\sim y} 2413:{\displaystyle a\sim b} 1316:a (possibly empty) set 831:{\displaystyle a*(b*c)} 793:{\displaystyle (a*b)*c} 755:{\displaystyle a*(b*c)} 717:{\displaystyle (a*b)*c} 280:Special cases include: 13401:Cambridge Univ. Press. 13328:Bull. Amer. Math. Soc. 13322:, Ian Stewart, 2006, " 13264:10.1006/jabr.1999.8204 13183:Brown, Ronald, 1987, " 12510: 12503: 12395: 12379: 12372: 12297: 12223: 12216: 12163: 12156: 12093: 12023: 11984: 11847: 11779: 11735: 11693: 11568: 11438: 11361: 11327: 11236: 11204: 11178: 11177:{\displaystyle H\to K} 11152: 11114: 11057: 11037: 11017: 10997: 10973: 10953: 10933: 10913: 10893: 10873: 10849: 10829: 10809: 10759: 10739: 10715: 10680:of the action, but an 10670: 10650: 10626: 10595: 10575: 10552: 10524: 10500: 10483:, but only the groups 10477: 10442: 10422: 10391: 10371: 10344: 10324: 10297: 10277: 10257: 10221: 10198: 10160: 9610:Group-like structures 9533: 9443: 9377: 9350: 9330: 9303: 9276: 9242:and as arrows the set 9236: 9199: 9141: 9110: 9046: 8982: 8962: 8891:such that for triples 8885: 8848: 8811: 8779: 8759: 8709: 8672: 8635: 8597: 8564: 8532: 8497: 8424: 8360: 8340: 8297: 8265: 8233: 8205: 8181:has a group action of 8175: 8149: 8148:{\displaystyle \{,,\}} 8093: 8059: 8030: 8001: 7939: 7901: 7873: 7828: 7804: 7784: 7757: 7737: 7717: 7692: 7672: 7652: 7599: 7560: 7512: 7488: 7449: 7426: 7406: 7386: 7366: 7346: 7345:{\displaystyle X\to X} 7320: 7290: 7265: 7245: 7225: 7185: 7165: 7141: 7116: 7068: 7037: 7013: 6984: 6952: 6932: 6909: 6880: 6812: 6786: 6766:. It is often denoted 6760: 6716: 6675: 6626: 6578: 6548: 6519: 6499: 6479: 6459: 6435: 6415: 6395: 6372: 6336: 6316: 6289: 6282: 6217: 6210: 6126: 6103: 6096: 5985: 5965: 5934: 5918: 5911: 5805: 5798: 5750: 5743: 5625: 5617: 5568: 5560: 5510: 5490: 5393: 5386: 5350:then we get a groupoid 5344: 5284: 5253: 5233: 5149: 5100: 5074: 5032: 5008: 4985: 4959: 4935: 4915: 4887: 4855: 4823: 4788: 4762: 4730: 4710: 4690: 4670: 4650: 4627: 4603: 4576: 4548: 4528: 4508: 4472: 4430: 4404: 4347: 4327: 4288: 4268: 4226: 4190: 4154: 4122: 4102: 4071: 4051: 4031: 4011: 3984: 3942: 3922: 3895: 3867: 3866:{\displaystyle p(e)=b} 3832: 3812: 3792: 3772: 3743: 3723: 3703: 3683: 3659: 3617: 3585: 3529: 3487: 3458: 3426:for counterexamples). 3405: 3363: 3343: 3323: 3299: 3270: 3241: 3221: 3201: 3147: 3146:{\displaystyle x\in X} 3047: 3016: 2927: 2875: 2823: 2767: 2723: 2682: 2632: 2631:{\displaystyle G(x,y)} 2594: 2561: 2560:{\displaystyle a\in G} 2535: 2500: 2457: 2414: 2388: 2361: 2329: 2301: 2270: 2238: 2210: 2136: 2096: 2069: 1960: 1909: 1856: 1804: 1760: 1678: 1575: 1405: 1262: 1188: 1159: 1100: 1050: 1000: 966: 928: 884: 858: 832: 794: 756: 718: 680: 654: 619: 599: 579: 559: 539: 516: 496: 472: 431: 384: 323: 271: 233: 165: 133: 13248:. Elsevier: 505–532. 13158:Mathematische Annalen 12526:topological groupoids 12504: 12403: 12396: 12373: 12298: 12227: 12217: 12167: 12157: 12101: 12094: 12024: 11985: 11848: 11780: 11736: 11694: 11569: 11439: 11362: 11360:{\displaystyle G,H,K} 11328: 11237: 11235:{\displaystyle G,H,K} 11205: 11179: 11153: 11115: 11077:category of groupoids 11067:Category of groupoids 11058: 11038: 11018: 10998: 10974: 10954: 10934: 10914: 10894: 10874: 10850: 10830: 10810: 10760: 10740: 10716: 10671: 10651: 10627: 10596: 10594:{\displaystyle \sim } 10576: 10553: 10525: 10501: 10478: 10443: 10423: 10392: 10372: 10370:{\displaystyle x_{0}} 10345: 10325: 10323:{\displaystyle x_{0}} 10298: 10278: 10258: 10222: 10199: 10197:{\displaystyle x_{0}} 10161: 10159:{\displaystyle (G,X)} 9534: 9444: 9378: 9376:{\displaystyle C_{0}} 9351: 9331: 9329:{\displaystyle C_{1}} 9304: 9302:{\displaystyle C_{0}} 9277: 9237: 9235:{\displaystyle C_{0}} 9200: 9142: 9111: 9047: 8983: 8963: 8886: 8849: 8812: 8780: 8760: 8710: 8673: 8636: 8598: 8565: 8533: 8498: 8425: 8361: 8341: 8298: 8266: 8264:{\displaystyle GL(n)} 8234: 8206: 8176: 8150: 8094: 8060: 8031: 8002: 7940: 7902: 7874: 7829: 7810:. We deduce from the 7805: 7785: 7783:{\displaystyle F_{g}} 7763:) to the permutation 7758: 7738: 7718: 7693: 7673: 7653: 7600: 7561: 7513: 7496:Cayley representation 7489: 7450: 7434:representable functor 7427: 7407: 7387: 7367: 7347: 7321: 7319:{\displaystyle F_{g}} 7291: 7266: 7246: 7226: 7186: 7166: 7142: 7117: 7069: 7038: 7014: 6985: 6983:{\displaystyle (g,x)} 6953: 6933: 6910: 6881: 6813: 6787: 6761: 6717: 6676: 6627: 6588:More explicitly, the 6579: 6549: 6520: 6500: 6480: 6460: 6436: 6416: 6396: 6381:For any two elements 6373: 6337: 6317: 6283: 6225: 6211: 6141: 6127: 6125:{\displaystyle U_{i}} 6097: 5993: 5986: 5966: 5935: 5912: 5809: 5799: 5754: 5752:and the inclusion map 5744: 5629: 5618: 5572: 5561: 5518: 5511: 5491: 5387: 5351: 5345: 5285: 5283:{\displaystyle X_{0}} 5254: 5234: 5150: 5101: 5099:{\displaystyle \{x\}} 5075: 5033: 5009: 4986: 4960: 4936: 4916: 4888: 4886:{\displaystyle (z,x)} 4856: 4854:{\displaystyle (y,x)} 4824: 4822:{\displaystyle (z,y)} 4789: 4763: 4761:{\displaystyle (y,x)} 4731: 4711: 4691: 4671: 4651: 4636:For any two elements 4628: 4604: 4602:{\displaystyle \sim } 4586:, i.e. a set with an 4577: 4549: 4529: 4509: 4473: 4431: 4405: 4348: 4328: 4289: 4269: 4227: 4191: 4155: 4123: 4103: 4072: 4052: 4032: 4012: 4010:{\displaystyle G_{0}} 3985: 3943: 3923: 3896: 3879:covering of groupoids 3868: 3833: 3813: 3793: 3773: 3744: 3724: 3704: 3684: 3660: 3618: 3586: 3530: 3488: 3459: 3406: 3364: 3344: 3329:is any morphism from 3324: 3300: 3271: 3242: 3222: 3202: 3148: 3048: 3046:{\displaystyle 1_{x}} 3017: 2928: 2876: 2824: 2768: 2724: 2683: 2633: 2595: 2562: 2536: 2534:{\displaystyle 1_{x}} 2501: 2458: 2456:{\displaystyle \sim } 2415: 2389: 2387:{\displaystyle \sim } 2362: 2330: 2302: 2271: 2239: 2211: 2137: 2097: 2095:{\displaystyle G_{1}} 2070: 1961: 1910: 1857: 1805: 1761: 1679: 1576: 1406: 1379:a designated element 1263: 1189: 1160: 1101: 1051: 1001: 967: 929: 885: 859: 833: 795: 757: 719: 681: 655: 620: 600: 580: 560: 540: 538:{\displaystyle \ast } 517: 497: 473: 432: 385: 324: 272: 234: 166: 134: 13468:Algebraic structures 13434:fundamental groupoid 13408:" Also available in 13390:fundamental groupoid 13068:, Never Ending Books 13049:, Never Ending Books 12591:Homotopy type theory 12532:, turning them into 12524:, turning them into 12408: 12385: 12307: 12232: 12172: 12106: 12055: 11997: 11871: 11803: 11749: 11706: 11579: 11455: 11397: 11339: 11248: 11214: 11188: 11162: 11124: 11098: 11094:: for any groupoids 11079:, and is denoted by 11047: 11027: 11007: 10987: 10963: 10943: 10923: 10903: 10883: 10863: 10839: 10835:yields an action of 10819: 10799: 10749: 10729: 10714:{\displaystyle G(x)} 10696: 10660: 10640: 10616: 10585: 10565: 10542: 10514: 10487: 10467: 10432: 10412: 10406:connected components 10381: 10354: 10334: 10307: 10287: 10267: 10231: 10211: 10181: 10138: 9456: 9387: 9360: 9356:and projection onto 9340: 9313: 9286: 9246: 9219: 9162: 9120: 9056: 8992: 8972: 8895: 8858: 8821: 8789: 8769: 8719: 8682: 8645: 8607: 8574: 8542: 8510: 8449: 8432:Calabi–Yau orbifolds 8377: 8350: 8307: 8278: 8243: 8223: 8185: 8159: 8103: 8069: 8040: 8011: 7949: 7919: 7891: 7838: 7818: 7794: 7767: 7747: 7727: 7702: 7682: 7662: 7609: 7570: 7522: 7502: 7459: 7439: 7416: 7396: 7376: 7356: 7330: 7303: 7275: 7255: 7235: 7195: 7175: 7155: 7126: 7081: 7058: 7027: 7019:, which is just the 7012:{\displaystyle gx=x} 6994: 6962: 6942: 6922: 6908:{\displaystyle y=gx} 6890: 6822: 6796: 6770: 6726: 6685: 6636: 6596: 6568: 6547:{\displaystyle gx=y} 6529: 6509: 6489: 6469: 6449: 6425: 6405: 6385: 6362: 6350:) representing this 6326: 6306: 6230: 6146: 6109: 5998: 5975: 5944: 5924: 5814: 5759: 5634: 5577: 5523: 5500: 5444: 5356: 5294: 5267: 5243: 5170: 5120: 5084: 5042: 5022: 4998: 4994:If every element of 4969: 4949: 4925: 4905: 4901:If every element of 4865: 4833: 4801: 4772: 4740: 4720: 4700: 4680: 4660: 4640: 4617: 4593: 4588:equivalence relation 4566: 4558:Equivalence relation 4538: 4518: 4482: 4440: 4414: 4372: 4355:path-connected space 4337: 4301: 4278: 4236: 4200: 4164: 4144: 4138:fundamental groupoid 4112: 4092: 4061: 4041: 4021: 3994: 3974: 3963:Fundamental groupoid 3932: 3912: 3885: 3842: 3822: 3802: 3782: 3778:there is a morphism 3771:{\displaystyle p(x)} 3753: 3733: 3713: 3693: 3673: 3637: 3595: 3539: 3513: 3471: 3442: 3373: 3353: 3333: 3313: 3298:{\displaystyle G(y)} 3280: 3269:{\displaystyle G(x)} 3251: 3231: 3211: 3157: 3153:is given by the set 3131: 3030: 2937: 2885: 2833: 2777: 2733: 2692: 2646: 2607: 2571: 2545: 2518: 2467: 2447: 2398: 2378: 2346: 2311: 2280: 2252: 2220: 2189: 2106: 2079: 2039: 1919: 1868: 1816: 1770: 1726: 1684:satisfying, for any 1596: 1445: 1383: 1198: 1172: 1117: 1060: 1010: 984: 938: 902: 868: 842: 804: 766: 728: 690: 664: 638: 609: 589: 569: 549: 529: 506: 486: 444: 397: 374: 313: 295:equivalence relation 243: 175: 143: 111: 13378:freely downloadable 13316:Especially Part VI. 13304:Cannas da Silva, A. 13084:"delooping in nLab" 12764:is defined, so is ( 12651:"Brandt semi-group" 12557:symplectic groupoid 12458: 12327: 12282: 11374:is that it is both 11203:{\displaystyle H,K} 11113:{\displaystyle H,K} 10979:is a groupoid with 10789:universal morphisms 9611: 9577:on configurations. 9155:A two term complex 9151:Homological algebra 7412:-action on the set 5436:Nerve of a covering 5432:Simplicial manifold 4797:The composition of 4079:equivalence classes 3881:if further such an 3669:if for each object 3528:{\displaystyle X=Y} 2394:on its elements by 2165:of all of the sets 1187:{\displaystyle a*b} 999:{\displaystyle a*b} 972:are always defined. 883:{\displaystyle b*c} 857:{\displaystyle a*b} 679:{\displaystyle b*c} 653:{\displaystyle a*b} 478:. Here * is not a 343:Heinrich Brandt 99:In the presence of 13415:Weinstein, Alan, " 13404:Weinstein, Alan, " 13242:Journal of Algebra 13218:. Many references. 13170:10.1007/BF01209171 13064:2015-12-25 at the 13045:2015-12-25 at the 12820:is defined, so is 12605:algebraic groupoid 12499: 12497: 12391: 12368: 12366: 12293: 12291: 12212: 12152: 12089: 12019: 11980: 11843: 11775: 11731: 11689: 11564: 11434: 11357: 11323: 11232: 11200: 11174: 11148: 11110: 11053: 11033: 11013: 10993: 10969: 10949: 10929: 10909: 10889: 10869: 10845: 10825: 10805: 10795:. Thus a subgroup 10793:quotient morphisms 10785:covering morphisms 10755: 10735: 10711: 10666: 10646: 10622: 10591: 10571: 10548: 10532:fundamental groups 10520: 10499:{\displaystyle G.} 10496: 10473: 10438: 10418: 10387: 10367: 10340: 10320: 10293: 10273: 10253: 10217: 10194: 10170:under the action. 10156: 10129:group homomorphism 10127:replacing that of 10049:Commutative monoid 9609: 9605:Relation to groups 9591:John Horton Conway 9564:Rubik's Cube group 9529: 9439: 9373: 9346: 9326: 9299: 9272: 9232: 9195: 9137: 9106: 9042: 8978: 8958: 8881: 8844: 8807: 8775: 8755: 8705: 8668: 8631: 8593: 8560: 8528: 8493: 8491: 8420: 8356: 8336: 8293: 8261: 8229: 8201: 8171: 8145: 8089: 8055: 8026: 7997: 7945:on the finite set 7935: 7897: 7869: 7824: 7800: 7780: 7753: 7733: 7723:(i.e. the element 7713: 7688: 7668: 7648: 7595: 7556: 7508: 7484: 7445: 7422: 7402: 7382: 7362: 7342: 7316: 7286: 7261: 7241: 7221: 7181: 7161: 7137: 7112: 7064: 7033: 7009: 6980: 6948: 6928: 6905: 6876: 6808: 6782: 6756: 6712: 6671: 6622: 6574: 6544: 6515: 6495: 6475: 6455: 6431: 6411: 6391: 6368: 6332: 6312: 6278: 6219:for some constant 6206: 6201: 6122: 6092: 6090: 5981: 5961: 5930: 5907: 5794: 5739: 5737: 5613: 5556: 5506: 5486: 5382: 5340: 5280: 5249: 5229: 5145: 5096: 5070: 5038:as set of arrows, 5028: 5004: 4981: 4955: 4931: 4911: 4883: 4851: 4819: 4784: 4758: 4726: 4706: 4686: 4666: 4646: 4623: 4599: 4572: 4544: 4524: 4504: 4468: 4426: 4400: 4343: 4323: 4284: 4264: 4222: 4186: 4150: 4118: 4098: 4067: 4047: 4027: 4007: 3980: 3938: 3918: 3891: 3863: 3828: 3808: 3788: 3768: 3739: 3719: 3709:and each morphism 3699: 3679: 3655: 3613: 3581: 3525: 3483: 3454: 3401: 3359: 3339: 3319: 3295: 3266: 3237: 3217: 3197: 3143: 3043: 3012: 2923: 2871: 2819: 2763: 2719: 2678: 2628: 2590: 2557: 2531: 2496: 2453: 2410: 2384: 2367:) can be dropped. 2357: 2325: 2297: 2266: 2234: 2206: 2132: 2092: 2065: 1956: 1905: 1852: 1800: 1756: 1674: 1571: 1401: 1273:Category theoretic 1258: 1184: 1155: 1096: 1046: 996: 962: 924: 880: 854: 828: 790: 752: 714: 686:are defined, then 676: 650: 615: 595: 575: 555: 535: 512: 492: 468: 427: 380: 319: 293:that come with an 267: 229: 161: 129: 13426:, volume 423 of 13386:Grushko's theorem 13233:978-0-8218-0564-0 12569:complex structure 12565:Riemannian metric 12459: 12394:{\displaystyle a} 12328: 12283: 12033:Groupoids in Grpd 11734:{\displaystyle C} 11367:are just groups. 11073:groupoid category 11056:{\displaystyle H} 11036:{\displaystyle K} 11016:{\displaystyle G} 10996:{\displaystyle H} 10972:{\displaystyle K} 10952:{\displaystyle G} 10932:{\displaystyle K} 10912:{\displaystyle p} 10892:{\displaystyle G} 10872:{\displaystyle H} 10848:{\displaystyle G} 10828:{\displaystyle G} 10808:{\displaystyle H} 10758:{\displaystyle q} 10738:{\displaystyle p} 10669:{\displaystyle G} 10649:{\displaystyle G} 10632:equipped with an 10625:{\displaystyle X} 10607:equivalence class 10574:{\displaystyle X} 10551:{\displaystyle X} 10523:{\displaystyle X} 10476:{\displaystyle X} 10441:{\displaystyle X} 10421:{\displaystyle G} 10390:{\displaystyle x} 10343:{\displaystyle G} 10296:{\displaystyle x} 10276:{\displaystyle G} 10220:{\displaystyle h} 10206:group isomorphism 10113: 10112: 9383:. That is, given 9349:{\displaystyle d} 9183: 8981:{\displaystyle Z} 8778:{\displaystyle Z} 8694: 8657: 8359:{\displaystyle G} 8232:{\displaystyle G} 8219:Any finite group 7900:{\displaystyle G} 7827:{\displaystyle G} 7803:{\displaystyle G} 7756:{\displaystyle G} 7736:{\displaystyle g} 7691:{\displaystyle g} 7678:and the morphism 7671:{\displaystyle G} 7511:{\displaystyle G} 7448:{\displaystyle F} 7425:{\displaystyle G} 7405:{\displaystyle G} 7385:{\displaystyle F} 7365:{\displaystyle F} 7264:{\displaystyle G} 7244:{\displaystyle g} 7184:{\displaystyle F} 7164:{\displaystyle G} 7067:{\displaystyle G} 7036:{\displaystyle x} 7021:isotropy subgroup 6951:{\displaystyle X} 6931:{\displaystyle x} 6577:{\displaystyle G} 6518:{\displaystyle G} 6498:{\displaystyle g} 6478:{\displaystyle y} 6458:{\displaystyle x} 6434:{\displaystyle X} 6414:{\displaystyle y} 6394:{\displaystyle x} 6371:{\displaystyle X} 6335:{\displaystyle X} 6315:{\displaystyle G} 6194: 6171: 5984:{\displaystyle n} 5933:{\displaystyle n} 5509:{\displaystyle X} 5496:of some manifold 5261:quotient topology 5252:{\displaystyle Y} 5031:{\displaystyle X} 5007:{\displaystyle X} 4958:{\displaystyle X} 4934:{\displaystyle X} 4914:{\displaystyle X} 4768:) if and only if 4729:{\displaystyle y} 4709:{\displaystyle x} 4689:{\displaystyle X} 4669:{\displaystyle y} 4649:{\displaystyle x} 4626:{\displaystyle X} 4575:{\displaystyle X} 4547:{\displaystyle A} 4527:{\displaystyle A} 4346:{\displaystyle X} 4287:{\displaystyle x} 4153:{\displaystyle X} 4121:{\displaystyle q} 4101:{\displaystyle p} 4070:{\displaystyle q} 4050:{\displaystyle p} 4030:{\displaystyle X} 3983:{\displaystyle X} 3969:topological space 3941:{\displaystyle B} 3921:{\displaystyle B} 3894:{\displaystyle e} 3875:covering morphism 3831:{\displaystyle x} 3811:{\displaystyle E} 3791:{\displaystyle e} 3742:{\displaystyle B} 3722:{\displaystyle b} 3702:{\displaystyle E} 3682:{\displaystyle x} 3628:groupoid morphism 3362:{\displaystyle y} 3342:{\displaystyle x} 3322:{\displaystyle f} 3240:{\displaystyle y} 3220:{\displaystyle x} 3112:is any object of 3076:Given a groupoid 1976:is an element of 1790: 1734: 1375:for every object 1360:is an element of 1356:to indicate that 1194:is defined, then 1006:is defined, then 890:are also defined. 618:{\displaystyle G} 598:{\displaystyle c} 578:{\displaystyle b} 558:{\displaystyle a} 515:{\displaystyle *} 495:{\displaystyle G} 383:{\displaystyle G} 351:Brandt semigroups 322:{\displaystyle G} 13485: 13351: 13298:Galois groupoids 13289:Galois theories. 13283: 13257: 13236: 13180: 13143: 13142: 13126: 13120: 13119: 13117: 13105: 13099: 13097: 13095: 13094: 13075: 13069: 13056: 13050: 13037: 13031: 13026:Jim Belk (2008) 13024: 13018: 13012: 13006: 13005: 13003: 12996: 12988: 12982: 12981: 12979: 12967: 12958: 12957: 12955: 12954: 12940: 12934: 12915: 12909: 12680: 12674: 12673: 12647: 12641: 12640: 12630: 12601:Groupoid algebra 12596:Inverse category 12553:Poisson geometry 12508: 12506: 12505: 12500: 12498: 12473: 12450: 12436: 12400: 12398: 12397: 12392: 12377: 12375: 12374: 12369: 12367: 12342: 12319: 12302: 12300: 12299: 12294: 12292: 12274: 12260: 12221: 12219: 12218: 12213: 12211: 12210: 12205: 12204: 12194: 12193: 12188: 12187: 12161: 12159: 12158: 12153: 12151: 12150: 12145: 12144: 12134: 12133: 12128: 12127: 12098: 12096: 12095: 12090: 12088: 12087: 12082: 12081: 12071: 12070: 12065: 12064: 12045:double-groupoids 12028: 12026: 12025: 12020: 12009: 12008: 11989: 11987: 11986: 11981: 11952: 11951: 11950: 11910: 11909: 11894: 11893: 11892: 11852: 11850: 11849: 11844: 11842: 11825: 11784: 11782: 11781: 11776: 11765: 11740: 11738: 11737: 11732: 11727: 11726: 11698: 11696: 11695: 11690: 11676: 11650: 11649: 11648: 11599: 11598: 11597: 11573: 11571: 11570: 11565: 11536: 11535: 11534: 11503: 11502: 11478: 11477: 11476: 11443: 11441: 11440: 11435: 11433: 11419: 11366: 11364: 11363: 11358: 11332: 11330: 11329: 11324: 11241: 11239: 11238: 11233: 11209: 11207: 11206: 11201: 11183: 11181: 11180: 11175: 11157: 11155: 11154: 11149: 11119: 11117: 11116: 11111: 11092:Cartesian closed 11062: 11060: 11059: 11054: 11042: 11040: 11039: 11034: 11022: 11020: 11019: 11014: 11002: 11000: 10999: 10994: 10978: 10976: 10975: 10970: 10958: 10956: 10955: 10950: 10938: 10936: 10935: 10930: 10918: 10916: 10915: 10910: 10898: 10896: 10895: 10890: 10878: 10876: 10875: 10870: 10854: 10852: 10851: 10846: 10834: 10832: 10831: 10826: 10814: 10812: 10811: 10806: 10764: 10762: 10761: 10756: 10744: 10742: 10741: 10736: 10720: 10718: 10717: 10712: 10675: 10673: 10672: 10667: 10655: 10653: 10652: 10647: 10631: 10629: 10628: 10623: 10600: 10598: 10597: 10592: 10580: 10578: 10577: 10572: 10557: 10555: 10554: 10549: 10529: 10527: 10526: 10521: 10505: 10503: 10502: 10497: 10482: 10480: 10479: 10474: 10447: 10445: 10444: 10439: 10427: 10425: 10424: 10419: 10396: 10394: 10393: 10388: 10376: 10374: 10373: 10368: 10366: 10365: 10349: 10347: 10346: 10341: 10330:, a morphism in 10329: 10327: 10326: 10321: 10319: 10318: 10302: 10300: 10299: 10294: 10282: 10280: 10279: 10274: 10262: 10260: 10259: 10254: 10249: 10248: 10226: 10224: 10223: 10218: 10203: 10201: 10200: 10195: 10193: 10192: 10165: 10163: 10162: 10157: 9612: 9608: 9587:Mathieu groupoid 9581:Mathieu groupoid 9544:coherent sheaves 9538: 9536: 9535: 9530: 9525: 9524: 9509: 9508: 9487: 9486: 9474: 9473: 9448: 9446: 9445: 9440: 9438: 9437: 9425: 9424: 9412: 9411: 9399: 9398: 9382: 9380: 9379: 9374: 9372: 9371: 9355: 9353: 9352: 9347: 9335: 9333: 9332: 9327: 9325: 9324: 9308: 9306: 9305: 9300: 9298: 9297: 9281: 9279: 9278: 9273: 9271: 9270: 9258: 9257: 9241: 9239: 9238: 9233: 9231: 9230: 9213:Abelian category 9208:of objects in a 9204: 9202: 9201: 9196: 9194: 9193: 9184: 9176: 9174: 9173: 9146: 9144: 9143: 9138: 9136: 9115: 9113: 9112: 9107: 9102: 9051: 9049: 9048: 9043: 9038: 8987: 8985: 8984: 8979: 8967: 8965: 8964: 8959: 8954: 8943: 8932: 8890: 8888: 8887: 8882: 8880: 8853: 8851: 8850: 8845: 8843: 8816: 8814: 8813: 8808: 8784: 8782: 8781: 8776: 8764: 8762: 8761: 8756: 8714: 8712: 8711: 8706: 8695: 8692: 8677: 8675: 8674: 8669: 8658: 8655: 8640: 8638: 8637: 8632: 8602: 8600: 8599: 8594: 8589: 8588: 8569: 8567: 8566: 8561: 8537: 8535: 8534: 8529: 8502: 8500: 8499: 8494: 8492: 8465: 8464: 8456: 8455: 8429: 8427: 8426: 8421: 8416: 8415: 8397: 8396: 8384: 8365: 8363: 8362: 8357: 8345: 8343: 8342: 8339:{\displaystyle } 8337: 8329: 8324: 8323: 8318: 8302: 8300: 8299: 8294: 8292: 8291: 8286: 8270: 8268: 8267: 8262: 8238: 8236: 8235: 8230: 8215:Quotient variety 8210: 8208: 8207: 8202: 8197: 8192: 8180: 8178: 8177: 8174:{\displaystyle } 8172: 8154: 8152: 8151: 8146: 8098: 8096: 8095: 8092:{\displaystyle } 8090: 8082: 8064: 8062: 8061: 8056: 8035: 8033: 8032: 8027: 8006: 8004: 8003: 7998: 7944: 7942: 7941: 7936: 7931: 7926: 7906: 7904: 7903: 7898: 7883:of the group of 7878: 7876: 7875: 7870: 7853: 7852: 7833: 7831: 7830: 7825: 7812:Yoneda embedding 7809: 7807: 7806: 7801: 7789: 7787: 7786: 7781: 7779: 7778: 7762: 7760: 7759: 7754: 7742: 7740: 7739: 7734: 7722: 7720: 7719: 7714: 7712: 7697: 7695: 7694: 7689: 7677: 7675: 7674: 7669: 7657: 7655: 7654: 7649: 7644: 7633: 7622: 7604: 7602: 7601: 7596: 7591: 7580: 7565: 7563: 7562: 7557: 7546: 7535: 7517: 7515: 7514: 7509: 7493: 7491: 7490: 7485: 7483: 7469: 7454: 7452: 7451: 7446: 7431: 7429: 7428: 7423: 7411: 7409: 7408: 7403: 7391: 7389: 7388: 7383: 7372:assures us that 7371: 7369: 7368: 7363: 7351: 7349: 7348: 7343: 7325: 7323: 7322: 7317: 7315: 7314: 7295: 7293: 7292: 7287: 7285: 7270: 7268: 7267: 7262: 7250: 7248: 7247: 7242: 7230: 7228: 7227: 7222: 7217: 7190: 7188: 7187: 7182: 7170: 7168: 7167: 7162: 7146: 7144: 7143: 7138: 7136: 7121: 7119: 7118: 7115:{\displaystyle } 7113: 7108: 7094: 7076:functor category 7073: 7071: 7070: 7065: 7042: 7040: 7039: 7034: 7018: 7016: 7015: 7010: 6989: 6987: 6986: 6981: 6957: 6955: 6954: 6949: 6937: 6935: 6934: 6929: 6914: 6912: 6911: 6906: 6885: 6883: 6882: 6877: 6817: 6815: 6814: 6809: 6791: 6789: 6788: 6783: 6765: 6763: 6762: 6757: 6721: 6719: 6718: 6713: 6680: 6678: 6677: 6672: 6649: 6631: 6629: 6628: 6623: 6606: 6583: 6581: 6580: 6575: 6562:binary operation 6553: 6551: 6550: 6545: 6524: 6522: 6521: 6516: 6504: 6502: 6501: 6496: 6484: 6482: 6481: 6476: 6464: 6462: 6461: 6456: 6440: 6438: 6437: 6432: 6420: 6418: 6417: 6412: 6400: 6398: 6397: 6392: 6377: 6375: 6374: 6369: 6341: 6339: 6338: 6333: 6322:acts on the set 6321: 6319: 6318: 6313: 6287: 6285: 6284: 6279: 6271: 6270: 6269: 6268: 6256: 6255: 6215: 6213: 6212: 6207: 6202: 6189: 6188: 6179: 6178: 6173: 6172: 6164: 6131: 6129: 6128: 6123: 6121: 6120: 6101: 6099: 6098: 6093: 6091: 6087: 6086: 6070: 6069: 6049: 6040: 6039: 6020: 6019: 5990: 5988: 5987: 5982: 5970: 5968: 5967: 5962: 5960: 5959: 5954: 5953: 5939: 5937: 5936: 5931: 5916: 5914: 5913: 5908: 5906: 5905: 5900: 5899: 5892: 5891: 5890: 5889: 5884: 5883: 5868: 5867: 5866: 5865: 5860: 5859: 5847: 5846: 5841: 5840: 5830: 5829: 5824: 5823: 5803: 5801: 5800: 5795: 5793: 5792: 5777: 5776: 5748: 5746: 5745: 5740: 5738: 5734: 5733: 5721: 5720: 5705: 5704: 5685: 5684: 5672: 5671: 5656: 5655: 5622: 5620: 5619: 5614: 5612: 5611: 5593: 5592: 5587: 5586: 5565: 5563: 5562: 5557: 5555: 5554: 5539: 5538: 5533: 5532: 5515: 5513: 5512: 5507: 5495: 5493: 5492: 5487: 5485: 5484: 5469: 5468: 5453: 5452: 5391: 5389: 5388: 5383: 5381: 5380: 5368: 5367: 5349: 5347: 5346: 5341: 5339: 5338: 5329: 5328: 5319: 5318: 5306: 5305: 5289: 5287: 5286: 5281: 5279: 5278: 5258: 5256: 5255: 5250: 5238: 5236: 5235: 5230: 5228: 5227: 5215: 5214: 5202: 5201: 5192: 5191: 5182: 5181: 5164:smooth manifolds 5154: 5152: 5151: 5146: 5138: 5137: 5105: 5103: 5102: 5097: 5079: 5077: 5076: 5071: 5069: 5068: 5037: 5035: 5034: 5029: 5013: 5011: 5010: 5005: 4990: 4988: 4987: 4982: 4964: 4962: 4961: 4956: 4941:, we obtain the 4940: 4938: 4937: 4932: 4920: 4918: 4917: 4912: 4892: 4890: 4889: 4884: 4860: 4858: 4857: 4852: 4828: 4826: 4825: 4820: 4793: 4791: 4790: 4785: 4767: 4765: 4764: 4759: 4735: 4733: 4732: 4727: 4715: 4713: 4712: 4707: 4695: 4693: 4692: 4687: 4675: 4673: 4672: 4667: 4655: 4653: 4652: 4647: 4632: 4630: 4629: 4624: 4608: 4606: 4605: 4600: 4581: 4579: 4578: 4573: 4553: 4551: 4550: 4545: 4533: 4531: 4530: 4525: 4513: 4511: 4510: 4505: 4494: 4493: 4477: 4475: 4474: 4469: 4452: 4451: 4435: 4433: 4432: 4427: 4409: 4407: 4406: 4401: 4384: 4383: 4352: 4350: 4349: 4344: 4332: 4330: 4329: 4324: 4313: 4312: 4293: 4291: 4290: 4285: 4273: 4271: 4270: 4265: 4248: 4247: 4231: 4229: 4228: 4223: 4212: 4211: 4195: 4193: 4192: 4187: 4176: 4175: 4159: 4157: 4156: 4151: 4127: 4125: 4124: 4119: 4107: 4105: 4104: 4099: 4076: 4074: 4073: 4068: 4056: 4054: 4053: 4048: 4036: 4034: 4033: 4028: 4016: 4014: 4013: 4008: 4006: 4005: 3989: 3987: 3986: 3981: 3947: 3945: 3944: 3939: 3927: 3925: 3924: 3919: 3900: 3898: 3897: 3892: 3872: 3870: 3869: 3864: 3837: 3835: 3834: 3829: 3817: 3815: 3814: 3809: 3797: 3795: 3794: 3789: 3777: 3775: 3774: 3769: 3748: 3746: 3745: 3740: 3728: 3726: 3725: 3720: 3708: 3706: 3705: 3700: 3688: 3686: 3685: 3680: 3664: 3662: 3661: 3656: 3622: 3620: 3619: 3614: 3590: 3588: 3587: 3582: 3534: 3532: 3531: 3526: 3492: 3490: 3489: 3484: 3463: 3461: 3460: 3455: 3410: 3408: 3407: 3402: 3400: 3399: 3368: 3366: 3365: 3360: 3348: 3346: 3345: 3340: 3328: 3326: 3325: 3320: 3304: 3302: 3301: 3296: 3275: 3273: 3272: 3267: 3246: 3244: 3243: 3238: 3226: 3224: 3223: 3218: 3206: 3204: 3203: 3198: 3178: 3177: 3152: 3150: 3149: 3144: 3052: 3050: 3049: 3044: 3042: 3041: 3021: 3019: 3018: 3013: 2996: 2995: 2971: 2970: 2952: 2951: 2932: 2930: 2929: 2924: 2919: 2918: 2897: 2896: 2880: 2878: 2877: 2872: 2870: 2869: 2848: 2847: 2828: 2826: 2825: 2820: 2772: 2770: 2769: 2764: 2728: 2726: 2725: 2720: 2687: 2685: 2684: 2679: 2677: 2676: 2658: 2657: 2637: 2635: 2634: 2629: 2599: 2597: 2596: 2591: 2589: 2588: 2566: 2564: 2563: 2558: 2540: 2538: 2537: 2532: 2530: 2529: 2505: 2503: 2502: 2497: 2490: 2479: 2478: 2462: 2460: 2459: 2454: 2419: 2417: 2416: 2411: 2393: 2391: 2390: 2385: 2366: 2364: 2363: 2358: 2356: 2334: 2332: 2331: 2326: 2324: 2306: 2304: 2303: 2298: 2296: 2275: 2273: 2272: 2267: 2265: 2243: 2241: 2240: 2235: 2233: 2215: 2213: 2212: 2207: 2205: 2141: 2139: 2138: 2133: 2131: 2130: 2118: 2117: 2101: 2099: 2098: 2093: 2091: 2090: 2074: 2072: 2071: 2066: 2064: 2063: 2051: 2050: 1965: 1963: 1962: 1957: 1955: 1954: 1949: 1934: 1933: 1914: 1912: 1911: 1906: 1904: 1903: 1898: 1886: 1885: 1861: 1859: 1858: 1853: 1809: 1807: 1806: 1801: 1788: 1787: 1786: 1781: 1765: 1763: 1762: 1757: 1749: 1748: 1743: 1732: 1683: 1681: 1680: 1675: 1673: 1672: 1609: 1580: 1578: 1577: 1572: 1480: 1479: 1462: 1410: 1408: 1407: 1402: 1400: 1399: 1394: 1277:A groupoid is a 1267: 1265: 1264: 1259: 1257: 1256: 1241: 1240: 1225: 1224: 1193: 1191: 1190: 1185: 1164: 1162: 1161: 1156: 1148: 1147: 1135: 1134: 1105: 1103: 1102: 1097: 1077: 1076: 1075: 1055: 1053: 1052: 1047: 1039: 1038: 1037: 1005: 1003: 1002: 997: 971: 969: 968: 963: 961: 960: 959: 933: 931: 930: 925: 917: 916: 889: 887: 886: 881: 863: 861: 860: 855: 837: 835: 834: 829: 799: 797: 796: 791: 761: 759: 758: 753: 723: 721: 720: 715: 685: 683: 682: 677: 659: 657: 656: 651: 624: 622: 621: 616: 604: 602: 601: 596: 584: 582: 581: 576: 564: 562: 561: 556: 544: 542: 541: 536: 521: 519: 518: 513: 501: 499: 498: 493: 480:binary operation 477: 475: 474: 469: 439:partial function 436: 434: 433: 428: 411: 410: 402: 389: 387: 386: 381: 368:partial function 337:objects such as 328: 326: 325: 320: 276: 274: 273: 268: 238: 236: 235: 230: 170: 168: 167: 162: 138: 136: 135: 130: 101:dependent typing 91:by analogy with 69:binary operation 65:partial function 30:, especially in 13493: 13492: 13488: 13487: 13486: 13484: 13483: 13482: 13478:Homotopy theory 13473:Category theory 13458: 13457: 13382:category theory 13356:graph of groups 13336: 13234: 13212:homotopy theory 13197:—, 2006. 13152: 13147: 13146: 13127: 13123: 13106: 13102: 13092: 13090: 13082: 13079:homotopy theory 13076: 13072: 13066:Wayback Machine 13057: 13053: 13047:Wayback Machine 13038: 13034: 13025: 13021: 13013: 13009: 13001: 12994: 12990: 12989: 12985: 12968: 12961: 12952: 12950: 12942: 12941: 12937: 12916: 12912: 12755: 12681: 12677: 12671: 12649: 12648: 12644: 12631: 12624: 12619: 12577: 12561:symplectic form 12528:, or even some 12518: 12496: 12495: 12490: 12485: 12479: 12478: 12472: 12466: 12465: 12460: 12448: 12442: 12441: 12435: 12429: 12428: 12423: 12418: 12411: 12409: 12406: 12405: 12386: 12383: 12382: 12365: 12364: 12359: 12354: 12348: 12347: 12341: 12335: 12334: 12329: 12317: 12310: 12308: 12305: 12304: 12290: 12289: 12284: 12272: 12266: 12265: 12259: 12253: 12252: 12247: 12242: 12235: 12233: 12230: 12229: 12206: 12200: 12199: 12198: 12189: 12183: 12182: 12181: 12173: 12170: 12169: 12146: 12140: 12139: 12138: 12129: 12123: 12122: 12121: 12107: 12104: 12103: 12083: 12077: 12076: 12075: 12066: 12060: 12059: 12058: 12056: 12053: 12052: 12041: 12039:Double groupoid 12035: 12004: 12000: 11998: 11995: 11994: 11937: 11936: 11932: 11905: 11901: 11879: 11878: 11874: 11872: 11869: 11868: 11829: 11812: 11804: 11801: 11800: 11794: 11752: 11750: 11747: 11746: 11719: 11715: 11707: 11704: 11703: 11663: 11635: 11634: 11630: 11587: 11586: 11582: 11580: 11577: 11576: 11524: 11523: 11519: 11495: 11491: 11463: 11462: 11458: 11456: 11453: 11452: 11423: 11406: 11398: 11395: 11394: 11391: 11340: 11337: 11336: 11249: 11246: 11245: 11215: 11212: 11211: 11189: 11186: 11185: 11163: 11160: 11159: 11125: 11122: 11121: 11099: 11096: 11095: 11069: 11048: 11045: 11044: 11028: 11025: 11024: 11008: 11005: 11004: 10988: 10985: 10984: 10964: 10961: 10960: 10944: 10941: 10940: 10924: 10921: 10920: 10904: 10901: 10900: 10884: 10881: 10880: 10864: 10861: 10860: 10840: 10837: 10836: 10820: 10817: 10816: 10800: 10797: 10796: 10750: 10747: 10746: 10730: 10727: 10726: 10697: 10694: 10693: 10661: 10658: 10657: 10641: 10638: 10637: 10617: 10614: 10613: 10586: 10583: 10582: 10566: 10563: 10562: 10543: 10540: 10539: 10515: 10512: 10511: 10488: 10485: 10484: 10468: 10465: 10464: 10433: 10430: 10429: 10413: 10410: 10409: 10382: 10379: 10378: 10361: 10357: 10355: 10352: 10351: 10335: 10332: 10331: 10314: 10310: 10308: 10305: 10304: 10288: 10285: 10284: 10283:, and for each 10268: 10265: 10264: 10244: 10240: 10232: 10229: 10228: 10212: 10209: 10208: 10188: 10184: 10182: 10179: 10178: 10139: 10136: 10135: 9607: 9600: 9583: 9556: 9520: 9516: 9504: 9500: 9482: 9478: 9469: 9465: 9457: 9454: 9453: 9433: 9429: 9420: 9416: 9407: 9403: 9394: 9390: 9388: 9385: 9384: 9367: 9363: 9361: 9358: 9357: 9341: 9338: 9337: 9320: 9316: 9314: 9311: 9310: 9293: 9289: 9287: 9284: 9283: 9266: 9262: 9253: 9249: 9247: 9244: 9243: 9226: 9222: 9220: 9217: 9216: 9189: 9185: 9175: 9169: 9165: 9163: 9160: 9159: 9153: 9129: 9121: 9118: 9117: 9095: 9057: 9054: 9053: 9031: 8993: 8990: 8989: 8973: 8970: 8969: 8947: 8936: 8925: 8896: 8893: 8892: 8873: 8859: 8856: 8855: 8836: 8822: 8819: 8818: 8790: 8787: 8786: 8770: 8767: 8766: 8720: 8717: 8716: 8691: 8683: 8680: 8679: 8654: 8646: 8643: 8642: 8608: 8605: 8604: 8584: 8580: 8575: 8572: 8571: 8543: 8540: 8539: 8511: 8508: 8507: 8490: 8489: 8484: 8477: 8471: 8470: 8462: 8461: 8452: 8450: 8447: 8446: 8440: 8411: 8407: 8392: 8388: 8380: 8378: 8375: 8374: 8351: 8348: 8347: 8325: 8319: 8314: 8313: 8308: 8305: 8304: 8287: 8282: 8281: 8279: 8276: 8275: 8244: 8241: 8240: 8224: 8221: 8220: 8217: 8193: 8188: 8186: 8183: 8182: 8160: 8157: 8156: 8104: 8101: 8100: 8078: 8070: 8067: 8066: 8041: 8038: 8037: 8012: 8009: 8008: 7950: 7947: 7946: 7927: 7922: 7920: 7917: 7916: 7913: 7892: 7889: 7888: 7848: 7844: 7839: 7836: 7835: 7819: 7816: 7815: 7814:that the group 7795: 7792: 7791: 7774: 7770: 7768: 7765: 7764: 7748: 7745: 7744: 7728: 7725: 7724: 7705: 7703: 7700: 7699: 7683: 7680: 7679: 7663: 7660: 7659: 7637: 7626: 7612: 7610: 7607: 7606: 7584: 7573: 7571: 7568: 7567: 7539: 7525: 7523: 7520: 7519: 7503: 7500: 7499: 7473: 7462: 7460: 7457: 7456: 7440: 7437: 7436: 7432:. The (unique) 7417: 7414: 7413: 7397: 7394: 7393: 7377: 7374: 7373: 7357: 7354: 7353: 7331: 7328: 7327: 7310: 7306: 7304: 7301: 7300: 7278: 7276: 7273: 7272: 7256: 7253: 7252: 7236: 7233: 7232: 7210: 7196: 7193: 7192: 7176: 7173: 7172: 7156: 7153: 7152: 7129: 7127: 7124: 7123: 7098: 7087: 7082: 7079: 7078: 7059: 7056: 7055: 7028: 7025: 7024: 6995: 6992: 6991: 6963: 6960: 6959: 6943: 6940: 6939: 6923: 6920: 6919: 6891: 6888: 6887: 6823: 6820: 6819: 6797: 6794: 6793: 6771: 6768: 6767: 6727: 6724: 6723: 6686: 6683: 6682: 6639: 6637: 6634: 6633: 6599: 6597: 6594: 6593: 6590:action groupoid 6569: 6566: 6565: 6530: 6527: 6526: 6510: 6507: 6506: 6490: 6487: 6486: 6470: 6467: 6466: 6450: 6447: 6446: 6426: 6423: 6422: 6406: 6403: 6402: 6386: 6383: 6382: 6363: 6360: 6359: 6344:action groupoid 6327: 6324: 6323: 6307: 6304: 6303: 6297: 6264: 6260: 6251: 6247: 6246: 6242: 6231: 6228: 6227: 6193: 6184: 6183: 6174: 6163: 6162: 6161: 6147: 6144: 6143: 6116: 6112: 6110: 6107: 6106: 6089: 6088: 6082: 6078: 6076: 6071: 6062: 6058: 6055: 6054: 6048: 6042: 6041: 6032: 6028: 6026: 6021: 6009: 6005: 6001: 5999: 5996: 5995: 5976: 5973: 5972: 5955: 5949: 5948: 5947: 5945: 5942: 5941: 5925: 5922: 5921: 5901: 5895: 5894: 5893: 5885: 5879: 5878: 5877: 5876: 5872: 5861: 5855: 5854: 5853: 5852: 5848: 5842: 5836: 5835: 5834: 5825: 5819: 5818: 5817: 5815: 5812: 5811: 5785: 5781: 5772: 5768: 5760: 5757: 5756: 5736: 5735: 5729: 5725: 5713: 5709: 5700: 5696: 5687: 5686: 5680: 5676: 5664: 5660: 5651: 5647: 5637: 5635: 5632: 5631: 5604: 5600: 5588: 5582: 5581: 5580: 5578: 5575: 5574: 5550: 5546: 5534: 5528: 5527: 5526: 5524: 5521: 5520: 5501: 5498: 5497: 5474: 5470: 5464: 5460: 5448: 5447: 5445: 5442: 5441: 5438: 5428: 5415:effective topos 5376: 5372: 5363: 5359: 5357: 5354: 5353: 5334: 5330: 5324: 5320: 5314: 5310: 5301: 5297: 5295: 5292: 5291: 5274: 5270: 5268: 5265: 5264: 5244: 5241: 5240: 5223: 5219: 5210: 5206: 5197: 5193: 5187: 5183: 5177: 5173: 5171: 5168: 5167: 5133: 5129: 5121: 5118: 5117: 5113: 5085: 5082: 5081: 5064: 5060: 5043: 5040: 5039: 5023: 5020: 5019: 4999: 4996: 4995: 4970: 4967: 4966: 4950: 4947: 4946: 4926: 4923: 4922: 4906: 4903: 4902: 4866: 4863: 4862: 4834: 4831: 4830: 4802: 4799: 4798: 4773: 4770: 4769: 4741: 4738: 4737: 4721: 4718: 4717: 4701: 4698: 4697: 4681: 4678: 4677: 4661: 4658: 4657: 4641: 4638: 4637: 4618: 4615: 4614: 4594: 4591: 4590: 4567: 4564: 4563: 4560: 4539: 4536: 4535: 4519: 4516: 4515: 4489: 4485: 4483: 4480: 4479: 4447: 4443: 4441: 4438: 4437: 4415: 4412: 4411: 4379: 4375: 4373: 4370: 4369: 4338: 4335: 4334: 4308: 4304: 4302: 4299: 4298: 4279: 4276: 4275: 4243: 4239: 4237: 4234: 4233: 4207: 4203: 4201: 4198: 4197: 4196:(or sometimes, 4171: 4167: 4165: 4162: 4161: 4145: 4142: 4141: 4113: 4110: 4109: 4093: 4090: 4089: 4062: 4059: 4058: 4042: 4039: 4038: 4022: 4019: 4018: 4001: 3997: 3995: 3992: 3991: 3975: 3972: 3971: 3965: 3959: 3954: 3933: 3930: 3929: 3913: 3910: 3909: 3886: 3883: 3882: 3843: 3840: 3839: 3823: 3820: 3819: 3803: 3800: 3799: 3783: 3780: 3779: 3754: 3751: 3750: 3734: 3731: 3730: 3714: 3711: 3710: 3694: 3691: 3690: 3674: 3671: 3670: 3638: 3635: 3634: 3596: 3593: 3592: 3540: 3537: 3536: 3514: 3511: 3510: 3472: 3469: 3468: 3443: 3440: 3439: 3432: 3392: 3388: 3374: 3371: 3370: 3354: 3351: 3350: 3334: 3331: 3330: 3314: 3311: 3310: 3281: 3278: 3277: 3252: 3249: 3248: 3232: 3229: 3228: 3212: 3209: 3208: 3170: 3166: 3158: 3155: 3154: 3132: 3129: 3128: 3086:isotropy groups 3074: 3037: 3033: 3031: 3028: 3027: 2991: 2987: 2966: 2962: 2947: 2943: 2938: 2935: 2934: 2933:exist, so does 2914: 2910: 2892: 2888: 2886: 2883: 2882: 2865: 2861: 2843: 2839: 2834: 2831: 2830: 2778: 2775: 2774: 2734: 2731: 2730: 2693: 2690: 2689: 2672: 2668: 2653: 2649: 2647: 2644: 2643: 2608: 2605: 2604: 2584: 2580: 2572: 2569: 2568: 2546: 2543: 2542: 2525: 2521: 2519: 2516: 2515: 2486: 2474: 2470: 2468: 2465: 2464: 2448: 2445: 2444: 2442: 2399: 2396: 2395: 2379: 2376: 2375: 2349: 2347: 2344: 2343: 2341: 2314: 2312: 2309: 2308: 2283: 2281: 2278: 2277: 2255: 2253: 2250: 2249: 2223: 2221: 2218: 2217: 2192: 2190: 2187: 2186: 2155: 2147:groupoid object 2126: 2122: 2113: 2109: 2107: 2104: 2103: 2086: 2082: 2080: 2077: 2076: 2059: 2055: 2046: 2042: 2040: 2037: 2036: 1950: 1942: 1941: 1926: 1922: 1920: 1917: 1916: 1899: 1891: 1890: 1878: 1874: 1869: 1866: 1865: 1817: 1814: 1813: 1782: 1774: 1773: 1771: 1768: 1767: 1744: 1736: 1735: 1727: 1724: 1723: 1665: 1661: 1599: 1597: 1594: 1593: 1463: 1449: 1448: 1446: 1443: 1442: 1395: 1387: 1386: 1384: 1381: 1380: 1299: 1281:in which every 1275: 1249: 1245: 1233: 1229: 1217: 1213: 1199: 1196: 1195: 1173: 1170: 1169: 1140: 1136: 1127: 1123: 1118: 1115: 1114: 1068: 1064: 1063: 1061: 1058: 1057: 1030: 1026: 1025: 1011: 1008: 1007: 985: 982: 981: 952: 948: 947: 939: 936: 935: 909: 905: 903: 900: 899: 869: 866: 865: 843: 840: 839: 805: 802: 801: 767: 764: 763: 729: 726: 725: 691: 688: 687: 665: 662: 661: 639: 636: 635: 610: 607: 606: 590: 587: 586: 570: 567: 566: 550: 547: 546: 530: 527: 526: 525:The operations 507: 504: 503: 487: 484: 483: 445: 442: 441: 403: 401: 400: 398: 395: 394: 392:unary operation 375: 372: 371: 364: 359: 314: 311: 310: 244: 241: 240: 176: 173: 172: 144: 141: 140: 112: 109: 108: 85:unary operation 79:in which every 44:Brandt groupoid 36:homotopy theory 32:category theory 24: 21:magma (algebra) 17: 12: 11: 5: 13491: 13481: 13480: 13475: 13470: 13456: 13455: 13443: 13431: 13420: 13413: 13402: 13393: 13366: 13359: 13352: 13334: 13320:Golubitsky, M. 13317: 13301: 13284: 13237: 13232: 13219: 13204: 13195: 13181: 13164:(1): 360–366, 13151: 13148: 13145: 13144: 13121: 13100: 13070: 13051: 13032: 13019: 13007: 12983: 12959: 12935: 12910: 12780:. Therefore ( 12675: 12669: 12642: 12621: 12620: 12618: 12615: 12614: 12613: 12608: 12598: 12593: 12588: 12583: 12576: 12573: 12538:Lie algebroids 12517: 12514: 12494: 12491: 12489: 12486: 12484: 12481: 12480: 12477: 12474: 12471: 12468: 12467: 12464: 12461: 12457: 12453: 12449: 12447: 12444: 12443: 12440: 12437: 12434: 12431: 12430: 12427: 12424: 12422: 12419: 12417: 12414: 12413: 12390: 12363: 12360: 12358: 12355: 12353: 12350: 12349: 12346: 12343: 12340: 12337: 12336: 12333: 12330: 12326: 12322: 12318: 12316: 12313: 12312: 12288: 12285: 12281: 12277: 12273: 12271: 12268: 12267: 12264: 12261: 12258: 12255: 12254: 12251: 12248: 12246: 12243: 12241: 12238: 12237: 12209: 12203: 12197: 12192: 12186: 12180: 12177: 12149: 12143: 12137: 12132: 12126: 12120: 12117: 12114: 12111: 12086: 12080: 12074: 12069: 12063: 12037:Main article: 12034: 12031: 12018: 12015: 12012: 12007: 12003: 11991: 11990: 11979: 11976: 11973: 11970: 11967: 11964: 11961: 11958: 11955: 11949: 11946: 11943: 11940: 11935: 11931: 11928: 11925: 11922: 11919: 11916: 11913: 11908: 11904: 11900: 11897: 11891: 11888: 11885: 11882: 11877: 11841: 11838: 11835: 11832: 11828: 11824: 11821: 11818: 11815: 11811: 11808: 11793: 11787: 11774: 11771: 11768: 11764: 11761: 11758: 11755: 11730: 11725: 11722: 11718: 11714: 11711: 11700: 11699: 11688: 11685: 11682: 11679: 11675: 11672: 11669: 11666: 11662: 11659: 11656: 11653: 11647: 11644: 11641: 11638: 11633: 11629: 11626: 11623: 11620: 11617: 11614: 11611: 11608: 11605: 11602: 11596: 11593: 11590: 11585: 11574: 11563: 11560: 11557: 11554: 11551: 11548: 11545: 11542: 11539: 11533: 11530: 11527: 11522: 11518: 11515: 11512: 11509: 11506: 11501: 11498: 11494: 11490: 11487: 11484: 11481: 11475: 11472: 11469: 11466: 11461: 11432: 11429: 11426: 11422: 11418: 11415: 11412: 11409: 11405: 11402: 11393:The inclusion 11390: 11384: 11356: 11353: 11350: 11347: 11344: 11322: 11319: 11316: 11313: 11310: 11307: 11304: 11301: 11298: 11295: 11292: 11289: 11286: 11283: 11280: 11277: 11274: 11271: 11268: 11265: 11262: 11259: 11256: 11253: 11231: 11228: 11225: 11222: 11219: 11199: 11196: 11193: 11173: 11170: 11167: 11147: 11144: 11141: 11138: 11135: 11132: 11129: 11109: 11106: 11103: 11068: 11065: 11052: 11032: 11012: 10992: 10983:isomorphic to 10968: 10948: 10928: 10908: 10888: 10868: 10855:on the set of 10844: 10824: 10804: 10754: 10745:to each point 10734: 10710: 10707: 10704: 10701: 10686: 10685: 10665: 10645: 10621: 10610: 10590: 10570: 10559: 10547: 10519: 10495: 10492: 10472: 10437: 10417: 10402:disjoint union 10386: 10364: 10360: 10339: 10317: 10313: 10292: 10272: 10252: 10247: 10243: 10239: 10236: 10216: 10191: 10187: 10155: 10152: 10149: 10146: 10143: 10111: 10110: 10107: 10104: 10101: 10098: 10095: 10089: 10088: 10085: 10082: 10079: 10076: 10073: 10067: 10066: 10063: 10060: 10057: 10054: 10051: 10045: 10044: 10041: 10038: 10035: 10032: 10029: 10023: 10022: 10019: 10016: 10013: 10010: 10007: 10000: 9999: 9996: 9993: 9990: 9987: 9984: 9977: 9976: 9973: 9970: 9967: 9964: 9961: 9954: 9953: 9950: 9947: 9944: 9941: 9938: 9932: 9931: 9928: 9925: 9922: 9919: 9916: 9909: 9908: 9905: 9902: 9899: 9896: 9893: 9887: 9886: 9883: 9880: 9877: 9874: 9871: 9864: 9863: 9860: 9857: 9854: 9851: 9848: 9842: 9841: 9838: 9835: 9832: 9829: 9826: 9819: 9818: 9815: 9812: 9809: 9806: 9803: 9797: 9796: 9793: 9790: 9787: 9784: 9781: 9774: 9773: 9770: 9767: 9764: 9761: 9758: 9752: 9751: 9748: 9745: 9742: 9739: 9736: 9729: 9728: 9725: 9722: 9719: 9716: 9713: 9707: 9706: 9703: 9700: 9697: 9694: 9691: 9689:Small category 9685: 9684: 9681: 9678: 9675: 9672: 9669: 9663: 9662: 9659: 9656: 9653: 9650: 9647: 9641: 9640: 9635: 9630: 9625: 9620: 9615: 9606: 9603: 9598: 9582: 9579: 9571:fifteen puzzle 9555: 9552: 9550:of groupoids. 9540: 9539: 9528: 9523: 9519: 9515: 9512: 9507: 9503: 9499: 9496: 9493: 9490: 9485: 9481: 9477: 9472: 9468: 9464: 9461: 9436: 9432: 9428: 9423: 9419: 9415: 9410: 9406: 9402: 9397: 9393: 9370: 9366: 9345: 9336:composed with 9323: 9319: 9296: 9292: 9269: 9265: 9261: 9256: 9252: 9229: 9225: 9206: 9205: 9192: 9188: 9182: 9179: 9172: 9168: 9152: 9149: 9135: 9132: 9128: 9125: 9105: 9101: 9098: 9094: 9091: 9088: 9085: 9082: 9079: 9076: 9073: 9070: 9067: 9064: 9061: 9041: 9037: 9034: 9030: 9027: 9024: 9021: 9018: 9015: 9012: 9009: 9006: 9003: 9000: 8997: 8977: 8957: 8953: 8950: 8946: 8942: 8939: 8935: 8931: 8928: 8924: 8921: 8918: 8915: 8912: 8909: 8906: 8903: 8900: 8879: 8876: 8872: 8869: 8866: 8863: 8842: 8839: 8835: 8832: 8829: 8826: 8806: 8803: 8800: 8797: 8794: 8774: 8754: 8751: 8748: 8745: 8742: 8739: 8736: 8733: 8730: 8727: 8724: 8704: 8701: 8698: 8690: 8687: 8667: 8664: 8661: 8653: 8650: 8630: 8627: 8624: 8621: 8618: 8615: 8612: 8592: 8587: 8583: 8579: 8559: 8556: 8553: 8550: 8547: 8527: 8524: 8521: 8518: 8515: 8504: 8503: 8488: 8485: 8483: 8480: 8478: 8476: 8473: 8472: 8469: 8466: 8463: 8460: 8457: 8454: 8439: 8436: 8419: 8414: 8410: 8406: 8403: 8400: 8395: 8391: 8387: 8383: 8355: 8335: 8332: 8328: 8322: 8317: 8312: 8290: 8285: 8260: 8257: 8254: 8251: 8248: 8228: 8216: 8213: 8200: 8196: 8191: 8170: 8167: 8164: 8144: 8141: 8138: 8135: 8132: 8129: 8126: 8123: 8120: 8117: 8114: 8111: 8108: 8088: 8085: 8081: 8077: 8074: 8054: 8051: 8048: 8045: 8025: 8022: 8019: 8016: 7996: 7993: 7990: 7987: 7984: 7981: 7978: 7975: 7972: 7969: 7966: 7963: 7960: 7957: 7954: 7934: 7930: 7925: 7912: 7909: 7896: 7868: 7865: 7862: 7859: 7856: 7851: 7847: 7843: 7823: 7799: 7777: 7773: 7752: 7732: 7711: 7708: 7687: 7667: 7647: 7643: 7640: 7636: 7632: 7629: 7625: 7621: 7618: 7615: 7594: 7590: 7587: 7583: 7579: 7576: 7555: 7552: 7549: 7545: 7542: 7538: 7534: 7531: 7528: 7507: 7482: 7479: 7476: 7472: 7468: 7465: 7444: 7421: 7401: 7381: 7361: 7341: 7338: 7335: 7313: 7309: 7284: 7281: 7260: 7240: 7231:and for every 7220: 7216: 7213: 7209: 7206: 7203: 7200: 7180: 7160: 7135: 7132: 7111: 7107: 7104: 7101: 7097: 7093: 7090: 7086: 7063: 7032: 7008: 7005: 7002: 6999: 6979: 6976: 6973: 6970: 6967: 6947: 6927: 6904: 6901: 6898: 6895: 6875: 6872: 6869: 6866: 6863: 6860: 6857: 6854: 6851: 6848: 6845: 6842: 6839: 6836: 6833: 6830: 6827: 6807: 6804: 6801: 6781: 6778: 6775: 6755: 6752: 6749: 6746: 6743: 6740: 6737: 6734: 6731: 6711: 6708: 6705: 6702: 6699: 6696: 6693: 6690: 6670: 6667: 6664: 6661: 6658: 6655: 6652: 6648: 6645: 6642: 6621: 6618: 6615: 6612: 6609: 6605: 6602: 6586: 6585: 6573: 6555: 6543: 6540: 6537: 6534: 6514: 6494: 6474: 6454: 6430: 6410: 6390: 6379: 6367: 6331: 6311: 6296: 6293: 6277: 6274: 6267: 6263: 6259: 6254: 6250: 6245: 6241: 6238: 6235: 6205: 6200: 6197: 6192: 6187: 6182: 6177: 6170: 6167: 6160: 6157: 6154: 6151: 6119: 6115: 6085: 6081: 6077: 6075: 6072: 6068: 6065: 6061: 6057: 6056: 6053: 6050: 6047: 6044: 6043: 6038: 6035: 6031: 6027: 6025: 6022: 6018: 6015: 6012: 6008: 6004: 6003: 5980: 5958: 5952: 5929: 5904: 5898: 5888: 5882: 5875: 5871: 5864: 5858: 5851: 5845: 5839: 5833: 5828: 5822: 5791: 5788: 5784: 5780: 5775: 5771: 5767: 5764: 5732: 5728: 5724: 5719: 5716: 5712: 5708: 5703: 5699: 5695: 5692: 5689: 5688: 5683: 5679: 5675: 5670: 5667: 5663: 5659: 5654: 5650: 5646: 5643: 5640: 5639: 5610: 5607: 5603: 5599: 5596: 5591: 5585: 5553: 5549: 5545: 5542: 5537: 5531: 5505: 5483: 5480: 5477: 5473: 5467: 5463: 5459: 5456: 5451: 5427: 5424: 5423: 5422: 5417:introduced by 5399: 5396:banal groupoid 5379: 5375: 5371: 5366: 5362: 5337: 5333: 5327: 5323: 5317: 5313: 5309: 5304: 5300: 5277: 5273: 5248: 5226: 5222: 5218: 5213: 5209: 5205: 5200: 5196: 5190: 5186: 5180: 5176: 5144: 5141: 5136: 5132: 5128: 5125: 5112: 5109: 5108: 5107: 5095: 5092: 5089: 5067: 5063: 5059: 5056: 5053: 5050: 5047: 5027: 5003: 4992: 4980: 4977: 4974: 4954: 4930: 4910: 4895: 4894: 4882: 4879: 4876: 4873: 4870: 4850: 4847: 4844: 4841: 4838: 4818: 4815: 4812: 4809: 4806: 4795: 4783: 4780: 4777: 4757: 4754: 4751: 4748: 4745: 4725: 4705: 4685: 4665: 4645: 4634: 4622: 4598: 4571: 4559: 4556: 4543: 4523: 4503: 4500: 4497: 4492: 4488: 4467: 4464: 4461: 4458: 4455: 4450: 4446: 4425: 4422: 4419: 4399: 4396: 4393: 4390: 4387: 4382: 4378: 4342: 4322: 4319: 4316: 4311: 4307: 4283: 4263: 4260: 4257: 4254: 4251: 4246: 4242: 4221: 4218: 4215: 4210: 4206: 4185: 4182: 4179: 4174: 4170: 4149: 4117: 4097: 4066: 4046: 4026: 4004: 4000: 3979: 3961:Main article: 3958: 3955: 3953: 3950: 3937: 3917: 3890: 3862: 3859: 3856: 3853: 3850: 3847: 3827: 3807: 3787: 3767: 3764: 3761: 3758: 3738: 3718: 3698: 3678: 3654: 3651: 3648: 3645: 3642: 3612: 3609: 3606: 3603: 3600: 3580: 3577: 3574: 3571: 3568: 3565: 3562: 3559: 3556: 3553: 3550: 3547: 3544: 3524: 3521: 3518: 3482: 3479: 3476: 3453: 3450: 3447: 3431: 3428: 3398: 3395: 3391: 3387: 3384: 3381: 3378: 3358: 3338: 3318: 3294: 3291: 3288: 3285: 3265: 3262: 3259: 3256: 3236: 3216: 3196: 3193: 3190: 3187: 3184: 3181: 3176: 3173: 3169: 3165: 3162: 3142: 3139: 3136: 3123:of a groupoid 3073: 3070: 3040: 3036: 3011: 3008: 3005: 3002: 2999: 2994: 2990: 2986: 2983: 2980: 2977: 2974: 2969: 2965: 2961: 2958: 2955: 2950: 2946: 2942: 2922: 2917: 2913: 2909: 2906: 2903: 2900: 2895: 2891: 2868: 2864: 2860: 2857: 2854: 2851: 2846: 2842: 2838: 2818: 2815: 2812: 2809: 2806: 2803: 2800: 2797: 2794: 2791: 2788: 2785: 2782: 2762: 2759: 2756: 2753: 2750: 2747: 2744: 2741: 2738: 2718: 2715: 2712: 2709: 2706: 2703: 2700: 2697: 2688:exists. Given 2675: 2671: 2667: 2664: 2661: 2656: 2652: 2627: 2624: 2621: 2618: 2615: 2612: 2587: 2583: 2579: 2576: 2556: 2553: 2550: 2528: 2524: 2495: 2489: 2485: 2482: 2477: 2473: 2452: 2440: 2409: 2406: 2403: 2383: 2355: 2352: 2342:(and hence to 2339: 2323: 2320: 2317: 2295: 2292: 2289: 2286: 2264: 2261: 2258: 2232: 2229: 2226: 2204: 2201: 2198: 2195: 2163:disjoint union 2154: 2151: 2129: 2125: 2121: 2116: 2112: 2089: 2085: 2062: 2058: 2054: 2049: 2045: 2012:is called the 1992:is called the 1970: 1969: 1968: 1967: 1953: 1948: 1945: 1940: 1937: 1932: 1929: 1925: 1902: 1897: 1894: 1889: 1884: 1881: 1877: 1873: 1863: 1851: 1848: 1845: 1842: 1839: 1836: 1833: 1830: 1827: 1824: 1821: 1811: 1799: 1796: 1793: 1785: 1780: 1777: 1755: 1752: 1747: 1742: 1739: 1731: 1671: 1668: 1664: 1660: 1657: 1654: 1651: 1648: 1645: 1642: 1639: 1636: 1633: 1630: 1627: 1624: 1621: 1618: 1615: 1612: 1608: 1605: 1602: 1582: 1570: 1567: 1564: 1561: 1558: 1555: 1552: 1549: 1546: 1543: 1540: 1537: 1534: 1531: 1528: 1525: 1522: 1519: 1516: 1513: 1510: 1507: 1504: 1501: 1498: 1495: 1492: 1489: 1486: 1483: 1478: 1475: 1472: 1469: 1466: 1461: 1458: 1455: 1452: 1424: 1398: 1393: 1390: 1373: 1297: 1279:small category 1274: 1271: 1270: 1269: 1255: 1252: 1248: 1244: 1239: 1236: 1232: 1228: 1223: 1220: 1216: 1212: 1209: 1206: 1203: 1183: 1180: 1177: 1166: 1154: 1151: 1146: 1143: 1139: 1133: 1130: 1126: 1122: 1108: 1107: 1095: 1092: 1089: 1086: 1083: 1080: 1074: 1071: 1067: 1045: 1042: 1036: 1033: 1029: 1024: 1021: 1018: 1015: 995: 992: 989: 973: 958: 955: 951: 946: 943: 923: 920: 915: 912: 908: 891: 879: 876: 873: 853: 850: 847: 827: 824: 821: 818: 815: 812: 809: 789: 786: 783: 780: 777: 774: 771: 751: 748: 745: 742: 739: 736: 733: 713: 710: 707: 704: 701: 698: 695: 675: 672: 669: 649: 646: 643: 614: 594: 574: 554: 534: 511: 491: 467: 464: 461: 458: 455: 452: 449: 426: 423: 420: 417: 414: 409: 406: 379: 363: 360: 358: 355: 331: 330: 318: 298: 266: 263: 260: 257: 254: 251: 248: 228: 225: 222: 219: 216: 213: 210: 207: 204: 201: 198: 195: 192: 189: 186: 183: 180: 160: 157: 154: 151: 148: 128: 125: 122: 119: 116: 97: 96: 72: 67:replacing the 15: 9: 6: 4: 3: 2: 13490: 13479: 13476: 13474: 13471: 13469: 13466: 13465: 13463: 13454: 13452: 13447: 13444: 13442: 13440: 13435: 13432: 13429: 13428:Contemp. Math 13425: 13421: 13418: 13414: 13411: 13407: 13403: 13400: 13399: 13394: 13391: 13387: 13383: 13379: 13375: 13371: 13367: 13364: 13360: 13357: 13353: 13349: 13345: 13344: 13339: 13335: 13332: 13329: 13325: 13321: 13318: 13315: 13314: 13309: 13305: 13302: 13299: 13295: 13294:Galois theory 13291: 13290: 13285: 13281: 13277: 13273: 13269: 13265: 13261: 13256: 13251: 13247: 13243: 13238: 13235: 13229: 13225: 13220: 13217: 13214:and in group 13213: 13209: 13205: 13202: 13201: 13196: 13193: 13190: 13186: 13182: 13179: 13175: 13171: 13167: 13163: 13159: 13154: 13153: 13140: 13136: 13132: 13125: 13116: 13111: 13104: 13089: 13085: 13080: 13074: 13067: 13063: 13060: 13055: 13048: 13044: 13041: 13036: 13029: 13023: 13016: 13011: 13000: 12997:. p. 9. 12993: 12987: 12978: 12973: 12966: 12964: 12949: 12945: 12939: 12932: 12931:see chapter 2 12928: 12927:0-226-51183-9 12924: 12920: 12914: 12907: 12903: 12899: 12895: 12891: 12887: 12883: 12879: 12875: 12871: 12867: 12863: 12859: 12855: 12851: 12847: 12843: 12839: 12836:. Therefore 12835: 12831: 12827: 12823: 12819: 12815: 12811: 12807: 12803: 12799: 12795: 12791: 12787: 12783: 12779: 12775: 12771: 12767: 12763: 12759: 12753: 12749: 12745: 12741: 12737: 12733: 12729: 12725: 12721: 12717: 12713: 12709: 12705: 12701: 12697: 12693: 12689: 12685: 12679: 12672: 12670:1-4020-0609-8 12666: 12662: 12658: 12657: 12652: 12646: 12638: 12637: 12629: 12627: 12622: 12612: 12609: 12606: 12602: 12599: 12597: 12594: 12592: 12589: 12587: 12584: 12582: 12579: 12578: 12572: 12570: 12566: 12562: 12558: 12554: 12549: 12547: 12543: 12539: 12535: 12534:Lie groupoids 12531: 12527: 12523: 12513: 12509: 12492: 12482: 12462: 12455: 12451: 12445: 12425: 12415: 12402: 12388: 12378: 12361: 12351: 12331: 12324: 12320: 12314: 12286: 12279: 12275: 12269: 12249: 12239: 12226: 12222: 12207: 12190: 12178: 12175: 12166: 12162: 12147: 12130: 12118: 12115: 12112: 12109: 12100: 12099:with functors 12084: 12072: 12067: 12050: 12046: 12040: 12030: 12013: 12005: 12001: 11971: 11965: 11962: 11959: 11953: 11933: 11929: 11923: 11920: 11914: 11906: 11902: 11895: 11875: 11867: 11866: 11865: 11862: 11860: 11856: 11809: 11806: 11799: 11798:nerve functor 11792: 11786: 11769: 11744: 11723: 11720: 11716: 11709: 11680: 11660: 11657: 11651: 11631: 11627: 11621: 11618: 11612: 11606: 11600: 11583: 11575: 11555: 11549: 11546: 11543: 11537: 11520: 11516: 11510: 11507: 11499: 11496: 11492: 11485: 11479: 11459: 11451: 11450: 11449: 11447: 11403: 11400: 11389: 11383: 11381: 11377: 11373: 11368: 11354: 11351: 11348: 11345: 11342: 11333: 11320: 11311: 11308: 11305: 11299: 11296: 11293: 11290: 11284: 11281: 11278: 11272: 11269: 11266: 11263: 11260: 11254: 11251: 11243: 11229: 11226: 11223: 11220: 11217: 11197: 11194: 11191: 11171: 11165: 11142: 11139: 11136: 11130: 11127: 11107: 11104: 11101: 11093: 11089: 11086:The category 11084: 11082: 11078: 11074: 11064: 11050: 11030: 11010: 10990: 10982: 10981:vertex groups 10966: 10946: 10926: 10906: 10886: 10866: 10858: 10842: 10822: 10802: 10794: 10790: 10786: 10782: 10777: 10775: 10774:vector spaces 10771: 10766: 10752: 10732: 10724: 10705: 10699: 10691: 10683: 10679: 10663: 10643: 10636:of the group 10635: 10619: 10611: 10608: 10604: 10603:trivial group 10588: 10568: 10560: 10545: 10537: 10533: 10517: 10509: 10508: 10507: 10506:For example, 10493: 10490: 10470: 10462: 10458: 10454: 10449: 10435: 10415: 10407: 10403: 10398: 10384: 10362: 10358: 10337: 10315: 10311: 10290: 10270: 10245: 10241: 10234: 10214: 10207: 10189: 10185: 10176: 10171: 10169: 10150: 10147: 10144: 10132: 10130: 10126: 10122: 10118: 10108: 10105: 10102: 10099: 10096: 10094: 10093:Abelian group 10091: 10090: 10086: 10083: 10080: 10077: 10074: 10072: 10069: 10068: 10064: 10061: 10058: 10055: 10052: 10050: 10047: 10046: 10042: 10039: 10036: 10033: 10030: 10028: 10025: 10024: 10020: 10017: 10014: 10011: 10008: 10006: 10002: 10001: 9997: 9994: 9991: 9988: 9985: 9983: 9979: 9978: 9974: 9971: 9968: 9965: 9962: 9960: 9956: 9955: 9951: 9948: 9945: 9942: 9939: 9937: 9934: 9933: 9929: 9926: 9923: 9920: 9917: 9915: 9911: 9910: 9906: 9903: 9900: 9897: 9894: 9892: 9889: 9888: 9884: 9881: 9878: 9875: 9872: 9870: 9866: 9865: 9861: 9858: 9855: 9852: 9849: 9847: 9844: 9843: 9839: 9836: 9833: 9830: 9827: 9825: 9821: 9820: 9816: 9813: 9810: 9807: 9804: 9802: 9799: 9798: 9794: 9791: 9788: 9785: 9782: 9780: 9776: 9775: 9771: 9768: 9765: 9762: 9759: 9757: 9754: 9753: 9749: 9746: 9743: 9740: 9737: 9735: 9731: 9730: 9726: 9723: 9720: 9717: 9714: 9712: 9709: 9708: 9704: 9701: 9698: 9695: 9692: 9690: 9687: 9686: 9682: 9679: 9676: 9673: 9670: 9668: 9665: 9664: 9660: 9657: 9654: 9651: 9648: 9646: 9645:Partial magma 9643: 9642: 9639: 9636: 9634: 9631: 9629: 9626: 9624: 9621: 9619: 9616: 9614: 9613: 9602: 9596: 9595:Mathieu group 9592: 9588: 9578: 9576: 9575:groupoid acts 9572: 9567: 9565: 9561: 9551: 9549: 9545: 9526: 9521: 9517: 9513: 9505: 9501: 9494: 9491: 9483: 9479: 9475: 9470: 9466: 9459: 9452: 9451: 9450: 9434: 9430: 9426: 9421: 9417: 9413: 9408: 9404: 9400: 9395: 9391: 9368: 9364: 9343: 9321: 9317: 9294: 9290: 9267: 9263: 9259: 9254: 9250: 9227: 9223: 9214: 9211: 9190: 9186: 9180: 9170: 9166: 9158: 9157: 9156: 9148: 9133: 9130: 9126: 9123: 9099: 9096: 9089: 9080: 9074: 9071: 9065: 9059: 9035: 9032: 9025: 9016: 9010: 9007: 9001: 8995: 8975: 8951: 8948: 8944: 8940: 8937: 8933: 8929: 8926: 8919: 8913: 8910: 8907: 8904: 8901: 8877: 8874: 8867: 8864: 8861: 8840: 8837: 8830: 8827: 8824: 8801: 8798: 8795: 8772: 8749: 8743: 8734: 8728: 8725: 8722: 8699: 8688: 8685: 8662: 8651: 8648: 8625: 8622: 8619: 8616: 8613: 8590: 8585: 8581: 8577: 8557: 8551: 8548: 8545: 8525: 8519: 8516: 8513: 8486: 8479: 8474: 8458: 8445: 8444: 8443: 8435: 8433: 8412: 8408: 8404: 8401: 8398: 8393: 8389: 8373: 8369: 8353: 8330: 8326: 8320: 8288: 8274: 8255: 8249: 8246: 8239:that maps to 8226: 8212: 8198: 8194: 8165: 8136: 8130: 8124: 8118: 8112: 8083: 8079: 8075: 8052: 8049: 8043: 8023: 8017: 8014: 7991: 7988: 7985: 7982: 7979: 7976: 7973: 7970: 7967: 7964: 7961: 7955: 7952: 7932: 7928: 7908: 7894: 7886: 7882: 7863: 7860: 7857: 7854: 7849: 7845: 7821: 7813: 7797: 7775: 7771: 7750: 7730: 7685: 7665: 7634: 7566:and so sends 7550: 7547: 7505: 7497: 7442: 7435: 7419: 7399: 7379: 7359: 7339: 7333: 7311: 7307: 7299: 7258: 7238: 7204: 7201: 7198: 7178: 7158: 7151:to the group 7150: 7095: 7077: 7074:-sets is the 7061: 7052: 7050: 7046: 7030: 7022: 7006: 7003: 7000: 6997: 6974: 6971: 6968: 6945: 6925: 6916: 6902: 6899: 6896: 6893: 6870: 6867: 6864: 6861: 6855: 6849: 6846: 6843: 6834: 6831: 6828: 6805: 6802: 6799: 6779: 6776: 6773: 6753: 6750: 6747: 6741: 6738: 6735: 6729: 6709: 6706: 6700: 6697: 6694: 6688: 6668: 6665: 6662: 6659: 6653: 6619: 6616: 6610: 6591: 6571: 6563: 6559: 6556: 6541: 6538: 6535: 6532: 6512: 6492: 6472: 6452: 6444: 6428: 6408: 6388: 6380: 6365: 6357: 6356: 6355: 6353: 6349: 6345: 6329: 6309: 6302: 6292: 6288: 6275: 6265: 6261: 6257: 6252: 6248: 6243: 6239: 6236: 6233: 6224: 6222: 6216: 6198: 6195: 6190: 6175: 6165: 6158: 6152: 6140: 6139: 6135: 6117: 6113: 6102: 6083: 6079: 6066: 6063: 6059: 6036: 6033: 6029: 6016: 6013: 6010: 6006: 5992: 5978: 5956: 5927: 5917: 5902: 5886: 5873: 5869: 5862: 5849: 5843: 5831: 5826: 5808: 5804: 5789: 5786: 5782: 5773: 5769: 5765: 5762: 5753: 5749: 5730: 5726: 5717: 5714: 5710: 5706: 5701: 5697: 5693: 5690: 5681: 5677: 5668: 5665: 5661: 5657: 5652: 5648: 5644: 5641: 5628: 5624: 5608: 5605: 5601: 5597: 5594: 5589: 5571: 5567: 5551: 5547: 5543: 5540: 5535: 5517: 5503: 5481: 5478: 5475: 5465: 5461: 5454: 5437: 5433: 5426:Čech groupoid 5420: 5419:Martin Hyland 5416: 5412: 5408: 5407:semidecidable 5404: 5400: 5397: 5392: 5377: 5373: 5364: 5360: 5335: 5331: 5325: 5321: 5315: 5311: 5307: 5302: 5298: 5275: 5271: 5262: 5246: 5224: 5220: 5216: 5211: 5207: 5203: 5198: 5194: 5188: 5184: 5178: 5174: 5165: 5161: 5158: 5142: 5134: 5130: 5126: 5123: 5115: 5114: 5106:is an orbit). 5090: 5065: 5061: 5057: 5054: 5051: 5048: 5045: 5025: 5017: 5016:unit groupoid 5001: 4993: 4978: 4975: 4972: 4952: 4944: 4943:pair groupoid 4928: 4908: 4900: 4899: 4898: 4877: 4874: 4871: 4845: 4842: 4839: 4813: 4810: 4807: 4796: 4781: 4778: 4775: 4752: 4749: 4746: 4723: 4703: 4683: 4663: 4643: 4635: 4620: 4612: 4611: 4610: 4596: 4589: 4585: 4569: 4555: 4541: 4521: 4498: 4490: 4486: 4462: 4459: 4456: 4448: 4444: 4423: 4420: 4417: 4394: 4391: 4388: 4380: 4376: 4366: 4364: 4360: 4356: 4340: 4317: 4309: 4305: 4295: 4281: 4258: 4255: 4252: 4244: 4240: 4216: 4208: 4180: 4172: 4168: 4147: 4139: 4135: 4131: 4115: 4095: 4087: 4084: 4080: 4064: 4057:to the point 4044: 4024: 4002: 3998: 3977: 3970: 3964: 3949: 3935: 3915: 3906: 3904: 3903:covering maps 3888: 3880: 3876: 3860: 3857: 3851: 3845: 3825: 3805: 3785: 3762: 3756: 3736: 3716: 3696: 3676: 3668: 3652: 3646: 3643: 3640: 3631: 3629: 3624: 3610: 3607: 3604: 3601: 3598: 3575: 3572: 3569: 3563: 3560: 3554: 3551: 3548: 3542: 3522: 3519: 3516: 3508: 3504: 3500: 3496: 3480: 3474: 3467: 3451: 3445: 3437: 3427: 3425: 3421: 3417: 3412: 3396: 3393: 3389: 3385: 3382: 3376: 3356: 3336: 3316: 3308: 3289: 3283: 3260: 3254: 3234: 3214: 3194: 3191: 3182: 3174: 3171: 3167: 3160: 3140: 3137: 3134: 3126: 3122: 3117: 3115: 3111: 3107: 3103: 3099: 3095: 3091: 3090:object groups 3087: 3083: 3082:vertex groups 3079: 3069: 3067: 3062: 3060: 3056: 3038: 3034: 3025: 3009: 3006: 3003: 3000: 2992: 2988: 2984: 2981: 2975: 2967: 2963: 2959: 2956: 2953: 2948: 2944: 2915: 2911: 2907: 2904: 2898: 2893: 2889: 2866: 2862: 2858: 2852: 2849: 2844: 2840: 2813: 2810: 2807: 2801: 2798: 2795: 2792: 2789: 2786: 2783: 2780: 2760: 2754: 2751: 2748: 2742: 2739: 2736: 2713: 2710: 2707: 2701: 2698: 2695: 2673: 2669: 2665: 2662: 2659: 2654: 2650: 2641: 2622: 2619: 2616: 2610: 2601: 2585: 2581: 2577: 2574: 2554: 2551: 2548: 2526: 2522: 2513: 2509: 2493: 2487: 2483: 2480: 2475: 2471: 2450: 2439: 2435: 2431: 2427: 2423: 2407: 2404: 2401: 2381: 2373: 2368: 2338: 2247: 2184: 2180: 2176: 2172: 2168: 2164: 2160: 2150: 2148: 2143: 2127: 2123: 2114: 2110: 2087: 2083: 2060: 2056: 2047: 2043: 2034: 2029: 2027: 2023: 2019: 2015: 2011: 2007: 2003: 1999: 1995: 1991: 1987: 1983: 1979: 1975: 1951: 1938: 1935: 1930: 1927: 1923: 1900: 1887: 1882: 1879: 1875: 1871: 1864: 1846: 1843: 1837: 1834: 1831: 1825: 1822: 1812: 1797: 1794: 1791: 1783: 1753: 1750: 1745: 1729: 1722: 1721: 1719: 1715: 1711: 1707: 1703: 1699: 1695: 1691: 1687: 1669: 1666: 1662: 1655: 1652: 1646: 1643: 1640: 1634: 1625: 1622: 1619: 1613: 1610: 1591: 1587: 1583: 1568: 1565: 1556: 1553: 1550: 1544: 1538: 1535: 1532: 1526: 1517: 1514: 1511: 1505: 1502: 1496: 1493: 1490: 1484: 1481: 1476: 1473: 1470: 1467: 1464: 1441: 1437: 1433: 1429: 1425: 1422: 1418: 1414: 1396: 1378: 1374: 1371: 1367: 1363: 1359: 1355: 1351: 1347: 1343: 1339: 1335: 1331: 1327: 1323: 1319: 1315: 1311: 1307: 1306: 1305: 1303: 1296: 1292: 1288: 1284: 1280: 1253: 1250: 1246: 1242: 1237: 1234: 1230: 1226: 1221: 1218: 1210: 1207: 1204: 1181: 1178: 1175: 1167: 1152: 1149: 1144: 1141: 1131: 1128: 1124: 1113: 1112: 1111: 1093: 1090: 1087: 1084: 1081: 1078: 1072: 1069: 1065: 1043: 1040: 1034: 1031: 1027: 1022: 1019: 1016: 1013: 993: 990: 987: 979: 978: 974: 956: 953: 949: 944: 941: 921: 918: 913: 910: 906: 897: 896: 892: 877: 874: 871: 851: 848: 845: 822: 819: 816: 810: 807: 787: 784: 778: 775: 772: 746: 743: 740: 734: 731: 711: 708: 702: 699: 696: 673: 670: 667: 647: 644: 641: 633: 632: 631:Associativity 628: 627: 626: 612: 592: 572: 552: 532: 523: 509: 489: 481: 465: 459: 456: 453: 450: 447: 440: 424: 421: 415: 412: 407: 404: 393: 377: 369: 354: 352: 348: 344: 340: 336: 316: 308: 304: 303: 299: 296: 292: 288: 287: 283: 282: 281: 278: 264: 258: 255: 252: 249: 246: 226: 220: 211: 205: 193: 187: 181: 178: 158: 152: 149: 146: 126: 120: 117: 114: 106: 102: 94: 90: 86: 82: 78: 77: 73: 70: 66: 62: 61: 57: 56: 55: 53: 49: 48:virtual group 45: 41: 37: 33: 29: 22: 13450: 13438: 13427: 13423: 13396: 13373: 13369: 13341: 13330: 13327: 13311: 13308:A. Weinstein 13287: 13255:math/9903129 13245: 13241: 13223: 13198: 13191: 13188: 13161: 13157: 13138: 13134: 13124: 13103: 13091:. Retrieved 13087: 13073: 13054: 13035: 13022: 13010: 12986: 12951:. Retrieved 12947: 12938: 12930: 12918: 12913: 12905: 12901: 12897: 12893: 12889: 12885: 12881: 12877: 12873: 12869: 12865: 12861: 12857: 12853: 12849: 12845: 12841: 12837: 12833: 12829: 12825: 12821: 12817: 12813: 12809: 12805: 12801: 12797: 12793: 12789: 12785: 12781: 12777: 12773: 12769: 12765: 12761: 12757: 12751: 12747: 12743: 12739: 12735: 12731: 12727: 12723: 12719: 12715: 12711: 12707: 12703: 12699: 12695: 12691: 12687: 12683: 12678: 12654: 12645: 12639:. p. 6. 12635: 12550: 12546:Lie algebras 12519: 12511: 12404: 12380: 12228: 12224: 12168: 12164: 12102: 12048: 12044: 12042: 11992: 11863: 11854: 11795: 11789:Relation to 11741:denotes the 11701: 11392: 11386:Relation to 11371: 11369: 11334: 11244: 11087: 11085: 11080: 11076: 11072: 11070: 10778: 10770:endomorphism 10767: 10687: 10450: 10405: 10399: 10172: 10133: 10121:group theory 10114: 9980:Associative 9957:Commutative 9912:Commutative 9869:unital magma 9867:Commutative 9846:Unital magma 9822:Commutative 9777:Commutative 9733: 9732:Commutative 9710: 9667:Semigroupoid 9633:Cancellation 9584: 9568: 9560:Rubik's Cube 9557: 9541: 9207: 9154: 8505: 8441: 8273:affine space 8218: 7914: 7885:permutations 7296:) induces a 7053: 6917: 6589: 6587: 6354:as follows: 6352:group action 6347: 6343: 6298: 6295:Group action 6290: 6226: 6218: 6142: 6104: 5994: 5919: 5810: 5806: 5755: 5751: 5630: 5626: 5573: 5569: 5519: 5439: 5410: 5402: 5395: 5352: 5155:is a smooth 5018:, which has 5015: 4942: 4896: 4561: 4367: 4296: 3966: 3907: 3818:starting at 3749:starting at 3632: 3627: 3625: 3498: 3494: 3435: 3433: 3415: 3413: 3124: 3120: 3118: 3113: 3109: 3105: 3101: 3097: 3093: 3089: 3085: 3081: 3077: 3075: 3063: 3058: 3054: 3023: 2639: 2602: 2511: 2507: 2437: 2433: 2429: 2425: 2421: 2371: 2369: 2336: 2245: 2182: 2178: 2174: 2170: 2166: 2158: 2156: 2144: 2032: 2030: 2025: 2021: 2017: 2013: 2009: 2005: 2001: 1997: 1993: 1989: 1985: 1981: 1977: 1973: 1971: 1717: 1713: 1709: 1705: 1701: 1697: 1693: 1689: 1685: 1589: 1585: 1435: 1431: 1427: 1420: 1416: 1412: 1376: 1369: 1365: 1361: 1357: 1353: 1349: 1345: 1341: 1337: 1333: 1329: 1325: 1321: 1317: 1313: 1309: 1301: 1294: 1290: 1276: 1109: 975: 893: 629: 524: 365: 332: 300: 284: 279: 98: 93:group theory 88: 74: 58: 47: 43: 42:(less often 39: 25: 13410:Postscript. 13363:orbit space 13088:ncatlab.org 12948:ncatlab.org 12611:R-algebroid 11859:Kan complex 10919:from, say, 10815:of a group 10682:isomorphism 10303:other than 9638:Commutative 9623:Associative 7790:of the set 7605:to the set 6558:Composition 6134:∞-groupoids 5971:represents 4736:(denote by 4134:associative 4017:be the set 3905:of spaces. 3466:subcategory 3436:subgroupoid 3127:at a point 2603:Now define 2307:and to be 2031:A groupoid 1592:a function 1344:; we write 1287:isomorphism 357:Definitions 335:geometrical 309:of a group 28:mathematics 13462:Categories 13338:"Groupoid" 13216:cohomology 13150:References 13093:2017-10-31 12953:2017-09-17 12917:J.P. May, 12581:∞-groupoid 12542:Lie groups 12047:. Because 11380:cocomplete 10781:fibrations 10457:isomorphic 10453:equivalent 10005:quasigroup 9982:quasigroup 9824:quasigroup 9801:Quasigroup 9449:, we have 7911:Finite set 7392:defines a 7149:isomorphic 7049:transitive 6525:such that 6138:k-cocycles 5430:See also: 5411:PER models 5160:submersion 5157:surjective 4534:. The set 4359:equivalent 4160:, denoted 4083:continuous 3838:such that 3591:for every 3416:transitive 3307:isomorphic 2642:such that 2506:. Denote 2020:, written 2000:, written 239:, so that 13348:EMS Press 13272:0021-8693 13206:—, 13178:119597988 13115:1003.3820 12977:0803.1529 12663:, 2001 , 12661:EMS Press 12493:∙ 12488:→ 12483:∙ 12476:↓ 12470:↓ 12463:∙ 12446:∙ 12439:↓ 12433:↓ 12426:∙ 12421:→ 12416:∙ 12362:∙ 12357:→ 12352:∙ 12345:↓ 12339:↓ 12332:∙ 12315:∙ 12287:∙ 12270:∙ 12263:↓ 12257:↓ 12250:∙ 12245:→ 12240:∙ 12196:→ 12136:→ 12002:π 11954:⁡ 11930:≅ 11903:π 11896:⁡ 11827:→ 11721:− 11652:⁡ 11628:≅ 11601:⁡ 11538:⁡ 11517:≅ 11497:− 11480:⁡ 11421:→ 11300:⁡ 11285:⁡ 11279:≅ 11264:× 11255:⁡ 11169:→ 11131:⁡ 11075:, or the 10676:for each 10605:for each 10589:∼ 10455:(but not 10428:and sets 10109:Required 10087:Unneeded 10065:Required 10043:Unneeded 10021:Required 9998:Unneeded 9975:Required 9959:semigroup 9952:Unneeded 9936:Semigroup 9930:Required 9907:Unneeded 9885:Required 9862:Unneeded 9840:Required 9817:Unneeded 9795:Required 9772:Unneeded 9750:Required 9727:Unneeded 9705:Unneeded 9683:Unneeded 9661:Unneeded 9427:⊕ 9414:∈ 9260:⊕ 9178:→ 9131:ϕ 9124:ϕ 9087:→ 9066:β 9023:→ 9002:α 8938:ϕ 8908:ϕ 8871:→ 8862:β 8834:→ 8825:α 8802:β 8796:α 8741:→ 8723:ϕ 8689:∈ 8652:∈ 8620:ϕ 8582:× 8555:→ 8523:→ 8482:→ 8468:↓ 8402:… 8368:orbifolds 8050:− 8047:↦ 8021:↦ 8015:− 7971:− 7962:− 7861:∈ 7855:∣ 7551:− 7471:→ 7337:→ 7298:bijection 6803:⋊ 6777:⋉ 6666:× 6443:morphisms 6273:→ 6258:⋯ 6240:∐ 6234:σ 6199:_ 6169:ˇ 6159:∈ 6153:σ 6074:→ 6052:↓ 6046:↓ 6024:→ 5874:× 5870:⋯ 5850:× 5779:→ 5763:ε 5723:→ 5698:ϕ 5674:→ 5649:ϕ 5598:∐ 5544:∐ 5479:∈ 5370:⇉ 5322:× 5217:× 5204:⊂ 5185:× 5140:→ 4976:× 4779:∼ 4597:∼ 4487:π 4445:π 4421:⊂ 4377:π 4306:π 4241:π 4205:Π 4169:π 4130:homotopic 3948:on sets. 3667:fibration 3650:→ 3608:∈ 3501:if it is 3478:⇉ 3449:⇉ 3420:connected 3394:− 3380:→ 3192:⊆ 3172:− 3138:∈ 3108:), where 3007:∗ 2985:∗ 2976:∗ 2960:∗ 2954:∗ 2908:∗ 2899:∗ 2859:∗ 2850:∗ 2799:∈ 2793:∗ 2740:∈ 2699:∈ 2666:∗ 2660:∗ 2578:∈ 2552:∈ 2494:∼ 2451:∼ 2405:∼ 2382:∼ 2120:→ 2053:⇉ 1928:− 1880:− 1667:− 1659:↦ 1632:→ 1563:↦ 1524:→ 1503:× 1330:morphisms 1293:is a set 1251:− 1243:∗ 1235:− 1219:− 1208:∗ 1179:∗ 1142:− 1129:− 1085:∗ 1079:∗ 1070:− 1032:− 1023:∗ 1017:∗ 991:∗ 954:− 945:∗ 919:∗ 911:− 875:∗ 849:∗ 820:∗ 811:∗ 785:∗ 776:∗ 744:∗ 735:∗ 709:∗ 700:∗ 671:∗ 645:∗ 533:∗ 510:∗ 463:⇀ 457:× 448:∗ 419:→ 405:− 362:Algebraic 339:manifolds 262:→ 250:∘ 224:→ 218:→ 209:→ 200:→ 191:→ 179:∘ 156:→ 124:→ 13419:" (2002) 13333:: 305-64 13296:lead to 13280:14622598 13062:Archived 13043:Archived 12999:Archived 12575:See also 12522:topology 12452:→ 12321:→ 12276:→ 11376:complete 10959:, where 10723:topology 10612:The set 10561:The set 10534:of each 10461:multiset 10106:Required 10103:Required 10100:Required 10097:Required 10084:Required 10081:Required 10078:Required 10075:Required 10062:Unneeded 10059:Required 10056:Required 10053:Required 10040:Unneeded 10037:Required 10034:Required 10031:Required 10018:Required 10015:Unneeded 10012:Required 10009:Required 9995:Required 9992:Unneeded 9989:Required 9986:Required 9972:Unneeded 9969:Unneeded 9966:Required 9963:Required 9949:Unneeded 9946:Unneeded 9943:Required 9940:Required 9927:Required 9924:Required 9921:Unneeded 9918:Required 9904:Required 9901:Required 9898:Unneeded 9895:Required 9882:Unneeded 9879:Required 9876:Unneeded 9873:Required 9859:Unneeded 9856:Required 9853:Unneeded 9850:Required 9837:Required 9834:Unneeded 9831:Unneeded 9828:Required 9814:Required 9811:Unneeded 9808:Unneeded 9805:Required 9792:Unneeded 9789:Unneeded 9786:Unneeded 9783:Required 9769:Unneeded 9766:Unneeded 9763:Unneeded 9760:Required 9747:Required 9744:Required 9741:Required 9738:Unneeded 9734:Groupoid 9724:Required 9721:Required 9718:Required 9715:Unneeded 9711:Groupoid 9702:Unneeded 9699:Required 9696:Required 9693:Unneeded 9680:Unneeded 9677:Unneeded 9674:Required 9671:Unneeded 9658:Unneeded 9655:Unneeded 9652:Unneeded 9649:Unneeded 9628:Identity 9548:presheaf 9210:concrete 9134:′ 9116:and the 9100:′ 9036:′ 8952:′ 8941:′ 8930:′ 8878:′ 8841:′ 8641:, where 7881:subgroup 7455: : 7326: : 7122:, where 5111:Examples 3967:Given a 3957:Topology 3952:Examples 3026:is then 2185:). Then 2075:, where 1712: : 1700: : 1688: : 1440:function 1348: : 1283:morphism 977:Identity 81:morphism 76:Category 40:groupoid 13448:at the 13436:at the 13350:, 2001 13141:: 1–31. 12586:2-group 12571:, etc. 11853:embeds 11446:adjoint 10690:natural 10175:natural 10125:functor 9618:Closure 9554:Puzzles 8211:on it. 7494:is the 6299:If the 5920:as the 5166:, then 3066:classes 2463:, i.e. 2161:be the 2008:), and 1988:) then 1336:) from 1302:objects 895:Inverse 390:with a 345: ( 286:Setoids 89:inverse 63:with a 13306:, and 13278:  13270:  13230:  13176:  13081:, see 12925:  12667:  11993:Here, 11702:Here, 10857:cosets 10791:, and 10634:action 10027:Monoid 8817:where 8715:, and 8506:where 8155:, and 6441:, the 4584:setoid 4410:where 3990:, let 3080:, the 2436:. Let 2248:, and 2014:target 1994:source 1789:  1733:  1708:, and 1434:, and 1334:arrows 1285:is an 1056:, and 585:, and 437:and a 307:action 302:G-sets 105:monoid 13276:S2CID 13250:arXiv 13174:S2CID 13110:arXiv 13002:(PDF) 12995:(PDF) 12972:arXiv 12860:) = ( 12754:. βœ“ 12738:) = ( 12718:) = ( 12702:) = ( 12698:and ( 12617:Notes 12567:, or 12381:with 10678:orbit 10350:from 10227:from 10168:orbit 10117:group 10071:Group 9779:magma 9756:Magma 7045:orbit 6990:with 6445:from 6301:group 4582:is a 4363:below 4088:from 4086:paths 3464:is a 3424:below 3309:: if 3121:orbit 2567:with 1328:) of 1304:with 980:: If 634:: If 60:Group 52:group 13446:core 13268:ISSN 13228:ISBN 12923:ISBN 12908:. βœ“ 12884:) * 12868:) * 12808:) * 12788:) * 12772:) * 12742:) * 12722:) * 12706:) * 12665:ISBN 12544:and 12303:and 12049:Grpd 11855:Grpd 11796:The 11791:sSet 11378:and 11372:Grpd 11282:Grpd 11252:Grpd 11088:Grpd 11081:Grpd 10204:, a 9914:loop 9891:Loop 9585:The 8854:and 8538:and 8036:and 7879:, a 6918:For 6792:(or 6722:and 6632:and 6401:and 6346:(or 5434:and 4829:and 4656:and 4077:are 3507:full 3503:wide 3499:full 3495:wide 3305:are 3276:and 3227:and 3119:The 2881:and 2729:and 2420:iff 2216:and 2028:). 1915:and 1766:and 1332:(or 1312:and 934:and 864:and 724:and 660:and 347:1927 291:sets 38:, a 34:and 13453:Lab 13441:Lab 13326:", 13260:doi 13246:226 13187:," 13166:doi 12876:= ( 12800:= ( 12734:* ( 12710:* ( 11934:hom 11876:hom 11632:hom 11584:hom 11521:hom 11460:hom 11388:Cat 11297:GPD 11128:GPD 10939:to 10879:in 10859:of 10538:of 10377:to 10263:to 8988:of 8765:in 7887:of 7743:of 7698:of 7498:of 7251:in 7023:at 6938:in 6564:of 6505:of 6465:to 6421:in 5263:of 5162:of 5116:If 4945:of 4861:is 4716:to 4676:in 4562:If 4140:of 4108:to 4081:of 3877:or 3798:of 3729:of 3689:of 3535:or 3505:or 3497:or 3438:of 3349:to 3092:in 3088:or 3084:or 3057:is 2541:if 2514:by 2181:to 2016:of 1996:of 1972:If 1411:of 1340:to 1300:of 1168:If 800:or 605:in 139:, 46:or 26:In 13464:: 13346:, 13340:, 13331:43 13310:, 13274:. 13266:. 13258:. 13244:. 13192:19 13172:, 13162:96 13160:, 13137:. 13133:. 13086:. 12962:^ 12946:. 12904:* 12900:= 12896:* 12892:* 12888:* 12880:* 12872:* 12864:* 12856:* 12848:* 12844:* 12840:* 12832:= 12828:* 12824:* 12816:* 12804:* 12796:* 12792:* 12784:* 12776:* 12768:* 12760:* 12750:= 12746:* 12730:* 12726:* 12694:* 12690:* 12686:= 12659:, 12653:, 12625:^ 12548:. 11861:. 11448:: 11382:. 11083:. 10787:, 10783:, 10397:. 10131:. 9601:. 9599:12 9147:. 9052:, 8693:Ob 8678:, 8656:Ob 8434:. 7907:. 7051:. 6915:. 4294:. 3626:A 3623:. 3434:A 3411:. 3061:. 2787::= 2600:. 2510:βˆ— 2481::= 2432:βˆ— 2428:= 2424:βˆ— 1720:: 1716:β†’ 1704:β†’ 1696:, 1692:β†’ 1588:, 1438:a 1430:, 1423:); 1372:); 1352:β†’ 898:: 625:, 565:, 353:. 341:. 289:: 277:. 13451:n 13439:n 13392:. 13300:. 13282:. 13262:: 13252:: 13168:: 13139:6 13118:. 13112:: 13098:. 13096:. 12980:. 12974:: 12956:. 12933:) 12929:( 12906:a 12902:b 12898:a 12894:b 12890:b 12886:a 12882:b 12878:a 12874:a 12870:a 12866:b 12862:a 12858:b 12854:a 12850:a 12846:b 12842:b 12838:a 12834:a 12830:b 12826:b 12822:a 12818:b 12814:a 12810:a 12806:b 12802:a 12798:b 12794:b 12790:a 12786:b 12782:a 12778:b 12774:a 12770:b 12766:a 12762:b 12758:a 12752:a 12748:a 12744:a 12740:a 12736:a 12732:a 12728:a 12724:a 12720:a 12716:a 12712:a 12708:a 12704:a 12700:a 12696:a 12692:a 12688:a 12684:a 12607:) 12456:a 12389:a 12325:a 12280:a 12208:1 12202:G 12191:0 12185:G 12179:: 12176:i 12148:0 12142:G 12131:1 12125:G 12119:: 12116:t 12113:, 12110:s 12085:0 12079:G 12073:, 12068:1 12062:G 12017:) 12014:X 12011:( 12006:1 11978:) 11975:) 11972:G 11969:( 11966:N 11963:, 11960:X 11957:( 11948:t 11945:e 11942:S 11939:s 11927:) 11924:G 11921:, 11918:) 11915:X 11912:( 11907:1 11899:( 11890:d 11887:p 11884:r 11881:G 11840:t 11837:e 11834:S 11831:s 11823:d 11820:p 11817:r 11814:G 11810:: 11807:N 11773:) 11770:C 11767:( 11763:e 11760:r 11757:o 11754:C 11729:] 11724:1 11717:C 11713:[ 11710:C 11687:) 11684:) 11681:C 11678:( 11674:e 11671:r 11668:o 11665:C 11661:, 11658:G 11655:( 11646:d 11643:p 11640:r 11637:G 11625:) 11622:C 11619:, 11616:) 11613:G 11610:( 11607:i 11604:( 11595:t 11592:a 11589:C 11562:) 11559:) 11556:G 11553:( 11550:i 11547:, 11544:C 11541:( 11532:t 11529:a 11526:C 11514:) 11511:G 11508:, 11505:] 11500:1 11493:C 11489:[ 11486:C 11483:( 11474:d 11471:p 11468:r 11465:G 11431:t 11428:a 11425:C 11417:d 11414:p 11411:r 11408:G 11404:: 11401:i 11355:K 11352:, 11349:H 11346:, 11343:G 11321:. 11318:) 11315:) 11312:K 11309:, 11306:H 11303:( 11294:, 11291:G 11288:( 11276:) 11273:K 11270:, 11267:H 11261:G 11258:( 11230:K 11227:, 11224:H 11221:, 11218:G 11198:K 11195:, 11192:H 11172:K 11166:H 11146:) 11143:K 11140:, 11137:H 11134:( 11108:K 11105:, 11102:H 11051:H 11031:K 11011:G 10991:H 10967:K 10947:G 10927:K 10907:p 10887:G 10867:H 10843:G 10823:G 10803:H 10753:q 10733:p 10709:) 10706:x 10703:( 10700:G 10664:G 10644:G 10620:X 10569:X 10546:X 10518:X 10494:. 10491:G 10471:X 10436:X 10416:G 10385:x 10363:0 10359:x 10338:G 10316:0 10312:x 10291:x 10271:G 10251:) 10246:0 10242:x 10238:( 10235:G 10215:h 10190:0 10186:x 10154:) 10151:X 10148:, 10145:G 10142:( 9597:M 9527:. 9522:0 9518:c 9514:+ 9511:) 9506:1 9502:c 9498:( 9495:d 9492:= 9489:) 9484:0 9480:c 9476:+ 9471:1 9467:c 9463:( 9460:t 9435:0 9431:C 9422:1 9418:C 9409:0 9405:c 9401:+ 9396:1 9392:c 9369:0 9365:C 9344:d 9322:1 9318:C 9295:0 9291:C 9268:0 9264:C 9255:1 9251:C 9228:0 9224:C 9191:0 9187:C 9181:d 9171:1 9167:C 9127:, 9104:) 9097:y 9093:( 9090:g 9084:) 9081:y 9078:( 9075:g 9072:: 9069:) 9063:( 9060:g 9040:) 9033:x 9029:( 9026:f 9020:) 9017:x 9014:( 9011:f 9008:: 9005:) 8999:( 8996:f 8976:Z 8956:) 8949:y 8945:, 8934:, 8927:x 8923:( 8920:, 8917:) 8914:y 8911:, 8905:, 8902:x 8899:( 8875:y 8868:y 8865:: 8838:x 8831:x 8828:: 8805:) 8799:, 8793:( 8773:Z 8753:) 8750:y 8747:( 8744:g 8738:) 8735:x 8732:( 8729:f 8726:: 8703:) 8700:Y 8697:( 8686:y 8666:) 8663:X 8660:( 8649:x 8629:) 8626:y 8623:, 8617:, 8614:x 8611:( 8591:Y 8586:Z 8578:X 8558:Z 8552:Y 8549:: 8546:g 8526:Z 8520:X 8517:: 8514:f 8487:Z 8475:Y 8459:X 8418:) 8413:k 8409:n 8405:, 8399:, 8394:1 8390:n 8386:( 8382:P 8354:G 8334:] 8331:G 8327:/ 8321:n 8316:A 8311:[ 8289:n 8284:A 8259:) 8256:n 8253:( 8250:L 8247:G 8227:G 8199:2 8195:/ 8190:Z 8169:] 8166:0 8163:[ 8143:} 8140:] 8137:2 8134:[ 8131:, 8128:] 8125:1 8122:[ 8119:, 8116:] 8113:0 8110:[ 8107:{ 8087:] 8084:G 8080:/ 8076:X 8073:[ 8053:1 8044:1 8024:2 8018:2 7995:} 7992:2 7989:, 7986:1 7983:, 7980:0 7977:, 7974:1 7968:, 7965:2 7959:{ 7956:= 7953:X 7933:2 7929:/ 7924:Z 7895:G 7867:} 7864:G 7858:g 7850:g 7846:F 7842:{ 7822:G 7798:G 7776:g 7772:F 7751:G 7731:g 7710:r 7707:G 7686:g 7666:G 7646:) 7642:r 7639:G 7635:, 7631:r 7628:G 7624:( 7620:m 7617:o 7614:H 7593:) 7589:r 7586:G 7582:( 7578:b 7575:o 7554:) 7548:, 7544:r 7541:G 7537:( 7533:m 7530:o 7527:H 7506:G 7481:t 7478:e 7475:S 7467:r 7464:G 7443:F 7420:G 7400:G 7380:F 7360:F 7340:X 7334:X 7312:g 7308:F 7283:r 7280:G 7259:G 7239:g 7219:) 7215:r 7212:G 7208:( 7205:F 7202:= 7199:X 7179:F 7159:G 7134:r 7131:G 7110:] 7106:t 7103:e 7100:S 7096:, 7092:r 7089:G 7085:[ 7062:G 7031:x 7007:x 7004:= 7001:x 6998:g 6978:) 6975:x 6972:, 6969:g 6966:( 6946:X 6926:x 6903:x 6900:g 6897:= 6894:y 6874:) 6871:x 6868:, 6865:g 6862:h 6859:( 6856:= 6853:) 6850:x 6847:, 6844:g 6841:( 6838:) 6835:y 6832:, 6829:h 6826:( 6806:G 6800:X 6780:X 6774:G 6754:x 6751:g 6748:= 6745:) 6742:x 6739:, 6736:g 6733:( 6730:t 6710:x 6707:= 6704:) 6701:x 6698:, 6695:g 6692:( 6689:s 6669:X 6663:G 6660:= 6657:) 6654:C 6651:( 6647:m 6644:o 6641:h 6620:X 6617:= 6614:) 6611:C 6608:( 6604:b 6601:o 6584:. 6572:G 6554:; 6542:y 6539:= 6536:x 6533:g 6513:G 6493:g 6473:y 6453:x 6429:X 6409:y 6389:x 6378:; 6366:X 6330:X 6310:G 6276:A 6266:k 6262:i 6253:1 6249:i 6244:U 6237:: 6204:) 6196:A 6191:, 6186:U 6181:( 6176:k 6166:H 6156:] 6150:[ 6118:i 6114:U 6084:i 6080:U 6067:k 6064:i 6060:U 6037:j 6034:i 6030:U 6017:k 6014:j 6011:i 6007:U 5979:n 5957:n 5951:G 5928:n 5903:1 5897:G 5887:0 5881:G 5863:0 5857:G 5844:1 5838:G 5832:= 5827:n 5821:G 5790:i 5787:i 5783:U 5774:i 5770:U 5766:: 5731:i 5727:U 5718:j 5715:i 5711:U 5707:: 5702:i 5694:= 5691:t 5682:j 5678:U 5669:j 5666:i 5662:U 5658:: 5653:j 5645:= 5642:s 5623:. 5609:j 5606:i 5602:U 5595:= 5590:1 5584:G 5566:, 5552:i 5548:U 5541:= 5536:0 5530:G 5504:X 5482:I 5476:i 5472:} 5466:i 5462:U 5458:{ 5455:= 5450:U 5421:. 5378:0 5374:X 5365:1 5361:X 5336:0 5332:X 5326:Y 5316:0 5312:X 5308:= 5303:1 5299:X 5276:0 5272:X 5247:Y 5225:0 5221:X 5212:0 5208:X 5199:0 5195:X 5189:Y 5179:0 5175:X 5143:Y 5135:0 5131:X 5127:: 5124:f 5094:} 5091:x 5088:{ 5066:X 5062:d 5058:i 5055:= 5052:t 5049:= 5046:s 5026:X 5002:X 4979:X 4973:X 4953:X 4929:X 4909:X 4893:. 4881:) 4878:x 4875:, 4872:z 4869:( 4849:) 4846:x 4843:, 4840:y 4837:( 4817:) 4814:y 4811:, 4808:z 4805:( 4794:; 4782:y 4776:x 4756:) 4753:x 4750:, 4747:y 4744:( 4724:y 4704:x 4684:X 4664:y 4644:x 4633:; 4621:X 4570:X 4542:A 4522:A 4502:) 4499:X 4496:( 4491:1 4466:) 4463:A 4460:, 4457:X 4454:( 4449:1 4424:X 4418:A 4398:) 4395:A 4392:, 4389:X 4386:( 4381:1 4341:X 4321:) 4318:X 4315:( 4310:1 4282:x 4262:) 4259:x 4256:, 4253:X 4250:( 4245:1 4220:) 4217:X 4214:( 4209:1 4184:) 4181:X 4178:( 4173:1 4148:X 4116:q 4096:p 4065:q 4045:p 4025:X 4003:0 3999:G 3978:X 3936:B 3916:B 3889:e 3861:b 3858:= 3855:) 3852:e 3849:( 3846:p 3826:x 3806:E 3786:e 3766:) 3763:x 3760:( 3757:p 3737:B 3717:b 3697:E 3677:x 3653:B 3647:E 3644:: 3641:p 3611:Y 3605:y 3602:, 3599:x 3579:) 3576:y 3573:, 3570:x 3567:( 3564:H 3561:= 3558:) 3555:y 3552:, 3549:x 3546:( 3543:G 3523:Y 3520:= 3517:X 3481:Y 3475:H 3452:X 3446:G 3397:1 3390:f 3386:g 3383:f 3377:g 3357:y 3337:x 3317:f 3293:) 3290:y 3287:( 3284:G 3264:) 3261:x 3258:( 3255:G 3235:y 3215:x 3195:X 3189:) 3186:) 3183:x 3180:( 3175:1 3168:t 3164:( 3161:s 3141:X 3135:x 3125:G 3114:G 3110:x 3106:x 3104:, 3102:x 3100:( 3098:G 3094:G 3078:G 3059:f 3055:f 3039:x 3035:1 3024:x 3010:g 3004:f 3001:= 2998:) 2993:z 2989:1 2982:g 2979:( 2973:) 2968:y 2964:1 2957:f 2949:x 2945:1 2941:( 2921:) 2916:z 2912:1 2905:g 2902:( 2894:y 2890:1 2867:y 2863:1 2856:) 2853:f 2845:x 2841:1 2837:( 2817:) 2814:z 2811:, 2808:x 2805:( 2802:G 2796:g 2790:f 2784:f 2781:g 2761:, 2758:) 2755:z 2752:, 2749:y 2746:( 2743:G 2737:g 2717:) 2714:y 2711:, 2708:x 2705:( 2702:G 2696:f 2674:y 2670:1 2663:f 2655:x 2651:1 2640:f 2626:) 2623:y 2620:, 2617:x 2614:( 2611:G 2586:0 2582:G 2575:x 2555:G 2549:a 2527:x 2523:1 2512:a 2508:a 2488:/ 2484:G 2476:0 2472:G 2441:0 2438:G 2434:b 2430:b 2426:a 2422:a 2408:b 2402:a 2372:G 2354:d 2351:i 2340:0 2337:G 2322:v 2319:n 2316:i 2294:p 2291:m 2288:o 2285:c 2263:v 2260:n 2257:i 2246:G 2231:v 2228:n 2225:i 2203:p 2200:m 2197:o 2194:c 2183:y 2179:x 2175:y 2173:, 2171:x 2169:( 2167:G 2159:G 2128:0 2124:G 2115:1 2111:G 2088:1 2084:G 2061:0 2057:G 2048:1 2044:G 2033:G 2026:f 2024:( 2022:t 2018:f 2010:y 2006:f 2004:( 2002:s 1998:f 1990:x 1986:y 1984:, 1982:x 1980:( 1978:G 1974:f 1966:. 1952:x 1947:d 1944:i 1939:= 1936:f 1931:1 1924:f 1901:y 1896:d 1893:i 1888:= 1883:1 1876:f 1872:f 1862:; 1850:) 1847:f 1844:g 1841:( 1838:h 1835:= 1832:f 1829:) 1826:g 1823:h 1820:( 1810:; 1798:f 1795:= 1792:f 1784:y 1779:d 1776:i 1754:f 1751:= 1746:x 1741:d 1738:i 1730:f 1718:w 1714:z 1710:h 1706:z 1702:y 1698:g 1694:y 1690:x 1686:f 1670:1 1663:f 1656:f 1653:: 1650:) 1647:x 1644:, 1641:y 1638:( 1635:G 1629:) 1626:y 1623:, 1620:x 1617:( 1614:G 1611:: 1607:v 1604:n 1601:i 1590:y 1586:x 1581:; 1569:f 1566:g 1560:) 1557:f 1554:, 1551:g 1548:( 1545:: 1542:) 1539:z 1536:, 1533:x 1530:( 1527:G 1521:) 1518:y 1515:, 1512:x 1509:( 1506:G 1500:) 1497:z 1494:, 1491:y 1488:( 1485:G 1482:: 1477:z 1474:, 1471:y 1468:, 1465:x 1460:p 1457:m 1454:o 1451:c 1436:z 1432:y 1428:x 1421:x 1419:, 1417:x 1415:( 1413:G 1397:x 1392:d 1389:i 1377:x 1370:y 1368:, 1366:x 1364:( 1362:G 1358:f 1354:y 1350:x 1346:f 1342:y 1338:x 1326:y 1324:, 1322:x 1320:( 1318:G 1314:y 1310:x 1298:0 1295:G 1291:G 1268:. 1254:1 1247:a 1238:1 1231:b 1227:= 1222:1 1215:) 1211:b 1205:a 1202:( 1182:b 1176:a 1165:, 1153:a 1150:= 1145:1 1138:) 1132:1 1125:a 1121:( 1094:b 1091:= 1088:b 1082:a 1073:1 1066:a 1044:a 1041:= 1035:1 1028:b 1020:b 1014:a 994:b 988:a 957:1 950:a 942:a 922:a 914:1 907:a 878:c 872:b 852:b 846:a 826:) 823:c 817:b 814:( 808:a 788:c 782:) 779:b 773:a 770:( 750:) 747:c 741:b 738:( 732:a 712:c 706:) 703:b 697:a 694:( 674:c 668:b 648:b 642:a 613:G 593:c 573:b 553:a 490:G 466:G 460:G 454:G 451:: 425:, 422:G 416:G 413:: 408:1 378:G 329:. 317:G 297:, 265:C 259:A 256:: 253:g 247:h 227:C 221:A 215:) 212:B 206:A 203:( 197:) 194:C 188:B 185:( 182:: 159:C 153:B 150:: 147:h 127:B 121:A 118:: 115:g 71:; 23:.

Index

magma (algebra)
mathematics
category theory
homotopy theory
group
Group
partial function
binary operation
Category
morphism
unary operation
group theory
dependent typing
monoid
Setoids
sets
equivalence relation
G-sets
action
geometrical
manifolds
Heinrich Brandt
1927
Brandt semigroups
partial function
unary operation
partial function
binary operation
Associativity
Inverse

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑