Knowledge

Greatest element and least element

Source 📝

22: 2117: 5099: 5079:, and when no confusion is likely, i.e. when one is not talking about partial orders of numbers that already contain elements 0 and 1 different from bottom and top. The existence of least and greatest elements is a special 6716: 164: 5920: 5590: 5490: 5877: 6456: 5458: 5430: 4505: 2244: 2168: 980: 371: 5134: 6601: 6492: 5960: 5558: 5207: 4915: 1957: 6548: 6416: 6360: 4376: 4079: 901: 7036: 5163: 5008: 4847: 4472: 4428: 4277: 4241: 4157: 4111: 4020: 3941: 3869: 3722: 3596: 3367: 3201: 3112: 3053: 2966: 2735: 2590: 2421: 2211: 1348: 1038: 947: 852: 721: 338: 6998: 6937: 6879: 6071: 5320: 5292: 5264: 5236: 3313: 2995: 2767: 2556: 2386: 2357: 6850: 6182: 6127: 6101: 6042: 5774: 5352: 4203: 3788: 3540: 3514: 3468: 3413: 3264: 3234: 2857: 2823: 2797: 2527: 1718: 1689: 1379: 1141: 1112: 686: 657: 507: 478: 6824: 6798: 6651: 5629: 3831: 3690: 3169: 3021: 2934: 2501: 2451: 2328: 2270: 1663: 1236: 1086: 628: 576: 449: 397: 6743: 5837: 5810: 5526: 2620: 6908: 3442: 1555: 6228: 6515: 6383: 6307: 5728: 5395: 5031: 4986: 4727: 4602: 3988: 3139: 3080: 1526: 1208: 299: 6957: 6763: 6621: 6568: 6327: 6284: 6248: 6202: 6156: 6013: 5993: 5748: 5705: 5372: 4963: 4938: 4867: 4818: 4798: 4774: 4749: 4704: 4684: 4664: 4644: 4624: 4579: 4555: 4528: 4396: 4341: 4317: 4297: 4177: 4135: 4040: 3961: 3909: 3889: 3808: 3762: 3742: 3660: 3640: 3616: 3560: 3488: 3387: 3341: 3284: 2897: 2877: 2703: 2683: 2471: 2296: 2094: 2073: 2045: 2025: 2001: 1977: 1930: 1909: 1888: 1867: 1847: 1823: 1802: 1782: 1762: 1742: 1637: 1616: 1595: 1575: 1499: 1479: 1459: 1439: 1419: 1399: 1316: 1296: 1276: 1256: 1181: 1161: 1060: 1006: 816: 790: 765: 745: 600: 550: 530: 421: 276: 248: 228: 204: 90: 70: 46: 2624:
A set can have several maximal elements without having a greatest element. Like upper bounds and maximal elements, greatest elements may fail to exist.
2170:
has two maximal elements, viz. 3 and 4, none of which is greatest. It has one minimal element, viz. 1, which is also its least element.
21: 6656: 5641: 7086: 7072: 3141:
This is because unlike the definition of "greatest element", the definition of "maximal element" includes an important
5656: 5404:, the set of numbers with their square less than 2 has upper bounds but no greatest element and no least upper bound. 2899:
is always comparable to itself. Consequently, the only pairs of elements that could possibly be incomparable are
2100:
Even if a set has some upper bounds, it need not have a greatest element, as shown by the example of the negative
747:
can have at most one greatest element and it can have at most one least element. Whenever a greatest element of
5460:
the set of numbers less than or equal to 1 has a greatest element, viz. 1, which is also its least upper bound.
95: 5651: 5646: 167: 5055:
The least and greatest element of the whole partially ordered set play a special role and are also called
4917:
in the topmost picture is an example), then the notions of maximal element and greatest element coincide.
5080: 7078: 5882: 5566: 5466: 5842: 4777: 6421: 5438: 5410: 4481: 2220: 2123: 2116: 956: 347: 5117: 6573: 6461: 5925: 5531: 5168: 4876: 2178:
of the set, which are elements that are not strictly smaller than any other element in the set.
1936: 6520: 6388: 6332: 4346: 4049: 871: 7003: 5662: 5146: 4991: 4830: 4445: 4401: 4250: 4211: 4140: 4084: 3993: 3914: 3842: 3695: 3569: 3350: 3174: 3085: 3026: 2939: 2708: 2563: 2394: 2184: 1321: 1011: 985: 920: 825: 694: 311: 255: 6971: 6913: 6855: 6047: 5296: 5268: 5240: 5212: 3289: 2971: 2740: 2532: 2362: 2333: 7110: 7105: 6829: 6161: 6106: 6080: 6018: 5753: 5593: 5325: 4475: 4182: 3767: 3519: 3493: 3447: 3392: 3243: 3210: 2836: 2802: 2776: 2506: 2424: 1694: 1668: 1355: 1117: 1091: 724: 662: 636: 483: 457: 207: 6803: 6777: 6626: 5599: 4945:
If the notions of maximal element and greatest element coincide on every two-element subset
3813: 3669: 3148: 3000: 2913: 2480: 2430: 2307: 2249: 1642: 1215: 1065: 607: 555: 428: 376: 6721: 5815: 5788: 5499: 5076: 5043: 2596: 6884: 3418: 1531: 166:
has one greatest element, viz. 30, and one least element, viz. 1. These elements are also
8: 6207: 6497: 6365: 6289: 5710: 5432:
the set of numbers less than 1 has a least upper bound, viz. 1, but no greatest element.
5377: 5013: 4968: 4709: 4584: 3970: 3121: 3062: 1508: 1190: 281: 6942: 6748: 6606: 6553: 6312: 6269: 6233: 6187: 6141: 5998: 5978: 5733: 5690: 5357: 4948: 4923: 4852: 4803: 4783: 4759: 4734: 4689: 4669: 4649: 4629: 4609: 4564: 4540: 4513: 4381: 4326: 4302: 4282: 4162: 4120: 4025: 3946: 3894: 3874: 3793: 3747: 3727: 3645: 3625: 3601: 3545: 3473: 3372: 3326: 3269: 2882: 2862: 2830: 2688: 2668: 2456: 2281: 2108:(the number 0 in this case) does not imply the existence of a greatest element either. 2079: 2058: 2030: 2010: 1986: 1962: 1915: 1894: 1873: 1852: 1832: 1808: 1787: 1767: 1747: 1727: 1622: 1601: 1580: 1560: 1484: 1464: 1444: 1424: 1404: 1384: 1301: 1281: 1261: 1241: 1166: 1146: 1045: 991: 801: 775: 750: 730: 585: 535: 515: 406: 261: 233: 213: 189: 75: 55: 31: 7082: 7059: 4534:
greatest element. Thus if a set has a greatest element then it is necessarily unique.
2105: 5401: 4821: 4081:
However, the uniqueness conclusion is no longer guaranteed if the preordered set
2275: 2175: 2174:
A greatest element of a subset of a preordered set should not be confused with a
854:
has a greatest element (resp. a least element) then this element is also called
7038:
would have two maximal, but no greatest element, contradicting the coincidence.
3837: 2214: 950: 341: 7099: 5493: 5102: 2653: 2640: 2631:
the maximal element and the greatest element coincide; and it is also called
25: 5670:— a non-strict order such that every non-empty set has a least element 6074: 5963: 5087: 4244: 3542:
holds, which shows that all pairs of distinct (i.e. non-equal) elements in
2904: 2111: 179: 5137: 4870: 4558: 2661:
Role of (in)comparability in distinguishing greatest vs. maximal elements
2628: 2101: 911: 175: 5687:
Of course, in this particular example, there exists only one element in
3598:
can not possibly have a greatest element (because a greatest element of
7058:
The notion of locality requires the function's domain to be at least a
5667: 6881:
In the second case, the definition of maximal element requires that
4751:
has several maximal elements then it cannot have a greatest element.
532:
is on in the above definition, the definition of a least element of
4940:
has a greatest element, the notions coincide, too, as stated above.
2737:
has to do with what elements they are comparable to. Two elements
2907:
partially ordered sets) may have elements that are incomparable.
6765:
and not maximal). This contradicts the ascending chain condition.
5111: 5075:. The notation of 0 and 1 is used preferably when the poset is a 2665:
One of the most important differences between a greatest element
49: 5397:
but no least upper bound, and no greatest element (cf. picture).
4022:
is also partially ordered then it is possible to conclude that
3082:
This is not required of maximal elements. Maximal elements of
5098: 6711:{\displaystyle s_{1}<s_{2}<\cdots <s_{n}<\cdots } 5086:
Further introductory information is found in the article on
3319:
Example where all elements are maximal but none are greatest
1724:
to the definition of a greatest element given before. Thus
4343:
is a greatest element (and thus also a maximal element) of
2104:. This example also demonstrates that the existence of a 5071:(1), respectively. If both exist, the poset is called a 4920:
However, this is not a necessary condition for whenever
2903:
pairs. In general, however, preordered sets (and even
2112:
Contrast to maximal elements and local/absolute maximums
3943:
and moreover, as a consequence of the greatest element
2635:; in the case of function values it is also called the 7006: 6974: 6945: 6916: 6887: 6858: 6832: 6806: 6780: 6751: 6724: 6659: 6653:
Repeating this argument, an infinite ascending chain
6629: 6609: 6576: 6556: 6523: 6500: 6464: 6424: 6391: 6368: 6335: 6315: 6292: 6272: 6236: 6210: 6190: 6164: 6144: 6109: 6083: 6050: 6021: 6001: 5981: 5928: 5885: 5845: 5818: 5791: 5756: 5736: 5713: 5693: 5602: 5569: 5534: 5502: 5469: 5441: 5413: 5380: 5360: 5328: 5299: 5271: 5243: 5215: 5171: 5149: 5120: 5016: 4994: 4971: 4951: 4926: 4879: 4855: 4833: 4806: 4786: 4762: 4737: 4712: 4692: 4672: 4652: 4632: 4612: 4587: 4567: 4543: 4516: 4484: 4448: 4404: 4384: 4349: 4329: 4305: 4285: 4253: 4214: 4185: 4165: 4143: 4123: 4087: 4052: 4028: 3996: 3973: 3949: 3917: 3897: 3877: 3845: 3816: 3796: 3770: 3750: 3730: 3698: 3672: 3648: 3628: 3604: 3572: 3548: 3522: 3496: 3476: 3450: 3421: 3395: 3375: 3353: 3329: 3292: 3272: 3246: 3213: 3177: 3151: 3124: 3088: 3065: 3029: 3003: 2974: 2942: 2916: 2885: 2865: 2839: 2805: 2779: 2743: 2711: 2691: 2671: 2599: 2566: 2535: 2509: 2483: 2459: 2433: 2397: 2365: 2336: 2310: 2284: 2252: 2223: 2187: 2126: 2082: 2061: 2033: 2013: 2003:(however, it may be possible that some other element 1989: 1965: 1939: 1918: 1897: 1876: 1855: 1835: 1811: 1790: 1770: 1750: 1730: 1697: 1671: 1645: 1625: 1604: 1583: 1563: 1534: 1511: 1487: 1467: 1447: 1427: 1407: 1387: 1358: 1324: 1304: 1284: 1264: 1244: 1218: 1193: 1169: 1149: 1120: 1094: 1068: 1048: 1014: 994: 959: 923: 905: 874: 828: 804: 778: 753: 733: 697: 665: 639: 610: 588: 558: 538: 518: 486: 460: 431: 409: 379: 350: 314: 284: 264: 236: 216: 192: 98: 78: 58: 34: 4299:
has exactly one element. All pairs of elements from
4117:also partially ordered. For example, suppose that 3023:; so by its very definition, a greatest element of 2829:if they are not comparable. Because preorders are 2593:is defined to mean a maximal element of the subset 7030: 6992: 6951: 6931: 6902: 6873: 6844: 6818: 6792: 6757: 6737: 6710: 6645: 6615: 6595: 6562: 6542: 6509: 6486: 6450: 6410: 6377: 6354: 6321: 6301: 6278: 6242: 6222: 6196: 6176: 6150: 6121: 6095: 6065: 6036: 6007: 5987: 5954: 5914: 5871: 5831: 5804: 5768: 5742: 5722: 5699: 5623: 5584: 5552: 5520: 5484: 5452: 5424: 5389: 5366: 5346: 5314: 5286: 5258: 5230: 5201: 5157: 5128: 5025: 5002: 4980: 4957: 4932: 4909: 4861: 4841: 4812: 4792: 4768: 4743: 4721: 4698: 4678: 4658: 4638: 4618: 4596: 4573: 4549: 4522: 4499: 4466: 4422: 4390: 4370: 4335: 4311: 4291: 4271: 4235: 4197: 4171: 4151: 4129: 4105: 4073: 4034: 4014: 3982: 3955: 3935: 3903: 3883: 3863: 3825: 3802: 3782: 3756: 3736: 3716: 3684: 3654: 3634: 3610: 3590: 3554: 3534: 3508: 3482: 3462: 3436: 3407: 3381: 3361: 3335: 3307: 3278: 3258: 3228: 3195: 3163: 3133: 3106: 3074: 3047: 3015: 2989: 2960: 2928: 2891: 2871: 2851: 2817: 2791: 2761: 2729: 2697: 2677: 2614: 2584: 2550: 2521: 2495: 2465: 2445: 2415: 2380: 2351: 2322: 2290: 2264: 2238: 2205: 2162: 2088: 2067: 2039: 2019: 1995: 1971: 1951: 1924: 1903: 1882: 1861: 1841: 1817: 1796: 1776: 1756: 1736: 1712: 1683: 1657: 1631: 1610: 1589: 1569: 1549: 1520: 1493: 1473: 1453: 1433: 1413: 1393: 1373: 1342: 1310: 1290: 1270: 1250: 1230: 1202: 1175: 1155: 1135: 1106: 1080: 1054: 1032: 1000: 974: 941: 895: 846: 810: 784: 759: 739: 715: 680: 651: 622: 594: 570: 544: 524: 501: 472: 443: 415: 391: 365: 332: 293: 270: 242: 222: 198: 158: 84: 64: 40: 767:exists and is unique then this element is called 7097: 2657:. Similar conclusions hold for least elements. 2120:In the above divisibility order, the red subset 3618:would, in particular, have to be comparable to 3347:(distinct) elements and define a partial order 7070: 3118:required to be comparable to every element in 7025: 7013: 5341: 5329: 5196: 5172: 4904: 4886: 2157: 2133: 278:that is smaller than every other element of 230:that is greater than every other element of 153: 105: 4686:and moreover, any other maximal element of 4537:If it exists, then the greatest element of 512:By switching the side of the relation that 5046:always has a greatest and a least element. 52:of 60, partially ordered by the relation " 5572: 5472: 5443: 5415: 5154: 5150: 5122: 4999: 4995: 4838: 4834: 4148: 4144: 4137:is a non-empty set and define a preorder 3911:will necessarily be a maximal element of 3358: 3354: 2300:if the following condition is satisfied: 910:Greatest elements are closely related to 5642:Essential supremum and essential infimum 5097: 5036: 3724:because there is exactly one element in 2115: 159:{\displaystyle S=\{1,2,3,5,6,10,15,30\}} 20: 7071:Davey, B. A.; Priestley, H. A. (2002). 3871:does happen to have a greatest element 3145:statement. The defining condition for 2055:for there to exist some upper bound of 1381:In particular, any greatest element of 7098: 3266:(so elements that are incomparable to 3055:must, in particular, be comparable to 2027:). In particular, it is possible for 5750:itself, so the second condition "and 4279:is partially ordered if and only if 552:is obtained. Explicitly, an element 6603:contradicts the incomparability of 6494:The latter must be incomparable to 6362:must exist that is incomparable to 18:Element ≥ (or ≤) each other element 13: 7074:Introduction to Lattices and Order 5596:, this set has upper bounds, e.g. 906:Relationship to upper/lower bounds 170:, respectively, of the red subset. 14: 7122: 5657:Limit superior and limit inferior 5050: 1933:(which can happen if and only if 5915:{\displaystyle g_{2}\leq g_{1},} 5585:{\displaystyle \mathbb {R} ^{2}} 5485:{\displaystyle \mathbb {R} ^{2}} 3662:has no such element). However, 2651:. Together they are called the 6309:but no greatest element. Since 5872:{\displaystyle g_{1}\leq g_{2}} 4398:has at least two elements then 1143:Importantly, an upper bound of 258:, that is, it is an element of 7052: 6962: 6800:be a maximal element, for any 6768: 6451:{\displaystyle s_{1}<s_{2}} 6286:has just one maximal element, 6266:Assume for contradiction that 6253: 6132: 5969: 5779: 5681: 5615: 5603: 5515: 5503: 5114:has no upper bound in the set 4461: 4449: 4417: 4405: 4362: 4350: 4266: 4254: 4100: 4088: 4065: 4053: 4009: 3997: 3930: 3918: 3858: 3846: 3711: 3699: 3585: 3573: 3190: 3178: 3101: 3089: 3042: 3030: 2955: 2943: 2724: 2712: 2579: 2567: 2410: 2398: 2200: 2188: 1891:that is not an upper bound of 1337: 1325: 1027: 1015: 936: 924: 887: 875: 841: 829: 710: 698: 327: 315: 303: 1: 7045: 6718:can be found (such that each 5453:{\displaystyle \mathbb {R} ,} 5425:{\displaystyle \mathbb {R} ,} 4824:, it has one maximal element. 4706:will necessarily be equal to 4666:is also a maximal element of 4500:{\displaystyle S\subseteq P.} 4437: 2239:{\displaystyle S\subseteq P.} 2163:{\displaystyle S=\{1,2,3,4\}} 1528:In the particular case where 1187:required to be an element of 975:{\displaystyle S\subseteq P.} 366:{\displaystyle S\subseteq P.} 6418:cannot be maximal, that is, 5652:Maximal and minimal elements 5647:Initial and terminal objects 5631:It has no least upper bound. 5129:{\displaystyle \mathbb {R} } 3810:itself (which of course, is 2639:, to avoid confusion with a 168:maximal and minimal elements 7: 6596:{\displaystyle s_{2}\leq m} 6487:{\displaystyle s_{2}\in S.} 6158:is a maximal element, then 5995:is the greatest element of 5955:{\displaystyle g_{1}=g_{2}} 5635: 5553:{\displaystyle 0<x<1} 5202:{\displaystyle \{a,b,c,d\}} 5093: 4910:{\displaystyle S=\{1,2,4\}} 4626:is the greatest element of 3744:that is both comparable to 3566:comparable. Consequently, 3171:to be a maximal element of 1952:{\displaystyle u\not \in S} 630:and if it also satisfies: 451:and if it also satisfies: 10: 7127: 7079:Cambridge University Press 6543:{\displaystyle m<s_{2}} 6411:{\displaystyle s_{1}\in S} 6355:{\displaystyle s_{1}\in S} 4581:that is also contained in 4371:{\displaystyle (R,\leq ).} 4074:{\displaystyle (P,\leq ).} 2910:By definition, an element 2473:if and only if there does 1401:is also an upper bound of 896:{\displaystyle (P,\leq ).} 7031:{\displaystyle S=\{a,b\}} 5158:{\displaystyle \,\leq \,} 5003:{\displaystyle \,\leq \,} 4842:{\displaystyle \,\leq \,} 4778:ascending chain condition 4467:{\displaystyle (P,\leq )} 4423:{\displaystyle (R,\leq )} 4272:{\displaystyle (R,\leq )} 4236:{\displaystyle i,j\in R.} 4152:{\displaystyle \,\leq \,} 4106:{\displaystyle (P,\leq )} 4015:{\displaystyle (P,\leq )} 3936:{\displaystyle (P,\leq )} 3864:{\displaystyle (P,\leq )} 3717:{\displaystyle (S,\leq )} 3591:{\displaystyle (S,\leq )} 3362:{\displaystyle \,\leq \,} 3196:{\displaystyle (P,\leq )} 3107:{\displaystyle (P,\leq )} 3048:{\displaystyle (P,\leq )} 2961:{\displaystyle (P,\leq )} 2936:is a greatest element of 2859:is true for all elements 2730:{\displaystyle (P,\leq )} 2585:{\displaystyle (P,\leq )} 2416:{\displaystyle (P,\leq )} 2206:{\displaystyle (P,\leq )} 1983:be a greatest element of 1744:is a greatest element of 1481:is a greatest element of 1343:{\displaystyle (P,\leq )} 1258:is a greatest element of 1033:{\displaystyle (P,\leq )} 942:{\displaystyle (P,\leq )} 847:{\displaystyle (P,\leq )} 716:{\displaystyle (P,\leq )} 333:{\displaystyle (P,\leq )} 210:(poset) is an element of 7000:were incomparable, then 6993:{\displaystyle a,b\in P} 6932:{\displaystyle s\leq m.} 6874:{\displaystyle m\leq s.} 6066:{\displaystyle s\leq g.} 5839:are both greatest, then 5674: 5315:{\displaystyle b\leq d.} 5287:{\displaystyle b\leq c,} 5259:{\displaystyle a\leq d,} 5231:{\displaystyle a\leq c,} 4827:When the restriction of 3692:is a maximal element of 3308:{\displaystyle s\leq m.} 2990:{\displaystyle s\leq g,} 2762:{\displaystyle x,y\in P} 2551:{\displaystyle s\neq m.} 2453:is a maximal element of 2381:{\displaystyle s\leq m.} 2352:{\displaystyle m\leq s,} 2051:have a greatest element 1639:is an element such that 1441:) but an upper bound of 6845:{\displaystyle s\leq m} 6177:{\displaystyle M\leq g} 6122:{\displaystyle g\neq s} 6096:{\displaystyle g\leq s} 6037:{\displaystyle s\in S,} 5769:{\displaystyle \geq m,} 5347:{\displaystyle \{a,b\}} 4820:has a greatest element 4198:{\displaystyle i\leq j} 3783:{\displaystyle \geq m,} 3535:{\displaystyle j\leq i} 3509:{\displaystyle i\leq j} 3463:{\displaystyle i\neq j} 3408:{\displaystyle i\leq j} 3259:{\displaystyle m\leq s} 3229:{\displaystyle s\in P,} 2852:{\displaystyle x\leq x} 2818:{\displaystyle y\leq x} 2792:{\displaystyle x\leq y} 2522:{\displaystyle m\leq s} 1713:{\displaystyle s\in S,} 1684:{\displaystyle s\leq u} 1374:{\displaystyle g\in S.} 1136:{\displaystyle s\in S.} 1107:{\displaystyle s\leq u} 819:is defined similarly. 681:{\displaystyle s\in S.} 652:{\displaystyle l\leq s} 502:{\displaystyle s\in S.} 473:{\displaystyle s\leq g} 7032: 6994: 6959:is a greatest element. 6953: 6933: 6904: 6875: 6846: 6820: 6819:{\displaystyle s\in S} 6794: 6793:{\displaystyle m\in S} 6759: 6739: 6712: 6647: 6646:{\displaystyle s_{1}.} 6617: 6597: 6564: 6544: 6511: 6488: 6452: 6412: 6379: 6356: 6329:is not greatest, some 6323: 6303: 6280: 6244: 6224: 6198: 6178: 6152: 6123: 6097: 6067: 6038: 6009: 5989: 5956: 5916: 5873: 5833: 5806: 5770: 5744: 5724: 5707:that is comparable to 5701: 5663:Upper and lower bounds 5625: 5624:{\displaystyle (1,0).} 5586: 5554: 5522: 5486: 5454: 5426: 5391: 5368: 5348: 5316: 5288: 5260: 5232: 5203: 5159: 5130: 5106: 5027: 5004: 4982: 4959: 4934: 4911: 4863: 4843: 4814: 4794: 4770: 4745: 4723: 4700: 4680: 4660: 4640: 4620: 4598: 4575: 4551: 4524: 4501: 4468: 4424: 4392: 4372: 4337: 4313: 4293: 4273: 4237: 4199: 4173: 4153: 4131: 4107: 4075: 4036: 4016: 3984: 3957: 3937: 3905: 3885: 3865: 3827: 3826:{\displaystyle \leq m} 3804: 3784: 3758: 3738: 3718: 3686: 3685:{\displaystyle m\in S} 3656: 3636: 3612: 3592: 3556: 3536: 3510: 3484: 3464: 3438: 3409: 3383: 3363: 3337: 3309: 3280: 3260: 3230: 3197: 3165: 3164:{\displaystyle m\in P} 3135: 3108: 3076: 3049: 3017: 3016:{\displaystyle s\in P} 2991: 2962: 2930: 2929:{\displaystyle g\in P} 2893: 2873: 2853: 2819: 2793: 2763: 2731: 2699: 2685:and a maximal element 2679: 2643:. The dual terms are 2616: 2586: 2552: 2523: 2497: 2496:{\displaystyle s\in S} 2467: 2447: 2446:{\displaystyle m\in S} 2417: 2382: 2353: 2324: 2323:{\displaystyle s\in S} 2292: 2266: 2265:{\displaystyle m\in S} 2240: 2207: 2171: 2164: 2090: 2069: 2041: 2021: 2007:a greatest element of 1997: 1973: 1953: 1926: 1905: 1884: 1863: 1843: 1819: 1798: 1778: 1758: 1738: 1714: 1685: 1659: 1658:{\displaystyle u\in S} 1633: 1612: 1591: 1571: 1551: 1522: 1495: 1475: 1455: 1435: 1415: 1395: 1375: 1344: 1312: 1292: 1272: 1252: 1232: 1231:{\displaystyle g\in P} 1204: 1177: 1157: 1137: 1108: 1082: 1081:{\displaystyle u\in P} 1056: 1034: 1002: 976: 943: 897: 848: 812: 786: 761: 741: 717: 682: 653: 624: 623:{\displaystyle l\in S} 596: 572: 571:{\displaystyle l\in P} 546: 526: 503: 474: 445: 444:{\displaystyle g\in S} 417: 393: 392:{\displaystyle g\in P} 367: 334: 295: 272: 244: 224: 200: 171: 160: 86: 66: 42: 7033: 6995: 6954: 6934: 6905: 6876: 6847: 6821: 6795: 6760: 6740: 6738:{\displaystyle s_{i}} 6713: 6648: 6618: 6598: 6565: 6545: 6512: 6489: 6453: 6413: 6380: 6357: 6324: 6304: 6281: 6245: 6225: 6199: 6179: 6153: 6124: 6098: 6068: 6039: 6010: 5990: 5957: 5917: 5874: 5834: 5832:{\displaystyle g_{2}} 5807: 5805:{\displaystyle g_{1}} 5771: 5745: 5730:which is necessarily 5725: 5702: 5626: 5594:lexicographical order 5587: 5555: 5523: 5521:{\displaystyle (x,y)} 5487: 5455: 5427: 5392: 5369: 5349: 5317: 5289: 5261: 5233: 5204: 5160: 5131: 5101: 5081:completeness property 5037:Sufficient conditions 5028: 5005: 4983: 4960: 4935: 4912: 4864: 4844: 4815: 4795: 4771: 4746: 4724: 4701: 4681: 4661: 4641: 4621: 4599: 4576: 4552: 4525: 4502: 4476:partially ordered set 4469: 4425: 4393: 4378:So in particular, if 4373: 4338: 4314: 4294: 4274: 4238: 4200: 4174: 4154: 4132: 4108: 4076: 4037: 4017: 3985: 3958: 3938: 3906: 3886: 3866: 3828: 3805: 3785: 3759: 3739: 3719: 3687: 3657: 3637: 3613: 3593: 3557: 3537: 3511: 3485: 3465: 3439: 3410: 3384: 3364: 3338: 3310: 3281: 3261: 3231: 3203:can be reworded as: 3198: 3166: 3136: 3109: 3077: 3050: 3018: 2992: 2963: 2931: 2894: 2874: 2854: 2820: 2794: 2764: 2732: 2700: 2680: 2617: 2615:{\displaystyle S:=P.} 2587: 2553: 2524: 2498: 2468: 2448: 2425:partially ordered set 2418: 2383: 2354: 2325: 2293: 2267: 2241: 2208: 2165: 2119: 2091: 2070: 2042: 2022: 1998: 1974: 1954: 1927: 1906: 1885: 1864: 1849:is an upper bound of 1844: 1820: 1799: 1784:is an upper bound of 1779: 1759: 1739: 1715: 1686: 1660: 1634: 1613: 1592: 1577:is an upper bound of 1572: 1552: 1523: 1496: 1476: 1456: 1436: 1416: 1396: 1376: 1345: 1313: 1298:is an upper bound of 1293: 1273: 1253: 1233: 1205: 1178: 1158: 1138: 1109: 1083: 1057: 1035: 1003: 977: 944: 898: 849: 813: 787: 762: 742: 725:partially ordered set 718: 683: 654: 625: 597: 573: 547: 527: 504: 475: 446: 418: 394: 368: 335: 296: 273: 245: 225: 208:partially ordered set 201: 161: 87: 67: 43: 24: 7004: 6972: 6943: 6914: 6903:{\displaystyle m=s,} 6885: 6856: 6830: 6804: 6778: 6749: 6722: 6657: 6627: 6607: 6574: 6570:'s maximality while 6554: 6521: 6498: 6462: 6422: 6389: 6366: 6333: 6313: 6290: 6270: 6234: 6208: 6188: 6162: 6142: 6107: 6081: 6048: 6019: 5999: 5979: 5926: 5883: 5843: 5816: 5789: 5754: 5734: 5711: 5691: 5600: 5567: 5532: 5500: 5467: 5439: 5411: 5378: 5358: 5326: 5297: 5269: 5241: 5213: 5169: 5147: 5118: 5083:of a partial order. 5077:complemented lattice 5014: 5010:is a total order on 4992: 4969: 4949: 4924: 4877: 4853: 4831: 4804: 4784: 4760: 4735: 4710: 4690: 4670: 4650: 4630: 4610: 4585: 4565: 4541: 4514: 4482: 4446: 4402: 4382: 4347: 4327: 4303: 4283: 4251: 4212: 4183: 4163: 4141: 4121: 4085: 4050: 4026: 3994: 3971: 3963:being comparable to 3947: 3915: 3895: 3875: 3843: 3814: 3794: 3768: 3748: 3728: 3696: 3670: 3646: 3626: 3602: 3570: 3546: 3520: 3494: 3474: 3448: 3437:{\displaystyle i=j.} 3419: 3393: 3373: 3351: 3343:is a set containing 3327: 3290: 3270: 3244: 3211: 3175: 3149: 3122: 3086: 3063: 3027: 3001: 2972: 2940: 2914: 2883: 2863: 2837: 2803: 2777: 2741: 2709: 2705:of a preordered set 2689: 2669: 2597: 2564: 2533: 2507: 2481: 2457: 2431: 2395: 2363: 2334: 2308: 2282: 2250: 2221: 2185: 2124: 2080: 2059: 2031: 2011: 1987: 1963: 1937: 1916: 1895: 1874: 1853: 1833: 1809: 1788: 1768: 1748: 1728: 1722:completely identical 1695: 1669: 1643: 1623: 1602: 1581: 1561: 1550:{\displaystyle P=S,} 1532: 1509: 1485: 1465: 1445: 1425: 1405: 1385: 1356: 1322: 1302: 1282: 1262: 1242: 1216: 1191: 1167: 1147: 1118: 1092: 1066: 1046: 1012: 992: 957: 921: 872: 826: 802: 776: 772:greatest element of 751: 731: 695: 663: 637: 608: 586: 556: 536: 516: 484: 458: 429: 407: 403:greatest element of 377: 348: 312: 282: 262: 234: 214: 190: 96: 76: 56: 32: 6910:so it follows that 6745:is incomparable to 6458:must hold for some 6262:see above. — 6223:{\displaystyle M=g} 6204:is greatest, hence 5560:has no upper bound. 5496:, the set of pairs 4434:greatest elements. 4319:are comparable and 4046:maximal element of 3790:that element being 2629:totally ordered set 2560:maximal element of 1557:the definition of " 7028: 6990: 6949: 6929: 6900: 6871: 6842: 6816: 6790: 6755: 6735: 6708: 6643: 6613: 6593: 6560: 6540: 6510:{\displaystyle m,} 6507: 6484: 6448: 6408: 6378:{\displaystyle m.} 6375: 6352: 6319: 6302:{\displaystyle m,} 6299: 6276: 6240: 6220: 6194: 6174: 6148: 6119: 6093: 6063: 6034: 6005: 5985: 5952: 5912: 5869: 5829: 5802: 5766: 5740: 5723:{\displaystyle m,} 5720: 5697: 5621: 5582: 5550: 5518: 5482: 5450: 5422: 5390:{\displaystyle d,} 5387: 5364: 5344: 5312: 5284: 5256: 5228: 5199: 5155: 5126: 5107: 5026:{\displaystyle P.} 5023: 5000: 4981:{\displaystyle P,} 4978: 4955: 4930: 4907: 4859: 4839: 4810: 4790: 4766: 4741: 4722:{\displaystyle g.} 4719: 4696: 4676: 4656: 4636: 4616: 4597:{\displaystyle S.} 4594: 4571: 4547: 4520: 4497: 4464: 4420: 4388: 4368: 4333: 4309: 4289: 4269: 4233: 4195: 4179:by declaring that 4169: 4149: 4127: 4103: 4071: 4032: 4012: 3983:{\displaystyle P,} 3980: 3953: 3933: 3901: 3881: 3861: 3836:In contrast, if a 3823: 3800: 3780: 3754: 3734: 3714: 3682: 3652: 3632: 3608: 3588: 3552: 3532: 3506: 3480: 3460: 3434: 3405: 3389:by declaring that 3379: 3359: 3333: 3305: 3286:are ignored) then 3276: 3256: 3226: 3193: 3161: 3134:{\displaystyle P.} 3131: 3104: 3075:{\displaystyle P.} 3072: 3045: 3013: 2987: 2958: 2926: 2889: 2869: 2849: 2833:(which means that 2825:; they are called 2815: 2789: 2759: 2727: 2695: 2675: 2612: 2582: 2548: 2519: 2493: 2463: 2443: 2413: 2378: 2349: 2320: 2288: 2262: 2236: 2203: 2172: 2160: 2086: 2065: 2047:to simultaneously 2037: 2017: 1993: 1969: 1949: 1922: 1901: 1880: 1859: 1839: 1815: 1794: 1774: 1754: 1734: 1710: 1681: 1655: 1629: 1608: 1587: 1567: 1547: 1521:{\displaystyle S.} 1518: 1501:if and only if it 1491: 1471: 1451: 1431: 1411: 1391: 1371: 1340: 1308: 1288: 1268: 1248: 1228: 1203:{\displaystyle S.} 1200: 1173: 1153: 1133: 1104: 1078: 1052: 1030: 998: 972: 939: 893: 844: 808: 793:. The terminology 782: 757: 737: 713: 678: 649: 620: 592: 568: 542: 522: 499: 470: 441: 413: 389: 363: 330: 294:{\displaystyle S.} 291: 268: 240: 220: 196: 172: 156: 92:". The red subset 82: 62: 38: 7088:978-0-521-78451-1 7060:topological space 6952:{\displaystyle m} 6758:{\displaystyle m} 6616:{\displaystyle m} 6563:{\displaystyle m} 6322:{\displaystyle m} 6279:{\displaystyle S} 6243:{\displaystyle M} 6197:{\displaystyle g} 6151:{\displaystyle M} 6008:{\displaystyle S} 5988:{\displaystyle g} 5743:{\displaystyle m} 5700:{\displaystyle S} 5367:{\displaystyle c} 5354:has upper bounds 5143:Let the relation 4958:{\displaystyle S} 4933:{\displaystyle S} 4862:{\displaystyle S} 4813:{\displaystyle P} 4793:{\displaystyle S} 4769:{\displaystyle P} 4744:{\displaystyle S} 4699:{\displaystyle S} 4679:{\displaystyle S} 4659:{\displaystyle g} 4639:{\displaystyle S} 4619:{\displaystyle g} 4574:{\displaystyle S} 4550:{\displaystyle S} 4530:can have at most 4523:{\displaystyle S} 4391:{\displaystyle R} 4336:{\displaystyle R} 4312:{\displaystyle R} 4292:{\displaystyle R} 4172:{\displaystyle R} 4130:{\displaystyle R} 4035:{\displaystyle g} 3956:{\displaystyle g} 3904:{\displaystyle g} 3884:{\displaystyle g} 3803:{\displaystyle m} 3757:{\displaystyle m} 3737:{\displaystyle S} 3655:{\displaystyle S} 3635:{\displaystyle S} 3611:{\displaystyle S} 3555:{\displaystyle S} 3483:{\displaystyle S} 3382:{\displaystyle S} 3336:{\displaystyle S} 3279:{\displaystyle m} 2892:{\displaystyle x} 2879:), every element 2872:{\displaystyle x} 2698:{\displaystyle m} 2678:{\displaystyle g} 2466:{\displaystyle S} 2359:then necessarily 2291:{\displaystyle S} 2106:least upper bound 2089:{\displaystyle P} 2068:{\displaystyle S} 2040:{\displaystyle S} 2020:{\displaystyle S} 1996:{\displaystyle S} 1972:{\displaystyle u} 1925:{\displaystyle S} 1904:{\displaystyle S} 1883:{\displaystyle P} 1862:{\displaystyle S} 1842:{\displaystyle u} 1818:{\displaystyle S} 1797:{\displaystyle S} 1777:{\displaystyle g} 1757:{\displaystyle S} 1737:{\displaystyle g} 1632:{\displaystyle u} 1611:{\displaystyle S} 1590:{\displaystyle S} 1570:{\displaystyle u} 1494:{\displaystyle S} 1474:{\displaystyle P} 1454:{\displaystyle S} 1434:{\displaystyle P} 1414:{\displaystyle S} 1394:{\displaystyle S} 1311:{\displaystyle S} 1291:{\displaystyle g} 1271:{\displaystyle S} 1251:{\displaystyle g} 1176:{\displaystyle P} 1156:{\displaystyle S} 1055:{\displaystyle u} 1001:{\displaystyle S} 811:{\displaystyle S} 798:least element of 785:{\displaystyle S} 760:{\displaystyle S} 740:{\displaystyle S} 595:{\displaystyle S} 582:least element of 545:{\displaystyle S} 525:{\displaystyle s} 416:{\displaystyle S} 271:{\displaystyle S} 243:{\displaystyle S} 223:{\displaystyle S} 199:{\displaystyle S} 85:{\displaystyle y} 65:{\displaystyle x} 41:{\displaystyle P} 7118: 7092: 7077:(2nd ed.). 7063: 7056: 7039: 7037: 7035: 7034: 7029: 6999: 6997: 6996: 6991: 6966: 6960: 6958: 6956: 6955: 6950: 6939:In other words, 6938: 6936: 6935: 6930: 6909: 6907: 6906: 6901: 6880: 6878: 6877: 6872: 6851: 6849: 6848: 6843: 6825: 6823: 6822: 6817: 6799: 6797: 6796: 6791: 6772: 6766: 6764: 6762: 6761: 6756: 6744: 6742: 6741: 6736: 6734: 6733: 6717: 6715: 6714: 6709: 6701: 6700: 6682: 6681: 6669: 6668: 6652: 6650: 6649: 6644: 6639: 6638: 6622: 6620: 6619: 6614: 6602: 6600: 6599: 6594: 6586: 6585: 6569: 6567: 6566: 6561: 6549: 6547: 6546: 6541: 6539: 6538: 6516: 6514: 6513: 6508: 6493: 6491: 6490: 6485: 6474: 6473: 6457: 6455: 6454: 6449: 6447: 6446: 6434: 6433: 6417: 6415: 6414: 6409: 6401: 6400: 6384: 6382: 6381: 6376: 6361: 6359: 6358: 6353: 6345: 6344: 6328: 6326: 6325: 6320: 6308: 6306: 6305: 6300: 6285: 6283: 6282: 6277: 6257: 6251: 6249: 6247: 6246: 6241: 6229: 6227: 6226: 6221: 6203: 6201: 6200: 6195: 6183: 6181: 6180: 6175: 6157: 6155: 6154: 6149: 6136: 6130: 6128: 6126: 6125: 6120: 6102: 6100: 6099: 6094: 6077:, this renders ( 6072: 6070: 6069: 6064: 6043: 6041: 6040: 6035: 6014: 6012: 6011: 6006: 5994: 5992: 5991: 5986: 5973: 5967: 5961: 5959: 5958: 5953: 5951: 5950: 5938: 5937: 5921: 5919: 5918: 5913: 5908: 5907: 5895: 5894: 5878: 5876: 5875: 5870: 5868: 5867: 5855: 5854: 5838: 5836: 5835: 5830: 5828: 5827: 5811: 5809: 5808: 5803: 5801: 5800: 5783: 5777: 5776:" was redundant. 5775: 5773: 5772: 5767: 5749: 5747: 5746: 5741: 5729: 5727: 5726: 5721: 5706: 5704: 5703: 5698: 5685: 5630: 5628: 5627: 5622: 5591: 5589: 5588: 5583: 5581: 5580: 5575: 5559: 5557: 5556: 5551: 5527: 5525: 5524: 5519: 5491: 5489: 5488: 5483: 5481: 5480: 5475: 5459: 5457: 5456: 5451: 5446: 5431: 5429: 5428: 5423: 5418: 5402:rational numbers 5396: 5394: 5393: 5388: 5373: 5371: 5370: 5365: 5353: 5351: 5350: 5345: 5321: 5319: 5318: 5313: 5293: 5291: 5290: 5285: 5265: 5263: 5262: 5257: 5237: 5235: 5234: 5229: 5208: 5206: 5205: 5200: 5164: 5162: 5161: 5156: 5135: 5133: 5132: 5127: 5125: 5032: 5030: 5029: 5024: 5009: 5007: 5006: 5001: 4987: 4985: 4984: 4979: 4964: 4962: 4961: 4956: 4939: 4937: 4936: 4931: 4916: 4914: 4913: 4908: 4868: 4866: 4865: 4860: 4848: 4846: 4845: 4840: 4819: 4817: 4816: 4811: 4799: 4797: 4796: 4791: 4775: 4773: 4772: 4767: 4750: 4748: 4747: 4742: 4728: 4726: 4725: 4720: 4705: 4703: 4702: 4697: 4685: 4683: 4682: 4677: 4665: 4663: 4662: 4657: 4645: 4643: 4642: 4637: 4625: 4623: 4622: 4617: 4603: 4601: 4600: 4595: 4580: 4578: 4577: 4572: 4556: 4554: 4553: 4548: 4529: 4527: 4526: 4521: 4506: 4504: 4503: 4498: 4473: 4471: 4470: 4465: 4442:Throughout, let 4429: 4427: 4426: 4421: 4397: 4395: 4394: 4389: 4377: 4375: 4374: 4369: 4342: 4340: 4339: 4334: 4318: 4316: 4315: 4310: 4298: 4296: 4295: 4290: 4278: 4276: 4275: 4270: 4242: 4240: 4239: 4234: 4204: 4202: 4201: 4196: 4178: 4176: 4175: 4170: 4158: 4156: 4155: 4150: 4136: 4134: 4133: 4128: 4112: 4110: 4109: 4104: 4080: 4078: 4077: 4072: 4041: 4039: 4038: 4033: 4021: 4019: 4018: 4013: 3989: 3987: 3986: 3981: 3962: 3960: 3959: 3954: 3942: 3940: 3939: 3934: 3910: 3908: 3907: 3902: 3890: 3888: 3887: 3882: 3870: 3868: 3867: 3862: 3832: 3830: 3829: 3824: 3809: 3807: 3806: 3801: 3789: 3787: 3786: 3781: 3763: 3761: 3760: 3755: 3743: 3741: 3740: 3735: 3723: 3721: 3720: 3715: 3691: 3689: 3688: 3683: 3661: 3659: 3658: 3653: 3641: 3639: 3638: 3633: 3617: 3615: 3614: 3609: 3597: 3595: 3594: 3589: 3561: 3559: 3558: 3553: 3541: 3539: 3538: 3533: 3515: 3513: 3512: 3507: 3489: 3487: 3486: 3481: 3469: 3467: 3466: 3461: 3443: 3441: 3440: 3435: 3414: 3412: 3411: 3406: 3388: 3386: 3385: 3380: 3368: 3366: 3365: 3360: 3342: 3340: 3339: 3334: 3314: 3312: 3311: 3306: 3285: 3283: 3282: 3277: 3265: 3263: 3262: 3257: 3235: 3233: 3232: 3227: 3202: 3200: 3199: 3194: 3170: 3168: 3167: 3162: 3140: 3138: 3137: 3132: 3113: 3111: 3110: 3105: 3081: 3079: 3078: 3073: 3054: 3052: 3051: 3046: 3022: 3020: 3019: 3014: 2996: 2994: 2993: 2988: 2967: 2965: 2964: 2959: 2935: 2933: 2932: 2927: 2898: 2896: 2895: 2890: 2878: 2876: 2875: 2870: 2858: 2856: 2855: 2850: 2824: 2822: 2821: 2816: 2798: 2796: 2795: 2790: 2768: 2766: 2765: 2760: 2736: 2734: 2733: 2728: 2704: 2702: 2701: 2696: 2684: 2682: 2681: 2676: 2654:absolute extrema 2649:absolute minimum 2637:absolute maximum 2621: 2619: 2618: 2613: 2591: 2589: 2588: 2583: 2557: 2555: 2554: 2549: 2528: 2526: 2525: 2520: 2502: 2500: 2499: 2494: 2472: 2470: 2469: 2464: 2452: 2450: 2449: 2444: 2422: 2420: 2419: 2414: 2387: 2385: 2384: 2379: 2358: 2356: 2355: 2350: 2329: 2327: 2326: 2321: 2297: 2295: 2294: 2289: 2272:is said to be a 2271: 2269: 2268: 2263: 2245: 2243: 2242: 2237: 2212: 2210: 2209: 2204: 2169: 2167: 2166: 2161: 2095: 2093: 2092: 2087: 2074: 2072: 2071: 2066: 2046: 2044: 2043: 2038: 2026: 2024: 2023: 2018: 2002: 2000: 1999: 1994: 1978: 1976: 1975: 1970: 1958: 1956: 1955: 1950: 1931: 1929: 1928: 1923: 1910: 1908: 1907: 1902: 1889: 1887: 1886: 1881: 1868: 1866: 1865: 1860: 1848: 1846: 1845: 1840: 1824: 1822: 1821: 1816: 1803: 1801: 1800: 1795: 1783: 1781: 1780: 1775: 1763: 1761: 1760: 1755: 1743: 1741: 1740: 1735: 1719: 1717: 1716: 1711: 1690: 1688: 1687: 1682: 1664: 1662: 1661: 1656: 1638: 1636: 1635: 1630: 1617: 1615: 1614: 1609: 1596: 1594: 1593: 1588: 1576: 1574: 1573: 1568: 1556: 1554: 1553: 1548: 1527: 1525: 1524: 1519: 1500: 1498: 1497: 1492: 1480: 1478: 1477: 1472: 1460: 1458: 1457: 1452: 1440: 1438: 1437: 1432: 1420: 1418: 1417: 1412: 1400: 1398: 1397: 1392: 1380: 1378: 1377: 1372: 1349: 1347: 1346: 1341: 1317: 1315: 1314: 1309: 1297: 1295: 1294: 1289: 1277: 1275: 1274: 1269: 1257: 1255: 1254: 1249: 1237: 1235: 1234: 1229: 1209: 1207: 1206: 1201: 1182: 1180: 1179: 1174: 1162: 1160: 1159: 1154: 1142: 1140: 1139: 1134: 1113: 1111: 1110: 1105: 1087: 1085: 1084: 1079: 1061: 1059: 1058: 1053: 1039: 1037: 1036: 1031: 1007: 1005: 1004: 999: 981: 979: 978: 973: 948: 946: 945: 940: 902: 900: 899: 894: 853: 851: 850: 845: 817: 815: 814: 809: 791: 789: 788: 783: 766: 764: 763: 758: 746: 744: 743: 738: 722: 720: 719: 714: 687: 685: 684: 679: 658: 656: 655: 650: 629: 627: 626: 621: 601: 599: 598: 593: 577: 575: 574: 569: 551: 549: 548: 543: 531: 529: 528: 523: 508: 506: 505: 500: 479: 477: 476: 471: 450: 448: 447: 442: 422: 420: 419: 414: 398: 396: 395: 390: 372: 370: 369: 364: 339: 337: 336: 331: 300: 298: 297: 292: 277: 275: 274: 269: 249: 247: 246: 241: 229: 227: 226: 221: 205: 203: 202: 197: 184:greatest element 178:, especially in 165: 163: 162: 157: 91: 89: 88: 83: 71: 69: 68: 63: 47: 45: 44: 39: 7126: 7125: 7121: 7120: 7119: 7117: 7116: 7115: 7096: 7095: 7089: 7067: 7066: 7057: 7053: 7048: 7043: 7042: 7005: 7002: 7001: 6973: 6970: 6969: 6967: 6963: 6944: 6941: 6940: 6915: 6912: 6911: 6886: 6883: 6882: 6857: 6854: 6853: 6831: 6828: 6827: 6805: 6802: 6801: 6779: 6776: 6775: 6773: 6769: 6750: 6747: 6746: 6729: 6725: 6723: 6720: 6719: 6696: 6692: 6677: 6673: 6664: 6660: 6658: 6655: 6654: 6634: 6630: 6628: 6625: 6624: 6608: 6605: 6604: 6581: 6577: 6575: 6572: 6571: 6555: 6552: 6551: 6534: 6530: 6522: 6519: 6518: 6499: 6496: 6495: 6469: 6465: 6463: 6460: 6459: 6442: 6438: 6429: 6425: 6423: 6420: 6419: 6396: 6392: 6390: 6387: 6386: 6367: 6364: 6363: 6340: 6336: 6334: 6331: 6330: 6314: 6311: 6310: 6291: 6288: 6287: 6271: 6268: 6267: 6258: 6254: 6235: 6232: 6231: 6209: 6206: 6205: 6189: 6186: 6185: 6163: 6160: 6159: 6143: 6140: 6139: 6137: 6133: 6108: 6105: 6104: 6082: 6079: 6078: 6049: 6046: 6045: 6020: 6017: 6016: 6000: 5997: 5996: 5980: 5977: 5976: 5974: 5970: 5946: 5942: 5933: 5929: 5927: 5924: 5923: 5903: 5899: 5890: 5886: 5884: 5881: 5880: 5863: 5859: 5850: 5846: 5844: 5841: 5840: 5823: 5819: 5817: 5814: 5813: 5796: 5792: 5790: 5787: 5786: 5784: 5780: 5755: 5752: 5751: 5735: 5732: 5731: 5712: 5709: 5708: 5692: 5689: 5688: 5686: 5682: 5677: 5659:(infimum limit) 5638: 5601: 5598: 5597: 5576: 5571: 5570: 5568: 5565: 5564: 5533: 5530: 5529: 5501: 5498: 5497: 5476: 5471: 5470: 5468: 5465: 5464: 5442: 5440: 5437: 5436: 5414: 5412: 5409: 5408: 5379: 5376: 5375: 5359: 5356: 5355: 5327: 5324: 5323: 5298: 5295: 5294: 5270: 5267: 5266: 5242: 5239: 5238: 5214: 5211: 5210: 5170: 5167: 5166: 5148: 5145: 5144: 5121: 5119: 5116: 5115: 5096: 5053: 5039: 5015: 5012: 5011: 4993: 4990: 4989: 4970: 4967: 4966: 4950: 4947: 4946: 4925: 4922: 4921: 4878: 4875: 4874: 4854: 4851: 4850: 4832: 4829: 4828: 4822:if, and only if 4805: 4802: 4801: 4785: 4782: 4781: 4761: 4758: 4757: 4736: 4733: 4732: 4711: 4708: 4707: 4691: 4688: 4687: 4671: 4668: 4667: 4651: 4648: 4647: 4631: 4628: 4627: 4611: 4608: 4607: 4586: 4583: 4582: 4566: 4563: 4562: 4542: 4539: 4538: 4515: 4512: 4511: 4483: 4480: 4479: 4447: 4444: 4443: 4440: 4403: 4400: 4399: 4383: 4380: 4379: 4348: 4345: 4344: 4328: 4325: 4324: 4304: 4301: 4300: 4284: 4281: 4280: 4252: 4249: 4248: 4247:preordered set 4213: 4210: 4209: 4184: 4181: 4180: 4164: 4161: 4160: 4142: 4139: 4138: 4122: 4119: 4118: 4086: 4083: 4082: 4051: 4048: 4047: 4027: 4024: 4023: 3995: 3992: 3991: 3972: 3969: 3968: 3948: 3945: 3944: 3916: 3913: 3912: 3896: 3893: 3892: 3876: 3873: 3872: 3844: 3841: 3840: 3815: 3812: 3811: 3795: 3792: 3791: 3769: 3766: 3765: 3749: 3746: 3745: 3729: 3726: 3725: 3697: 3694: 3693: 3671: 3668: 3667: 3647: 3644: 3643: 3627: 3624: 3623: 3603: 3600: 3599: 3571: 3568: 3567: 3547: 3544: 3543: 3521: 3518: 3517: 3495: 3492: 3491: 3475: 3472: 3471: 3449: 3446: 3445: 3420: 3417: 3416: 3415:if and only if 3394: 3391: 3390: 3374: 3371: 3370: 3352: 3349: 3348: 3328: 3325: 3324: 3291: 3288: 3287: 3271: 3268: 3267: 3245: 3242: 3241: 3212: 3209: 3208: 3176: 3173: 3172: 3150: 3147: 3146: 3123: 3120: 3119: 3087: 3084: 3083: 3064: 3061: 3060: 3028: 3025: 3024: 3002: 2999: 2998: 2973: 2970: 2969: 2941: 2938: 2937: 2915: 2912: 2911: 2884: 2881: 2880: 2864: 2861: 2860: 2838: 2835: 2834: 2804: 2801: 2800: 2778: 2775: 2774: 2769:are said to be 2742: 2739: 2738: 2710: 2707: 2706: 2690: 2687: 2686: 2670: 2667: 2666: 2598: 2595: 2594: 2565: 2562: 2561: 2534: 2531: 2530: 2508: 2505: 2504: 2482: 2479: 2478: 2458: 2455: 2454: 2432: 2429: 2428: 2396: 2393: 2392: 2364: 2361: 2360: 2335: 2332: 2331: 2309: 2306: 2305: 2283: 2280: 2279: 2276:maximal element 2251: 2248: 2247: 2222: 2219: 2218: 2186: 2183: 2182: 2176:maximal element 2125: 2122: 2121: 2114: 2081: 2078: 2077: 2060: 2057: 2056: 2032: 2029: 2028: 2012: 2009: 2008: 1988: 1985: 1984: 1964: 1961: 1960: 1938: 1935: 1934: 1917: 1914: 1913: 1896: 1893: 1892: 1875: 1872: 1871: 1854: 1851: 1850: 1834: 1831: 1830: 1810: 1807: 1806: 1789: 1786: 1785: 1769: 1766: 1765: 1764:if and only if 1749: 1746: 1745: 1729: 1726: 1725: 1696: 1693: 1692: 1670: 1667: 1666: 1644: 1641: 1640: 1624: 1621: 1620: 1603: 1600: 1599: 1582: 1579: 1578: 1562: 1559: 1558: 1533: 1530: 1529: 1510: 1507: 1506: 1486: 1483: 1482: 1466: 1463: 1462: 1446: 1443: 1442: 1426: 1423: 1422: 1406: 1403: 1402: 1386: 1383: 1382: 1357: 1354: 1353: 1323: 1320: 1319: 1303: 1300: 1299: 1283: 1280: 1279: 1278:if and only if 1263: 1260: 1259: 1243: 1240: 1239: 1217: 1214: 1213: 1192: 1189: 1188: 1168: 1165: 1164: 1148: 1145: 1144: 1119: 1116: 1115: 1093: 1090: 1089: 1067: 1064: 1063: 1047: 1044: 1043: 1013: 1010: 1009: 993: 990: 989: 958: 955: 954: 922: 919: 918: 908: 873: 870: 869: 827: 824: 823: 803: 800: 799: 777: 774: 773: 752: 749: 748: 732: 729: 728: 696: 693: 692: 664: 661: 660: 638: 635: 634: 609: 606: 605: 587: 584: 583: 557: 554: 553: 537: 534: 533: 517: 514: 513: 485: 482: 481: 459: 456: 455: 430: 427: 426: 408: 405: 404: 378: 375: 374: 349: 346: 345: 313: 310: 309: 306: 283: 280: 279: 263: 260: 259: 235: 232: 231: 215: 212: 211: 191: 188: 187: 97: 94: 93: 77: 74: 73: 57: 54: 53: 33: 30: 29: 19: 12: 11: 5: 7124: 7114: 7113: 7108: 7094: 7093: 7087: 7065: 7064: 7050: 7049: 7047: 7044: 7041: 7040: 7027: 7024: 7021: 7018: 7015: 7012: 7009: 6989: 6986: 6983: 6980: 6977: 6961: 6948: 6928: 6925: 6922: 6919: 6899: 6896: 6893: 6890: 6870: 6867: 6864: 6861: 6841: 6838: 6835: 6815: 6812: 6809: 6789: 6786: 6783: 6767: 6754: 6732: 6728: 6707: 6704: 6699: 6695: 6691: 6688: 6685: 6680: 6676: 6672: 6667: 6663: 6642: 6637: 6633: 6612: 6592: 6589: 6584: 6580: 6559: 6537: 6533: 6529: 6526: 6506: 6503: 6483: 6480: 6477: 6472: 6468: 6445: 6441: 6437: 6432: 6428: 6407: 6404: 6399: 6395: 6374: 6371: 6351: 6348: 6343: 6339: 6318: 6298: 6295: 6275: 6252: 6239: 6219: 6216: 6213: 6193: 6173: 6170: 6167: 6147: 6131: 6118: 6115: 6112: 6092: 6089: 6086: 6062: 6059: 6056: 6053: 6033: 6030: 6027: 6024: 6004: 5984: 5968: 5949: 5945: 5941: 5936: 5932: 5911: 5906: 5902: 5898: 5893: 5889: 5866: 5862: 5858: 5853: 5849: 5826: 5822: 5799: 5795: 5778: 5765: 5762: 5759: 5739: 5719: 5716: 5696: 5679: 5678: 5676: 5673: 5672: 5671: 5665: 5660: 5654: 5649: 5644: 5637: 5634: 5633: 5632: 5620: 5617: 5614: 5611: 5608: 5605: 5579: 5574: 5561: 5549: 5546: 5543: 5540: 5537: 5517: 5514: 5511: 5508: 5505: 5479: 5474: 5461: 5449: 5445: 5433: 5421: 5417: 5405: 5398: 5386: 5383: 5363: 5343: 5340: 5337: 5334: 5331: 5311: 5308: 5305: 5302: 5283: 5280: 5277: 5274: 5255: 5252: 5249: 5246: 5227: 5224: 5221: 5218: 5198: 5195: 5192: 5189: 5186: 5183: 5180: 5177: 5174: 5153: 5141: 5124: 5110:The subset of 5095: 5092: 5052: 5051:Top and bottom 5049: 5048: 5047: 5038: 5035: 5034: 5033: 5022: 5019: 4998: 4977: 4974: 4954: 4943: 4942: 4941: 4929: 4906: 4903: 4900: 4897: 4894: 4891: 4888: 4885: 4882: 4858: 4837: 4825: 4809: 4789: 4776:satisfies the 4765: 4754: 4753: 4752: 4740: 4731:Thus if a set 4718: 4715: 4695: 4675: 4655: 4635: 4615: 4604: 4593: 4590: 4570: 4546: 4535: 4533: 4519: 4496: 4493: 4490: 4487: 4463: 4460: 4457: 4454: 4451: 4439: 4436: 4433: 4419: 4416: 4413: 4410: 4407: 4387: 4367: 4364: 4361: 4358: 4355: 4352: 4332: 4322: 4308: 4288: 4268: 4265: 4262: 4259: 4256: 4232: 4229: 4226: 4223: 4220: 4217: 4208:holds for all 4207: 4194: 4191: 4188: 4168: 4147: 4126: 4116: 4102: 4099: 4096: 4093: 4090: 4070: 4067: 4064: 4061: 4058: 4055: 4045: 4031: 4011: 4008: 4005: 4002: 3999: 3979: 3976: 3966: 3952: 3932: 3929: 3926: 3923: 3920: 3900: 3880: 3860: 3857: 3854: 3851: 3848: 3838:preordered set 3822: 3819: 3799: 3779: 3776: 3773: 3753: 3733: 3713: 3710: 3707: 3704: 3701: 3681: 3678: 3675: 3665: 3651: 3631: 3621: 3607: 3587: 3584: 3581: 3578: 3575: 3565: 3551: 3531: 3528: 3525: 3505: 3502: 3499: 3479: 3459: 3456: 3453: 3433: 3430: 3427: 3424: 3404: 3401: 3398: 3378: 3357: 3346: 3332: 3321: 3320: 3316: 3315: 3304: 3301: 3298: 3295: 3275: 3255: 3252: 3249: 3239: 3225: 3222: 3219: 3216: 3192: 3189: 3186: 3183: 3180: 3160: 3157: 3154: 3144: 3130: 3127: 3117: 3103: 3100: 3097: 3094: 3091: 3071: 3068: 3058: 3044: 3041: 3038: 3035: 3032: 3012: 3009: 3006: 2986: 2983: 2980: 2977: 2957: 2954: 2951: 2948: 2945: 2925: 2922: 2919: 2902: 2888: 2868: 2848: 2845: 2842: 2828: 2814: 2811: 2808: 2788: 2785: 2782: 2772: 2758: 2755: 2752: 2749: 2746: 2726: 2723: 2720: 2717: 2714: 2694: 2674: 2663: 2662: 2611: 2608: 2605: 2602: 2592: 2581: 2578: 2575: 2572: 2569: 2547: 2544: 2541: 2538: 2518: 2515: 2512: 2492: 2489: 2486: 2476: 2462: 2442: 2439: 2436: 2412: 2409: 2406: 2403: 2400: 2389: 2388: 2377: 2374: 2371: 2368: 2348: 2345: 2342: 2339: 2319: 2316: 2313: 2298: 2287: 2261: 2258: 2255: 2235: 2232: 2229: 2226: 2215:preordered set 2202: 2199: 2196: 2193: 2190: 2159: 2156: 2153: 2150: 2147: 2144: 2141: 2138: 2135: 2132: 2129: 2113: 2110: 2096: 2085: 2064: 2054: 2050: 2036: 2016: 2006: 1992: 1982: 1968: 1948: 1945: 1942: 1932: 1921: 1900: 1890: 1879: 1858: 1838: 1825: 1814: 1793: 1773: 1753: 1733: 1723: 1709: 1706: 1703: 1700: 1680: 1677: 1674: 1654: 1651: 1648: 1628: 1618: 1607: 1586: 1566: 1546: 1543: 1540: 1537: 1517: 1514: 1504: 1490: 1470: 1450: 1430: 1410: 1390: 1370: 1367: 1364: 1361: 1352: 1339: 1336: 1333: 1330: 1327: 1307: 1287: 1267: 1247: 1227: 1224: 1221: 1199: 1196: 1186: 1172: 1152: 1132: 1129: 1126: 1123: 1103: 1100: 1097: 1077: 1074: 1071: 1051: 1042:is an element 1040: 1029: 1026: 1023: 1020: 1017: 997: 971: 968: 965: 962: 951:preordered set 938: 935: 932: 929: 926: 907: 904: 892: 889: 886: 883: 880: 877: 867: 860: 843: 840: 837: 834: 831: 807: 797: 781: 771: 756: 736: 712: 709: 706: 703: 700: 689: 688: 677: 674: 671: 668: 648: 645: 642: 619: 616: 613: 603: 591: 578:is said to be 567: 564: 561: 541: 521: 510: 509: 498: 495: 492: 489: 469: 466: 463: 440: 437: 434: 424: 412: 399:is said to be 388: 385: 382: 362: 359: 356: 353: 342:preordered set 329: 326: 323: 320: 317: 305: 302: 290: 287: 267: 239: 219: 195: 155: 152: 149: 146: 143: 140: 137: 134: 131: 128: 125: 122: 119: 116: 113: 110: 107: 104: 101: 81: 61: 37: 17: 9: 6: 4: 3: 2: 7123: 7112: 7109: 7107: 7104: 7103: 7101: 7090: 7084: 7080: 7076: 7075: 7069: 7068: 7061: 7055: 7051: 7022: 7019: 7016: 7010: 7007: 6987: 6984: 6981: 6978: 6975: 6965: 6946: 6926: 6923: 6920: 6917: 6897: 6894: 6891: 6888: 6868: 6865: 6862: 6859: 6839: 6836: 6833: 6813: 6810: 6807: 6787: 6784: 6781: 6771: 6752: 6730: 6726: 6705: 6702: 6697: 6693: 6689: 6686: 6683: 6678: 6674: 6670: 6665: 6661: 6640: 6635: 6631: 6610: 6590: 6587: 6582: 6578: 6557: 6535: 6531: 6527: 6524: 6504: 6501: 6481: 6478: 6475: 6470: 6466: 6443: 6439: 6435: 6430: 6426: 6405: 6402: 6397: 6393: 6372: 6369: 6349: 6346: 6341: 6337: 6316: 6296: 6293: 6273: 6265: 6261: 6256: 6237: 6217: 6214: 6211: 6191: 6171: 6168: 6165: 6145: 6135: 6129:) impossible. 6116: 6113: 6110: 6090: 6087: 6084: 6076: 6060: 6057: 6054: 6051: 6031: 6028: 6025: 6022: 6002: 5982: 5972: 5965: 5947: 5943: 5939: 5934: 5930: 5909: 5904: 5900: 5896: 5891: 5887: 5864: 5860: 5856: 5851: 5847: 5824: 5820: 5797: 5793: 5782: 5763: 5760: 5757: 5737: 5717: 5714: 5694: 5684: 5680: 5669: 5666: 5664: 5661: 5658: 5655: 5653: 5650: 5648: 5645: 5643: 5640: 5639: 5618: 5612: 5609: 5606: 5595: 5577: 5562: 5547: 5544: 5541: 5538: 5535: 5512: 5509: 5506: 5495: 5494:product order 5477: 5462: 5447: 5434: 5419: 5406: 5403: 5399: 5384: 5381: 5361: 5338: 5335: 5332: 5309: 5306: 5303: 5300: 5281: 5278: 5275: 5272: 5253: 5250: 5247: 5244: 5225: 5222: 5219: 5216: 5193: 5190: 5187: 5184: 5181: 5178: 5175: 5151: 5142: 5139: 5113: 5109: 5108: 5104: 5103:Hasse diagram 5100: 5091: 5089: 5084: 5082: 5078: 5074: 5073:bounded poset 5070: 5066: 5062: 5058: 5045: 5041: 5040: 5020: 5017: 4996: 4975: 4972: 4952: 4944: 4927: 4919: 4918: 4901: 4898: 4895: 4892: 4889: 4883: 4880: 4872: 4856: 4835: 4826: 4823: 4807: 4787: 4779: 4763: 4755: 4738: 4730: 4729: 4716: 4713: 4693: 4673: 4653: 4633: 4613: 4605: 4591: 4588: 4568: 4560: 4544: 4536: 4531: 4517: 4509: 4508: 4507: 4494: 4491: 4488: 4485: 4477: 4458: 4455: 4452: 4435: 4431: 4430:has multiple 4414: 4411: 4408: 4385: 4365: 4359: 4356: 4353: 4330: 4320: 4306: 4286: 4263: 4260: 4257: 4246: 4230: 4227: 4224: 4221: 4218: 4215: 4205: 4192: 4189: 4186: 4166: 4145: 4124: 4114: 4097: 4094: 4091: 4068: 4062: 4059: 4056: 4043: 4029: 4006: 4003: 4000: 3977: 3974: 3964: 3950: 3927: 3924: 3921: 3898: 3878: 3855: 3852: 3849: 3839: 3834: 3820: 3817: 3797: 3777: 3774: 3771: 3751: 3731: 3708: 3705: 3702: 3679: 3676: 3673: 3663: 3649: 3629: 3619: 3605: 3582: 3579: 3576: 3563: 3549: 3529: 3526: 3523: 3503: 3500: 3497: 3490:then neither 3477: 3457: 3454: 3451: 3431: 3428: 3425: 3422: 3402: 3399: 3396: 3376: 3355: 3344: 3330: 3323:Suppose that 3318: 3317: 3302: 3299: 3296: 3293: 3273: 3253: 3250: 3247: 3240: 3237: 3223: 3220: 3217: 3214: 3206: 3205: 3204: 3187: 3184: 3181: 3158: 3155: 3152: 3142: 3128: 3125: 3115: 3098: 3095: 3092: 3069: 3066: 3056: 3039: 3036: 3033: 3010: 3007: 3004: 2984: 2981: 2978: 2975: 2952: 2949: 2946: 2923: 2920: 2917: 2908: 2906: 2900: 2886: 2866: 2846: 2843: 2840: 2832: 2826: 2812: 2809: 2806: 2786: 2783: 2780: 2770: 2756: 2753: 2750: 2747: 2744: 2721: 2718: 2715: 2692: 2672: 2660: 2659: 2658: 2656: 2655: 2650: 2646: 2642: 2641:local maximum 2638: 2634: 2630: 2625: 2622: 2609: 2606: 2603: 2600: 2576: 2573: 2570: 2559: 2545: 2542: 2539: 2536: 2516: 2513: 2510: 2490: 2487: 2484: 2474: 2460: 2440: 2437: 2434: 2426: 2407: 2404: 2401: 2375: 2372: 2369: 2366: 2346: 2343: 2340: 2337: 2317: 2314: 2311: 2303: 2302: 2301: 2299: 2285: 2277: 2274: 2259: 2256: 2253: 2233: 2230: 2227: 2224: 2216: 2197: 2194: 2191: 2179: 2177: 2154: 2151: 2148: 2145: 2142: 2139: 2136: 2130: 2127: 2118: 2109: 2107: 2103: 2098: 2083: 2075: 2062: 2052: 2048: 2034: 2014: 2004: 1990: 1980: 1966: 1946: 1943: 1940: 1919: 1911: 1898: 1877: 1869: 1856: 1836: 1827: 1812: 1804: 1791: 1771: 1751: 1731: 1721: 1707: 1704: 1701: 1698: 1678: 1675: 1672: 1652: 1649: 1646: 1626: 1605: 1597: 1584: 1564: 1544: 1541: 1538: 1535: 1515: 1512: 1502: 1488: 1468: 1448: 1428: 1408: 1388: 1368: 1365: 1362: 1359: 1350: 1334: 1331: 1328: 1305: 1285: 1265: 1245: 1225: 1222: 1219: 1210: 1197: 1194: 1184: 1170: 1150: 1130: 1127: 1124: 1121: 1101: 1098: 1095: 1075: 1072: 1069: 1049: 1041: 1024: 1021: 1018: 995: 987: 984: 969: 966: 963: 960: 952: 933: 930: 927: 915: 913: 903: 890: 884: 881: 878: 866: 862: 859: 855: 838: 835: 832: 820: 818: 805: 795: 792: 779: 769: 754: 734: 726: 707: 704: 701: 675: 672: 669: 666: 646: 643: 640: 633: 632: 631: 617: 614: 611: 602: 589: 579: 565: 562: 559: 539: 519: 496: 493: 490: 487: 467: 464: 461: 454: 453: 452: 438: 435: 432: 423: 410: 400: 386: 383: 380: 360: 357: 354: 351: 343: 324: 321: 318: 301: 288: 285: 265: 257: 253: 252:least element 237: 217: 209: 193: 185: 181: 177: 169: 150: 147: 144: 141: 138: 135: 132: 129: 126: 123: 120: 117: 114: 111: 108: 102: 99: 79: 59: 51: 35: 27: 26:Hasse diagram 23: 16: 7111:Superlatives 7106:Order theory 7073: 7054: 6964: 6770: 6550:contradicts 6263: 6259: 6255: 6134: 6075:antisymmetry 5971: 5964:antisymmetry 5781: 5683: 5209:be given by 5138:real numbers 5105:of example 2 5088:order theory 5085: 5072: 5068: 5064: 5060: 5056: 5054: 4441: 3835: 3345:at least two 3322: 3236: 2909: 2827:incomparable 2664: 2652: 2648: 2644: 2636: 2632: 2626: 2623: 2390: 2273: 2180: 2173: 2102:real numbers 2099: 1828: 1211: 983: 916: 912:upper bounds 909: 864: 857: 821: 794: 768: 690: 581: 511: 402: 307: 251: 186:of a subset 183: 180:order theory 173: 15: 6517:too, since 6250:is maximal. 4871:total order 4780:, a subset 4559:upper bound 4323:element of 3967:element of 3622:element of 3059:element in 2246:An element 1619:" becomes: 986:upper bound 373:An element 304:Definitions 254:is defined 250:. The term 176:mathematics 28:of the set 7100:Categories 7046:References 5922:and hence 5668:Well-order 4438:Properties 3470:belong to 2997:for every 2771:comparable 2503:such that 2477:exist any 2330:satisfies 1062:such that 723:is also a 6985:∈ 6921:≤ 6863:≤ 6837:≤ 6811:∈ 6785:∈ 6706:⋯ 6687:⋯ 6588:≤ 6476:∈ 6403:∈ 6347:∈ 6169:≤ 6114:≠ 6088:≤ 6055:≤ 6026:∈ 5897:≤ 5857:≤ 5758:≥ 5592:with the 5492:with the 5304:≤ 5276:≤ 5248:≤ 5220:≤ 5152:≤ 5042:A finite 4997:≤ 4836:≤ 4489:⊆ 4459:≤ 4415:≤ 4360:≤ 4264:≤ 4225:∈ 4190:≤ 4146:≤ 4098:≤ 4063:≤ 4007:≤ 3928:≤ 3856:≤ 3818:≤ 3772:≥ 3709:≤ 3677:∈ 3583:≤ 3527:≤ 3501:≤ 3455:≠ 3400:≤ 3356:≤ 3297:≤ 3251:≤ 3218:∈ 3188:≤ 3156:∈ 3099:≤ 3040:≤ 3008:∈ 2979:≤ 2953:≤ 2921:∈ 2844:≤ 2831:reflexive 2810:≤ 2784:≤ 2754:∈ 2722:≤ 2577:≤ 2540:≠ 2514:≤ 2488:∈ 2438:∈ 2408:≤ 2370:≤ 2341:≤ 2315:∈ 2304:whenever 2257:∈ 2228:⊆ 2198:≤ 1720:which is 1702:∈ 1676:≤ 1650:∈ 1363:∈ 1335:≤ 1223:∈ 1125:∈ 1099:≤ 1073:∈ 1025:≤ 964:⊆ 934:≤ 885:≤ 839:≤ 708:≤ 670:∈ 644:≤ 615:∈ 563:∈ 491:∈ 465:≤ 436:∈ 384:∈ 355:⊆ 325:≤ 6260:Only if: 5636:See also 5322:The set 5112:integers 5094:Examples 5067:(0) and 5063:(⊤), or 5059:(⊥) and 4478:and let 4432:distinct 4245:directed 3666:element 3207:For all 2905:directed 2901:distinct 2217:and let 1944:∉ 1691:for all 1114:for all 953:and let 659:for all 480:for all 344:and let 72:divides 50:divisors 6826:either 5400:In the 4042:is the 2645:minimum 2633:maximum 1959:) then 1503:belongs 861:(resp. 7085:  6385:Hence 6230:since 6184:since 5057:bottom 4557:is an 4510:A set 4206:always 865:bottom 256:dually 182:, the 6044:then 5675:Notes 5528:with 5044:chain 4988:then 4869:is a 4646:then 4474:be a 4321:every 3965:every 3891:then 3664:every 3620:every 3057:every 2627:In a 2427:then 2423:is a 2213:be a 1238:then 1088:and 949:be a 868:) of 727:then 340:be a 206:of a 7083:ISBN 6774:Let 6703:< 6690:< 6684:< 6671:< 6623:and 6528:< 6436:< 6103:and 6015:and 5879:and 5812:and 5545:< 5539:< 5374:and 5069:unit 5065:zero 4243:The 4044:only 3764:and 3642:but 3562:are 3516:nor 3114:are 2647:and 2529:and 2181:Let 1979:can 1665:and 1421:(in 917:Let 308:Let 6968:If 6852:or 6264:If: 6138:If 6073:By 5975:If 5962:by 5785:If 5563:In 5463:In 5435:In 5407:In 5165:on 5136:of 5061:top 4965:of 4849:to 4800:of 4756:If 4606:If 4561:of 4532:one 4159:on 4115:not 4113:is 3990:if 3833:). 3444:If 3369:on 3116:not 2968:if 2799:or 2773:if 2475:not 2391:If 2278:of 2097:. 2076:in 2053:and 2049:not 1981:not 1912:in 1870:in 1829:If 1826:. 1805:in 1598:in 1505:to 1461:in 1351:and 1318:in 1212:If 1185:not 1183:is 1163:in 1008:in 988:of 982:An 914:. 858:top 822:If 796:the 770:the 691:If 604:if 425:if 174:In 48:of 7102:: 7081:. 5090:. 3564:in 3238:IF 3143:if 2604::= 2558:A 2005:is 863:a 856:a 580:a 401:a 151:30 145:15 139:10 7091:. 7062:. 7026:} 7023:b 7020:, 7017:a 7014:{ 7011:= 7008:S 6988:P 6982:b 6979:, 6976:a 6947:m 6927:. 6924:m 6918:s 6898:, 6895:s 6892:= 6889:m 6869:. 6866:s 6860:m 6840:m 6834:s 6814:S 6808:s 6788:S 6782:m 6753:m 6731:i 6727:s 6698:n 6694:s 6679:2 6675:s 6666:1 6662:s 6641:. 6636:1 6632:s 6611:m 6591:m 6583:2 6579:s 6558:m 6536:2 6532:s 6525:m 6505:, 6502:m 6482:. 6479:S 6471:2 6467:s 6444:2 6440:s 6431:1 6427:s 6406:S 6398:1 6394:s 6373:. 6370:m 6350:S 6342:1 6338:s 6317:m 6297:, 6294:m 6274:S 6238:M 6218:g 6215:= 6212:M 6192:g 6172:g 6166:M 6146:M 6117:s 6111:g 6091:s 6085:g 6061:. 6058:g 6052:s 6032:, 6029:S 6023:s 6003:S 5983:g 5966:. 5948:2 5944:g 5940:= 5935:1 5931:g 5910:, 5905:1 5901:g 5892:2 5888:g 5865:2 5861:g 5852:1 5848:g 5825:2 5821:g 5798:1 5794:g 5764:, 5761:m 5738:m 5718:, 5715:m 5695:S 5619:. 5616:) 5613:0 5610:, 5607:1 5604:( 5578:2 5573:R 5548:1 5542:x 5536:0 5516:) 5513:y 5510:, 5507:x 5504:( 5478:2 5473:R 5448:, 5444:R 5420:, 5416:R 5385:, 5382:d 5362:c 5342:} 5339:b 5336:, 5333:a 5330:{ 5310:. 5307:d 5301:b 5282:, 5279:c 5273:b 5254:, 5251:d 5245:a 5226:, 5223:c 5217:a 5197:} 5194:d 5191:, 5188:c 5185:, 5182:b 5179:, 5176:a 5173:{ 5140:. 5123:R 5021:. 5018:P 4976:, 4973:P 4953:S 4928:S 4905:} 4902:4 4899:, 4896:2 4893:, 4890:1 4887:{ 4884:= 4881:S 4873:( 4857:S 4808:P 4788:S 4764:P 4739:S 4717:. 4714:g 4694:S 4674:S 4654:g 4634:S 4614:g 4592:. 4589:S 4569:S 4545:S 4518:S 4495:. 4492:P 4486:S 4462:) 4456:, 4453:P 4450:( 4418:) 4412:, 4409:R 4406:( 4386:R 4366:. 4363:) 4357:, 4354:R 4351:( 4331:R 4307:R 4287:R 4267:) 4261:, 4258:R 4255:( 4231:. 4228:R 4222:j 4219:, 4216:i 4193:j 4187:i 4167:R 4125:R 4101:) 4095:, 4092:P 4089:( 4069:. 4066:) 4060:, 4057:P 4054:( 4030:g 4010:) 4004:, 4001:P 3998:( 3978:, 3975:P 3951:g 3931:) 3925:, 3922:P 3919:( 3899:g 3879:g 3859:) 3853:, 3850:P 3847:( 3821:m 3798:m 3778:, 3775:m 3752:m 3732:S 3712:) 3706:, 3703:S 3700:( 3680:S 3674:m 3650:S 3630:S 3606:S 3586:) 3580:, 3577:S 3574:( 3550:S 3530:i 3524:j 3504:j 3498:i 3478:S 3458:j 3452:i 3432:. 3429:j 3426:= 3423:i 3403:j 3397:i 3377:S 3331:S 3303:. 3300:m 3294:s 3274:m 3254:s 3248:m 3224:, 3221:P 3215:s 3191:) 3185:, 3182:P 3179:( 3159:P 3153:m 3129:. 3126:P 3102:) 3096:, 3093:P 3090:( 3070:. 3067:P 3043:) 3037:, 3034:P 3031:( 3011:P 3005:s 2985:, 2982:g 2976:s 2956:) 2950:, 2947:P 2944:( 2924:P 2918:g 2887:x 2867:x 2847:x 2841:x 2813:x 2807:y 2787:y 2781:x 2757:P 2751:y 2748:, 2745:x 2725:) 2719:, 2716:P 2713:( 2693:m 2673:g 2610:. 2607:P 2601:S 2580:) 2574:, 2571:P 2568:( 2546:. 2543:m 2537:s 2517:s 2511:m 2491:S 2485:s 2461:S 2441:S 2435:m 2411:) 2405:, 2402:P 2399:( 2376:. 2373:m 2367:s 2347:, 2344:s 2338:m 2318:S 2312:s 2286:S 2260:S 2254:m 2234:. 2231:P 2225:S 2201:) 2195:, 2192:P 2189:( 2158:} 2155:4 2152:, 2149:3 2146:, 2143:2 2140:, 2137:1 2134:{ 2131:= 2128:S 2084:P 2063:S 2035:S 2015:S 1991:S 1967:u 1947:S 1941:u 1920:S 1899:S 1878:P 1857:S 1837:u 1813:S 1792:S 1772:g 1752:S 1732:g 1708:, 1705:S 1699:s 1679:u 1673:s 1653:S 1647:u 1627:u 1606:S 1585:S 1565:u 1545:, 1542:S 1539:= 1536:P 1516:. 1513:S 1489:S 1469:P 1449:S 1429:P 1409:S 1389:S 1369:. 1366:S 1360:g 1338:) 1332:, 1329:P 1326:( 1306:S 1286:g 1266:S 1246:g 1226:P 1220:g 1198:. 1195:S 1171:P 1151:S 1131:. 1128:S 1122:s 1102:u 1096:s 1076:P 1070:u 1050:u 1028:) 1022:, 1019:P 1016:( 996:S 970:. 967:P 961:S 937:) 931:, 928:P 925:( 891:. 888:) 882:, 879:P 876:( 842:) 836:, 833:P 830:( 806:S 780:S 755:S 735:S 711:) 705:, 702:P 699:( 676:. 673:S 667:s 647:s 641:l 618:S 612:l 590:S 566:P 560:l 540:S 520:s 497:. 494:S 488:s 468:g 462:s 439:S 433:g 411:S 387:P 381:g 361:. 358:P 352:S 328:) 322:, 319:P 316:( 289:. 286:S 266:S 238:S 218:S 194:S 154:} 148:, 142:, 136:, 133:6 130:, 127:5 124:, 121:3 118:, 115:2 112:, 109:1 106:{ 103:= 100:S 80:y 60:x 36:P

Index


Hasse diagram
divisors
maximal and minimal elements
mathematics
order theory
partially ordered set
dually
preordered set
partially ordered set
upper bounds
preordered set
upper bound
real numbers
least upper bound

maximal element
preordered set
maximal element
partially ordered set
totally ordered set
local maximum
absolute extrema
reflexive
directed
preordered set
directed
partially ordered set
upper bound
ascending chain condition

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.