Knowledge

Gravitational wave

Source 📝

3063:
star is an inspiral, a spiral with decreasing radius. General relativity precisely describes these trajectories; in particular, the energy radiated in gravitational waves determines the rate of decrease in the period, defined as the time interval between successive periastrons (points of closest approach of the two stars). For the Hulse–Taylor pulsar, the predicted current change in radius is about 3 mm per orbit, and the change in the 7.75 hr period is about 2 seconds per year. Following a preliminary observation showing an orbital energy loss consistent with gravitational waves, careful timing observations by Taylor and Joel Weisberg dramatically confirmed the predicted period decrease to within 10%. With the improved statistics of more than 30 years of timing data since the pulsar's discovery, the observed change in the orbital period currently matches the prediction from gravitational radiation assumed by general relativity to within 0.2 percent. In 1993, spurred in part by this indirect detection of gravitational waves, the Nobel Committee awarded the Nobel Prize in Physics to Hulse and Taylor for "the discovery of a new type of pulsar, a discovery that has opened up new possibilities for the study of gravitation." The lifetime of this binary system, from the present to merger is estimated to be a few hundred million years.
1316:, a complete relativistic theory of gravitation. He conjectured, like Poincare, that the equation would produce gravitational waves, but, as he mentions in a letter to Schwarzschild in February 1916, these could not be similar to electromagnetic waves. Electromagnetic waves can be produced by dipole motion, requiring both a positive and a negative charge. Gravitation has no equivalent to negative charge. Einstein continued to work through the complexity of the equations of general relativity to find an alternative wave model. The result was published in June 1916, and there he came to the conclusion that the gravitational wave must propagate with the speed of light, and there must, in fact, be three types of gravitational waves dubbed longitudinal–longitudinal, transverse–longitudinal, and transverse–transverse by 38: 10594: 740: 1776: 2554: 3005: 3478: 3292: 3610: 1794:. If the dumbbell spins around its axis of symmetry, it will not radiate gravitational waves; if it tumbles end over end, as in the case of two planets orbiting each other, it will radiate gravitational waves. The heavier the dumbbell, and the faster it tumbles, the greater is the gravitational radiation it will give off. In an extreme case, such as when the two weights of the dumbbell are massive stars like neutron stars or black holes, orbiting each other quickly, then significant amounts of gravitational radiation would be given off. 3380:, which occurs because the lasers produce photons randomly; one analogy is to rainfall – the rate of rainfall, like the laser intensity, is measurable, but the raindrops, like photons, fall at random times, causing fluctuations around the average value. This leads to noise at the output of the detector, much like radio static. In addition, for sufficiently high laser power, the random momentum transferred to the test masses by the laser photons shakes the mirrors, masking signals of low frequencies. Thermal noise (e.g., 70: 3103: 2712:. After two supermassive black holes coalesce, emission of linear momentum can produce a "kick" with amplitude as large as 4000 km/s. This is fast enough to eject the coalesced black hole completely from its host galaxy. Even if the kick is too small to eject the black hole completely, it can remove it temporarily from the nucleus of the galaxy, after which it will oscillate about the center, eventually coming to rest. A kicked black hole can also carry a star cluster with it, forming a 1592: 1584: 1270: 2830:. It can be shown that any massless spin-2 field would give rise to a force indistinguishable from gravitation, because a massless spin-2 field must couple to (interact with) the stress–energy tensor in the same way that the gravitational field does; therefore if a massless spin-2 particle were ever discovered, it would be likely to be the graviton without further distinction from other massless spin-2 particles. Such a discovery would unite quantum theory with gravity. 10666: 41: 40: 45: 44: 39: 10107: 753: 46: 3451:, are also being developed. LISA's design calls for three test masses forming an equilateral triangle, with lasers from each spacecraft to each other spacecraft forming two independent interferometers. LISA is planned to occupy a solar orbit trailing the Earth, with each arm of the triangle being five million kilometers. This puts the detector in an excellent vacuum far from Earth-based sources of noise, though it will still be susceptible to heat, 3665:
2.73–2.78 solar masses. The inclusion of the Virgo detector in the observation effort allowed for an improvement of the localization of the source by a factor of 10. This in turn facilitated the electromagnetic follow-up of the event. In contrast to the case of binary black hole mergers, binary neutron star mergers were expected to yield an electromagnetic counterpart, that is, a light signal associated with the event. A gamma-ray burst (
965: 43: 10630: 10654: 10606: 10642: 1151: 10618: 1444:
this seems to have been floated independently by various people, including M.E. Gertsenshtein and V. I. Pustovoit in 1962, and Vladimir B. BraginskiÄ­ in 1966. The first prototypes were developed in the 1970s by Robert L. Forward and Rainer Weiss. In the decades that followed, ever more sensitive instruments were constructed, culminating in the construction of
1934: 2839:
phases, space had not yet become "transparent", so observations based upon light, radio waves, and other electromagnetic radiation that far back into time are limited or unavailable. Therefore, gravitational waves are expected in principle to have the potential to provide a wealth of observational data about the very early universe.
3070:) are in close orbits, they send out intense gravitational waves. As they spiral closer to each other, these waves become more intense. At some point they should become so intense that direct detection by their effect on objects on Earth or in space is possible. This direct detection is the goal of several large-scale experiments. 2566:
orbital frequency. Just before merger, the inspiral could be observed by LIGO if such a binary were close enough. LIGO has only a few minutes to observe this merger out of a total orbital lifetime that may have been billions of years. In August 2017, LIGO and Virgo observed the first binary neutron star inspiral in
2643:
into the surrounding space at extremely high velocities (up to 10% of the speed of light). Unless there is perfect spherical symmetry in these explosions (i.e., unless matter is spewed out evenly in all directions), there will be gravitational radiation from the explosion. This is because gravitational waves are
3502:
arrival of pulses from different pulsar pairs as a function of their angular separation in the sky. Although pulsar pulses travel through space for hundreds or thousands of years to reach us, pulsar timing arrays are sensitive to perturbations in their travel time of much less than a millionth of a second.
3300:: A beamsplitter (green line) splits coherent light (from the white box) into two beams which reflect off the mirrors (cyan oblongs); only one outgoing and reflected beam in each arm is shown, and separated for clarity. The reflected beams recombine and an interference pattern is detected (purple circle). 3701:
and B. Laurent theoretically proved that gravitational spin-2 electron transitions are possible in atoms. Compared to electric and magnetic transitions the emission probability is extremely low. Stimulated emission was discussed for increasing the efficiency of the process. Due to the lack of mirrors
3633:
of all the stars in the observable universe combined. The signal increased in frequency from 35 to 250 Hz over 10 cycles (5 orbits) as it rose in strength for a period of 0.2 second. The mass of the new merged black hole was 62 solar masses. Energy equivalent to three solar masses was emitted as
3505:
The most likely source of GWs to which pulsar timing arrays are sensitive are supermassive black hole binaries, which form from the collision of galaxies. In addition to individual binary systems, pulsar timing arrays are sensitive to a stochastic background of GWs made from the sum of GWs from many
3388:
noise and other forms of environmental vibration, and other 'non-stationary' noise sources; creaks in mechanical structures, lightning or other large electrical disturbances, etc. may also create noise masking an event or may even imitate an event. All of these must be taken into account and excluded
2847:
The difficulty in directly detecting gravitational waves means it is also difficult for a single detector to identify by itself the direction of a source. Therefore, multiple detectors are used, both to distinguish signals from other "noise" by confirming the signal is not of earthly origin, and also
1443:
This indirect detection of gravitational waves motivated further searches, despite Weber's discredited result. Some groups continued to improve Weber's original concept, while others pursued the detection of gravitational waves using laser interferometers. The idea of using a laser interferometer for
1420:
would drain our galaxy of energy on a timescale much shorter than its inferred age. These doubts were strengthened when, by the mid-1970s, repeated experiments from other groups building their own Weber bars across the globe failed to find any signals, and by the late 1970s consensus was that Weber's
1182:
In principle, gravitational waves can exist at any frequency. Very low frequency waves are detected using pulsar timing arrays. Astronomers monitor the timing of approximately 100 pulsars spread widely across our galaxy over the course of years. Detectable changes in the arrival time of their signals
3688:
In 2021, the detection of the first two neutron star-black hole binaries by the LIGO and VIRGO detectors was published in the Astrophysical Journal Letters, allowing to first set bounds on the quantity of such systems. No neutron star-black hole binary had ever been observed using conventional means
3492:
are rapidly rotating stars. A pulsar emits beams of radio waves that, like lighthouse beams, sweep through the sky as the pulsar rotates. The signal from a pulsar can be detected by radio telescopes as a series of regularly spaced pulses, essentially like the ticks of a clock. GWs affect the time it
3343:
that are 4 kilometers in length. These are at 90 degree angles to each other, with the light passing through 1 m diameter vacuum tubes running the entire 4 kilometers. A passing gravitational wave will slightly stretch one arm as it shortens the other. This is the motion to which
2674:
Many models of the Universe suggest that there was an inflationary epoch in the early history of the Universe when space expanded by a large factor in a very short amount of time. If this expansion was not symmetric in all directions, it may have emitted gravitational radiation detectable today as a
1327:
showed that two of Einstein's types of waves were artifacts of the coordinate system he used, and could be made to propagate at any speed by choosing appropriate coordinates, leading Eddington to jest that they "propagate at the speed of thought". This also cast doubt on the physicality of the third
3564:
In June 2023, NANOGrav published the 15-year data release, which contained the first evidence for a stochastic gravitational wave background. In particular, it included the first measurement of the Hellings-Downs curve, the tell-tale sign of the gravitational wave origin of the observed background.
1630:
with a group of motionless test particles lying in a plane, e.g., the surface of a computer screen. As a gravitational wave passes through the particles along a line perpendicular to the plane of the particles, i.e., following the observer's line of vision into the screen, the particles will follow
1479:
of all the stars in the observable universe combined. The signal increased in frequency from 35 to 250 Hz over 10 cycles (5 orbits) as it rose in strength for a period of 0.2 second. The mass of the new merged black hole was 62 solar masses. Energy equivalent to three solar masses was emitted
3372:
in Japan, is in operation since February 2020. A key point is that a tenfold increase in sensitivity (radius of 'reach') increases the volume of space accessible to the instrument by one thousand times. This increases the rate at which detectable signals might be seen from one per tens of years of
3315:
to measure gravitational-wave induced motion between separated 'free' masses. This allows the masses to be separated by large distances (increasing the signal size); a further advantage is that it is sensitive to a wide range of frequencies (not just those near a resonance as is the case for Weber
3187:, consisting of an exactingly machined 1,150 kg sphere cryogenically cooled to 20 millikelvins. The spherical configuration allows for equal sensitivity in all directions, and is somewhat experimentally simpler than larger linear devices requiring high vacuum. Events are detected by measuring 3089:
Gravitational waves are not easily detectable. When they reach the Earth, they have a small amplitude with strain approximately 10, meaning that an extremely sensitive detector is needed, and that other sources of noise can overwhelm the signal. Gravitational waves are expected to have frequencies
2838:
Due to the weakness of the coupling of gravity to matter, gravitational waves experience very little absorption or scattering, even as they travel over astronomical distances. In particular, gravitational waves are expected to be unaffected by the opacity of the very early universe. In these early
2659:
will generally emit no gravitational radiation because neutron stars are highly dense objects with a strong gravitational field that keeps them almost perfectly spherical. In some cases, however, there might be slight deformities on the surface called "mountains", which are bumps extending no more
2642:
that occurs during the last stellar evolutionary stages of a massive star's life, whose dramatic and catastrophic destruction is marked by one final titanic explosion. This explosion can happen in one of many ways, but in all of them a significant proportion of the matter in the star is blown away
3062:
The information about the orbit can be used to predict how much energy (and angular momentum) would be radiated in the form of gravitational waves. As the binary system loses energy, the stars gradually draw closer to each other, and the orbital period decreases. The resulting trajectory of each
2962:
Gravitational waves have two important and unique properties. First, there is no need for any type of matter to be present nearby in order for the waves to be generated by a binary system of uncharged black holes, which would emit no electromagnetic radiation. Second, gravitational waves can pass
1945:
Gravitational waves carry energy away from their sources and, in the case of orbiting bodies, this is associated with an in-spiral or decrease in orbit. Imagine for example a simple system of two masses – such as the Earth–Sun system – moving slowly compared to the
1654:
changes or rotates at twice the orbital rate, so the time-varying gravitational wave size, or 'periodic spacetime strain', exhibits a variation as shown in the animation. If the orbit of the masses is elliptical then the gravitational wave's amplitude also varies with time according to Einstein's
2565:
10 m (1890 km), its remaining lifetime is about 130,000 seconds or 36 hours. The orbital frequency will vary from 1 orbit per second at the start, to 918 orbits per second when the orbit has shrunk to 20 km at merger. The majority of gravitational radiation emitted will be at twice the
3734:, and 10 cubic centimeters of cuprate high temperature superconductor seem sufficient for the mechanism to properly work. A detailed description of the approach can be found in "High Temperature Superconductors as Quantum Sources of Gravitational Waves: The HTSC GASER". Chapter 3 of this book. 3664:
transient, which occurred on 17 August 2017, allowed for constraining the masses of the neutron stars involved between 0.86 and 2.26 solar masses. Further analysis allowed a greater restriction of the mass values to the interval 1.17–1.60 solar masses, with the total system mass measured to be
3501:
to seek out perturbations due to GWs in measurements of the time of arrival of pulses to a telescope, in other words, to look for deviations in the clock ticks. To detect GWs, pulsar timing arrays search for a distinct quadrupolar pattern of correlation and anti-correlation between the time of
2970:
The sources of gravitational waves described above are in the low-frequency end of the gravitational-wave spectrum (10 to 10 Hz). An astrophysical source at the high-frequency end of the gravitational-wave spectrum (above 10 Hz and probably 10 Hz) generates relic gravitational waves that are
2704:
and by doing so they carry those away from the source. Gravitational waves perform the same function. Thus, for example, a binary system loses angular momentum as the two orbiting objects spiral towards each other – the angular momentum is radiated away by gravitational waves.
3059:, just a few times larger than the diameter of our own Sun. The combination of greater masses and smaller separation means that the energy given off by the Hulse–Taylor binary will be far greater than the energy given off by the Earth–Sun system – roughly 10 times as much. 3434:
intended to detect this type of gravitational wave. By taking data from LIGO and GEO, and sending it out in little pieces to thousands of volunteers for parallel analysis on their home computers, Einstein@Home can sift through the data far more quickly than would be possible otherwise.
2324: 7655:
Agazie, Gabriella; Anumarlapudi, Akash; Archibald, Anne M.; Arzoumanian, Zaven; Baker, Paul T.; BĂ©csy, Bence; Blecha, Laura; Brazier, Adam; Brook, Paul R.; Burke-Spolaor, Sarah; Burnette, Rand; Case, Robin; Charisi, Maria; Chatterjee, Shami; Chatziioannou, Katerina (2023-07-01).
1081:
Generally, the more mass that is contained within a given volume of space, the greater the curvature of spacetime will be at the boundary of its volume. As objects with mass move around in spacetime, the curvature changes to reflect the changed locations of those objects. In
42: 1347:, who anonymously reported that the singularities in question were simply the harmless coordinate singularities of the employed cylindrical coordinates. Einstein, who was unfamiliar with the concept of peer review, angrily withdrew the manuscript, never to publish in 3717:
are characterized by the presence of s-wave and d-wave Cooper pairs. Transitions between s-wave and d-wave are gravitational spin-2. Out of equilibrium conditions can be induced by injecting s-wave Cooper pairs from a low temperature superconductor, for instance
6836:
Chiaberge, M.; Ely, J.C.; Meyer, E.T.; Georganopoulos, M.; Marinucci, A.; Bianchi, S.; Tremblay, G.R.; Hilbert, B.; Kotyla, J.P. (2016-11-16). "The puzzling case of the radio-loud QSO 3C 186: a gravitational wave recoiling black hole in a young radio source?".
7365:
first described in detail a practical solution with an analysis of realistic limitations to the technique in R. Weiss (1972). "Electromagetically Coupled Broadband Gravitational Antenna". Quarterly Progress Report, Research Laboratory of Electronics, MIT 105:
2881: 1158:
Gravitational waves do not strongly interact with matter in the way that electromagnetic radiation does. This allows for the observation of events involving exotic objects in the distant universe that cannot be observed with more traditional means such as
1756:. Polarization of a gravitational wave is just like polarization of a light wave except that the polarizations of a gravitational wave are 45 degrees apart, as opposed to 90 degrees. In particular, in a "cross"-polarized gravitational wave, 2958:
have also brought new insights to astronomy. As each of these regions of the spectrum has opened, new discoveries have been made that could not have been made otherwise. The astronomy community hopes that the same holds true of gravitational waves.
1260:
and Virgo detectors received gravitational wave signals within 2 seconds of gamma ray satellites and optical telescopes seeing signals from the same direction. This confirmed that the speed of gravitational waves was the same as the speed of light.
2501: 3415:. Unlike signals from supernovae or binary black holes, these signals evolve little in amplitude or frequency over the period it would be observed by ground-based detectors. However, there would be some change in the measured signal, because of 7345: 2971:
theorized to be faint imprints of the Big Bang like the cosmic microwave background. At these high frequencies it is potentially possible that the sources may be "man made" that is, gravitational waves generated and detected in the laboratory.
2867:
were three detectors operating at the time of the event, therefore, the direction is precisely defined. The detection by all three instruments led to a very accurate estimate of the position of the source, with a 90% credible region of just 60
3642:. The gravitational waves were observed in the region more than 5 sigma (in other words, 99.99997% chances of showing/getting the same result), the probability of finding enough to have been assessed/considered as the evidence/proof in an 2660:
than 10 centimeters (4 inches) above the surface, that make the spinning spherically asymmetric. This gives the star a quadrupole moment that changes with time, and it will emit gravitational waves until the deformities are smoothed out.
3130:
above). Thus, even waves from extreme systems like merging binary black holes die out to very small amplitudes by the time they reach the Earth. Astrophysicists expect that some gravitational waves passing the Earth may be as large as
1440:. Pulsar timing observations over the next decade showed a gradual decay of the orbital period of the Hulse–Taylor pulsar that matched the loss of energy and angular momentum in gravitational radiation predicted by general relativity. 1763:, the effect on the test particles would be basically the same, but rotated by 45 degrees, as shown in the second animation. Just as with light polarization, the polarizations of gravitational waves may also be expressed in terms of 3236:
harmonic oscillators a few centimeters in diameter. The oscillators are designed to have (when uncoupled) almost equal resonant frequencies. The system is currently expected to have a sensitivity to periodic spacetime strains of
863:, does not provide for their existence, instead asserting that gravity has instantaneous effect everywhere. Gravitational waves therefore stand as an important relativistic phenomenon that Newtonian physics is unable to explain. 3153: – a large, solid bar of metal isolated from outside vibrations. This type of instrument was the first type of gravitational wave detector. Strains in space due to an incident gravitational wave excite the bar's 4226:"A Black Hole Feasted on a Neutron Star. 10 Days Later, It Happened Again – Astronomers had long suspected that collisions between black holes and dead stars occurred, but they had no evidence until a pair of recent detections" 3773:, a "gravity gun" or "gracer" (gravity amplification by collimated emission of resonance) is used to reshape a collapsar, so that the protagonists can exploit the extreme relativistic effects and make an interstellar journey. 1342:
in which they claimed gravitational waves could not exist in the full general theory of relativity because any such solution of the field equations would have a singularity. The journal sent their manuscript to be reviewed by
2104: 1742:. For example, the animations shown here oscillate roughly once every two seconds. This would correspond to a frequency of 0.5 Hz, and a wavelength of about 600 000 km, or 47 times the diameter of the Earth. 5637:"A Background 'Hum' Pervades the Universe. Scientists Are Racing to Find Its Source – Astronomers are now seeking to pinpoint the origins of an exciting new form of gravitational waves that was announced earlier this year" 2647:, which can happen only when there is asymmetrical movement of masses. Since the exact mechanism by which supernovae take place is not fully understood, it is not easy to model the gravitational radiation emitted by them. 1480:
as gravitational waves. The signal was seen by both LIGO detectors in Livingston and Hanford, with a time difference of 7 milliseconds due to the angle between the two detectors and the source. The signal came from the
3634:
gravitational waves. The signal was seen by both LIGO detectors in Livingston and Hanford, with a time difference of 7 milliseconds due to the angle between the two detectors and the source. The signal came from the
8633: 1390:
published a detailed version of the "sticky bead argument". This later led to a series of articles (1959 to 1989) by Bondi and Pirani that established the existence of plane wave solutions for gravitational waves.
141: 8565: 8555: 8545: 8514: 8504: 3681:), involving 70 telescopes and observatories and yielding observations over a large region of the electromagnetic spectrum which further confirmed the neutron star nature of the merged objects and the associated 2169: 3347:
Even with such long arms, the strongest gravitational waves will only change the distance between the ends of the arms by at most roughly 10 m. LIGO should be able to detect gravitational waves as small as
3786:, the analysis of a gravitational wave signal from the inspiral of a nearby binary neutron star reveals that its collision and merger is imminent, implying a large gamma-ray burst is going to impact the Earth. 7360:
The idea of using laser interferometry for gravitational wave detection was first mentioned by Gerstenstein and Pustovoit 1963 Sov. Phys.–JETP 16 433. Weber mentioned it in an unpublished laboratory notebook.
2967:, for example, gravitational waves will pass through essentially unimpeded. These two features allow gravitational waves to carry information about astronomical phenomena heretofore never observed by humans. 1382:" notes that if one takes a rod with beads then the effect of a passing gravitational wave would be to move the beads along the rod; friction would then produce heat, implying that the passing wave had done 4043:[On the dynamics of the electron – Note by Henri PoincarĂ© published in the Reports of the Academy of Sciences of the session of June 5, 1905 – Members of the Academy of Sciences since its creation] 1174:
In particular, gravitational waves could be of interest to cosmologists as they offer a possible way of observing the very early universe. This is not possible with conventional astronomy, since before
7342: 3660:
On 16 October 2017, the LIGO and Virgo collaborations announced the first-ever detection of gravitational waves originating from the coalescence of a binary neutron star system. The observation of the
4041:"Sur la dynamique de l'Ă©lectron – Note de Henri PoincarĂ© publiĂ©e dans les Comptes rendus de l'AcadĂ©mie des sciences de la sĂ©ance du 5 juin 1905 – Membres de l'AcadĂ©mie des sciences depuis sa crĂ©ation" 1238:
is a conversion factor for changing the unit of time to the unit of space. This makes it the only speed which does not depend either on the motion of an observer or a source of light and/or gravity.
6916:
Weisberg, J.M.; Taylor, J.H.; et al. (The LIGO Scientific Collaboration and the Virgo Collaboration) (2004). "Relativistic Binary Pulsar B1913+16: Thirty Years of Observations and Analysis".
5646: 1112:
close to one another. However, due to the astronomical distances to these sources, the effects when measured on Earth are predicted to be very small, having strains of less than 1 part in 10.
8576: 8571: 1301:
proposed gravitational waves, emanating from a body and propagating at the speed of light, as being required by the Lorentz transformations and suggested that, in analogy to an accelerating
8586: 3705:
In 1998, the possibility of a different implementation of the above theoretical analysis was proposed by Giorgio Fontana. The required coherence for a practical GASER could be obtained by
3118:
measurement of the effect of a passing gravitational wave, which could also provide more information about the system that generated it. Any such direct detection is complicated by the
2620:. The largest amplitude of emission occurs during the merger phase, which can be modeled with the techniques of numerical relativity. The first direct detection of gravitational waves, 1355:, who had been in contact with Robertson, convinced Einstein that the criticism was correct, and the paper was rewritten with the opposite conclusion and published elsewhere. In 1956, 1253:(which are the presumptive field particles associated with gravity; however, an understanding of the graviton, if any exist, requires an as-yet unavailable theory of quantum gravity). 2679:. This background signal is too weak for any currently operational gravitational wave detector to observe, and it is thought it may be decades before such an observation can be made. 1179:
the universe was opaque to electromagnetic radiation. Precise measurements of gravitational waves will also allow scientists to test more thoroughly the general theory of relativity.
2616:, and ring-down phases. Hence, in the early 1990s the physics community rallied around a concerted effort to predict the waveforms of gravitational waves from these systems with the 3419:
caused by the motion of the Earth. Despite the signals being simple, detection is extremely computationally expensive, because of the long stretches of data that must be analysed.
2158: 1623:
outside the Solar System by one hair's width. This tiny effect from even extreme gravitational waves makes them observable on Earth only with the most sophisticated detectors.
7376:
LIGO Scientific Collaboration; Virgo Collaboration (2010). "Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors".
3036:
Although the waves from the Earth–Sun system are minuscule, astronomers can point to other sources for which the radiation should be substantial. One important example is the
1603:; however, even the strongest have a minuscule effect and their sources are generally at a great distance. For example, the waves given off by the cataclysmic final merger of 3073:
The only difficulty is that most systems like the Hulse–Taylor binary are so far away. The amplitude of waves given off by the Hulse–Taylor binary at Earth would be roughly
2373: 1891:
must be non-zero in order for it to emit gravitational radiation. This is analogous to the changing dipole moment of charge or current that is necessary for the emission of
5981:
LIGO Scientific Collaboration – FAQ; section: 'Do we expect LIGO's advanced detectors to make a discovery, then?' and 'What's so different about LIGO's advanced detectors?'
3191:. MiniGRAIL is highly sensitive in the 2–4 kHz range, suitable for detecting gravitational waves from rotating neutron star instabilities or small black hole mergers. 1926: 1910: 8899: 3518: 1522: 3157:
and could thus be amplified to detectable levels. Conceivably, a nearby supernova might be strong enough to be seen without resonant amplification. With this instrument,
6776:
Baker, Robert M.L.; Woods, R. Clive; Li, Fangyu (2006). "Piezoelectric-Crystal-Resonator High-Frequency Gravitational Wave Generation and Synchro-Resonance Detection".
3799:
series, gravitational waves are used as an interstellar broadcast signal, which serves as a central plot point in the conflict between civilizations within the galaxy.
6757:
Bragisnky, V.B.; Rudenko, Valentin N. (1978). "Gravitational waves and the detection of gravitational radiation: Generation of gravitational waves in the laboratory".
1786:
In general terms, gravitational waves are radiated by objects whose motion involves acceleration and its change, provided that the motion is not perfectly spherically
1573: 1550: 9810: 2131: 511: 8858: 3881: 1712:: This is the speed at which a point on the wave (for example, a point of maximum stretch or squeeze) travels. For gravitational waves with small amplitudes, this 7096: 3273:. The Chongqing University detector is planned to detect relic high-frequency gravitational waves with the predicted typical parameters ≈10 Hz (100 GHz) and 3384:) is another limit to sensitivity. In addition to these 'stationary' (constant) noise sources, all ground-based detectors are also limited at low frequencies by 2598:
nuclei. Advanced LIGO detectors should be able to detect such events up to 200 megaparsecs away. Within this range of the order 40 events are expected per year.
5311:
Abbott, B.P.; et al. (LIGO Scientific Collaboration and Virgo Collaboration) (2016). "Observation of Gravitational Waves from a Binary Black Hole Merger".
4762:
Membres de l'AcadĂ©mie des sciences depuis sa crĂ©ation : Henri Poincare. Sur la dynamique de l' electron. Note de H. PoincarĂ©. C.R. T.140 (1905) 1504–1508.
8662: 3286: 6812: 5636: 2914:, and not all objects in the distant universe shine strongly in this particular band. More information may be found, for example, in radio wavelengths. Using 1097:. Distances between objects increase and decrease rhythmically as the wave passes, at a frequency equal to that of the wave. The magnitude of this effect is 3403:
The simplest gravitational waves are those with constant frequency. The waves given off by a spinning, non-axisymmetric neutron star would be approximately
1638:
The oscillations depicted in the animation are exaggerated for the purpose of discussion – in reality a gravitational wave has a very small
8771: 7464: 6566:
For a comparison of the geometric derivation and the (non-geometric) spin-2 field derivation of general relativity, refer to box 18.1 (and also 17.2.5) of
4716: 784: 3702:
or resonators for gravitational waves, they determined that a single pass GASER (a kind of laser emitting gravitational waves) is practically unfeasible.
2550:
which would also end the emission of gravitational waves. Until then, their gravitational radiation would be comparable to that of a neutron star binary.
1635:" manner, as shown in the animations. The area enclosed by the test particles does not change and there is no motion along the direction of propagation. 4109: 4071: 10284: 10141: 5079:
Taylor, J. H.; Weisberg, J.M.; McCulloch, P.M. (1982). "A new test of general relativity – Gravitational radiation and the binary pulsar PSR 1913+16".
1790:(like an expanding or contracting sphere) or rotationally symmetric (like a spinning disk or sphere). A simple example of this principle is a spinning 2856:
and will reach different detectors at different times depending on their source direction. Although the differences in arrival time may be just a few
2016: 6192:; Choi, Dae-Il; Koppitz, Michael; van Meter, James (2006). "Gravitational-Wave Extraction from an Inspiraling Configuration of Merging Black Holes". 3122:
effect the waves would produce on a detector. The amplitude of a spherical wave will fall off as the inverse of the distance from the source (the 1/
8787: 1359:
remedied the confusion caused by the use of various coordinate systems by rephrasing the gravitational waves in terms of the manifestly observable
163: 1241:
Thus, the speed of "light" is also the speed of gravitational waves, and, further, the speed of any massless particle. Such particles include the
7271:. Marcel Grossmann meeting on General Relativity. Rome: World Scientific Publishing Co. Pte. Ltd. (published December 2002). pp. 1899–1901. 6643: 5197: 3613:
LIGO measurement of the gravitational waves at the Hanford (left) and Livingston (right) detectors, compared to the theoretical predicted values.
5922: 1674:, this is the size of the wave – the fraction of stretching or squeezing in the animation. The amplitude shown here is roughly 2538:
if it were not too far away. A far greater number of white dwarf binaries exist with orbital periods in this range. White dwarf binaries have
2319:{\displaystyle {\frac {\mathrm {d} r}{\mathrm {d} t}}=-{\frac {64}{5}}\,{\frac {G^{3}}{c^{5}}}\,{\frac {(m_{1}m_{2})(m_{1}+m_{2})}{r^{3}}}\ ,} 8647: 8643: 8525: 8439: 1696:, this is the frequency with which the wave oscillates (1 divided by the amount of time between two successive maximum stretches or squeezes) 76: 6119:
Campanelli, M.; Lousto, C.O.; Marronetti, P.; Zlochower, Y. (2006). "Accurate Evolutions of Orbiting Black-Hole Binaries without Excision".
8387: 2655:
As noted above, a mass distribution will emit gravitational radiation only when there is spherically asymmetric motion among the masses. A
368: 1108:
are predicted to be a powerful source of gravitational waves as they coalesce, due to the very large acceleration of their masses as they
9857: 9031: 8750: 3629:
merging about 1.3 billion light-years away. During the final fraction of a second of the merger, it released more than 50 times the
1626:
The effects of a passing gravitational wave, in an extremely exaggerated form, can be visualized by imagining a perfectly flat region of
1475:
merging about 1.3 billion light-years away. During the final fraction of a second of the merger, it released more than 50 times the
1375: 1366:
At the time, Pirani's work was overshadowed by the community's focus on a different question: whether gravitational waves could transmit
8361: 4168: 10092: 9011: 8541: 8500: 5525: 5124:
Taylor, J. H.; Fowler, L.A.; McCulloch, P.M. (1979). "Measurements of general relativistic effects in the binary pulsar PSR1913 + 16".
3210:
beam circulating in a closed loop about one meter across. Both detectors are expected to be sensitive to periodic spacetime strains of
2617: 1416:; however, the frequency of detection soon raised doubts on the validity of his observations as the implied rate of energy loss of the 1135:
was completed in 2019; its first joint detection with LIGO and VIRGO was reported in 2021. Another European ground-based detector, the
721: 4387:"Search for gravitational waves from low mass compact binary coalescence in LIGO's sixth science run and Virgo's science runs 2 and 3" 9881: 9627: 8581: 3587:
instrument, an announcement made on 17 March 2014, which was withdrawn on 30 January 2015 ("the signal can be entirely attributed to
531: 373: 6674: 10495: 8959: 3826: 3622: 3600: 1646:). However, they help illustrate the kind of oscillations associated with gravitational waves as produced by a pair of masses in a 1464: 1412:. In 1969, Weber claimed to have detected the first gravitational waves, and by 1970 he was "detecting" signals regularly from the 1397:
further postulated the existence of gravitational waves, declaring them to have "physical significance" in his 1959 lecture at the
1198:
list different frequency bands for gravitational waves that could plausibly be detected, ranging from 10 Hz up to 10 Hz.
1115:
Scientists demonstrate the existence of these waves with highly-sensitive detectors at multiple observation sites. As of 2012, the
925: 856: 777: 486: 54:
orbit closer to one another, they emit gravitational waves, the frequency of which increases to a peak as the black holes coalesce.
6700: 2902:
has been revolutionized by the use of new methods for observing the universe. Astronomical observations were initially made using
8954: 8638: 3654: 3604: 2999: 1029: 871: 5955:"ESO Telescopes Observe First Light from Gravitational Wave Source – Merging neutron stars scatter gold and platinum into space" 10335: 10277: 10134: 9663: 9617: 7594:
Hobbs, G; et al. (2010). "The International Pulsar Timing Array project: using pulsars as a gravitational wave detector".
1904: 1830: 1529:
in 15 years of radio observations of 25 pulsars. Similar results are published by European Pulsar Timing Array, who claimed a
1001: 399: 233: 10711: 9801: 8347: 8275: 8242: 8152: 7981: 7946: 7757: 7292: 6623: 6592: 5895: 5734: 4877: 4590: 4559: 4361: 3199: 2963:
through any intervening matter without being scattered significantly. Whereas light from distant stars may be blocked out by
2931: 438: 5668: 3481:
Plot of correlation between pulsars observed by NANOGrav vs angular separation between pulsars, compared with a theoretical
9285: 3546: 3066:
Inspirals are very important sources of gravitational waves. Any time two compact objects (white dwarfs, neutron stars, or
8483: 5475: 4040: 3752:
shows the experiment monitoring the propagation of gravitational waves at the expense of annihilating a chunk of asteroid
3161:
claimed to have detected daily signals of gravitational waves. His results, however, were contested in 1974 by physicists
1008: 8551: 6465:
Komossa, S.; Zhou, H.; Lu, H. (May 2008). "A Recoiling Supermassive Black Hole in the Quasar SDSS J092712.65+294344.0?".
4772: 4759: 4141:"Einstein's gravity theory passes toughest test yet: Bizarre binary star system pushes study of relativity to new limits" 3316:
bars). After years of development ground-based interferometers made the first detection of gravitational waves in 2015.
1808:
A spinning non-axisymmetric planetoid – say with a large bump or dimple on the equator –
982: 905:
The first indirect evidence for the existence of gravitational waves came in 1974 from the observed orbital decay of the
770: 17: 3177:
to detect vibration. Weber bars are not sensitive enough to detect anything but extremely powerful gravitational waves.
9538: 9098: 8837: 8723: 8343: 7716: 7093: 3877: 3714: 3444: 3023:
of the BICEP2 detector is shown here. In January 2015, however, the BICEP2 findings were confirmed to be the result of
2535: 1864: 1525:
states, that they were created over cosmological time scales by supermassive black holes, identifying the distinctive
1140: 150: 6520:"Precision of Hubble constant derived using black hole binary absolute distances and statistical redshift information" 10270: 10127: 9909: 9543: 8894: 8432: 8326: 8311: 8293: 8260: 8228: 8211: 7309: 3558: 3194:
There are currently two detectors focused on the higher end of the gravitational wave spectrum (10 to 10 Hz): one at
2910:
pioneered the use of telescopes to enhance these observations. However, visible light is only a small portion of the
2542:, and diameters in the order of the Earth. They cannot get much closer together than 10,000 km before they will 1323:
However, the nature of Einstein's approximations led many (including Einstein himself) to doubt the result. In 1922,
1048: 176: 5497: 4744: 4458: 3677:, was associated with the neutron star merger. This was corroborated by the electromagnetic follow-up of the event ( 3340: 1015: 7446: 5608: 3550: 3077:≈ 10. There are some sources, however, that astrophysicists expect to find that produce much greater amplitudes of 2547: 1841: 10593: 9863: 6412:; Schnittman, J.D.; Komossa, S. (2009). "Hypercompact Stellar Systems Around Recoiling Supermassive Black Holes". 5415: 1491:
A year earlier, the BICEP2 collaboration claimed that they had detected the imprint of gravitational waves in the
1289:
The possibility of gravitational waves and that those might travel at the speed of light was discussed in 1893 by
739: 456: 69: 9576: 9052: 5455: 3670: 909:, which matched the decay predicted by general relativity as energy is lost to gravitational radiation. In 1993, 363: 1739: 10706: 9679: 8474: 8464: 5387: 3851: 3813:, which was awarded to three individual physicists for their role in the discovery of and testing for the waves 3795: 3306:: A gravitational wave passing over the left arm (yellow) changes its length and thus the interference pattern. 2995: 1974: 1459:
After years of producing null results, improved detectors became operational in 2015. On 11 February 2016, the
1398: 1190:
Using this technique, astronomers have discovered the 'hum' of various SMBH mergers occurring in the universe.
997: 986: 5750: 5700: 1187:
with wavelengths measured in lightyears. These timing changes can be used to locate the source of the waves.
874:
are used to infer data about the sources of gravitational waves. Sources that can be studied this way include
10424: 10110: 9852: 9757: 9687: 9156: 8708: 7774: 4378: 4140: 4125: 4089: 3846: 3635: 3574: 3323: – the Laser Interferometer Gravitational Wave Observatory. LIGO has three detectors: one in 2676: 1518: 1481: 1460: 450: 158: 9820: 1946:
speed of light in circular orbits. Assume that these two masses orbit each other in a circular orbit in the
496: 10701: 10552: 9674: 8889: 8448: 8425: 8065: 4076: 3841: 3538: 3119: 2991: 2893: 2713: 2639: 1234:
is not only about light; instead it is the highest possible speed for any interaction in nature. Formally,
1213: 1168: 1066: 867: 833: 516: 7529:"The NANOGrav 11 Year Data Set: Pulsar-timing Constraints on the Stochastic Gravitational-wave Background" 5801:
Peters, P.C.; Mathews, J. (1963-07-01). "Gravitational Radiation from Point Masses in a Keplerian Orbit".
3625:, from a signal detected at 09:50:45 GMT on 14 September 2015 of two black holes with masses of 29 and 36 1093:
As a gravitational wave passes an observer, that observer will find spacetime distorted by the effects of
10696: 10363: 9715: 9449: 9434: 9211: 9093: 9056: 7781:) (16 October 2017). "GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral". 4656: 3749: 3580: 2744: 2136: 1492: 932: 757: 248: 168: 5689:
The second data release from the European Pulsar Timing Array III. Search for gravitational wave signals
4324: 3673:, occurring 1.7 seconds after the gravitational wave transient. The signal, originating near the galaxy 2942:
called the "greatest discovery of the century, if not all time". Similar advances in observations using
1775: 10584: 10561: 10002: 9444: 9397: 6615: 4353: 3530: 3166: 2819: 2708:
The waves can also carry off linear momentum, a possibility that has some interesting implications for
2553: 2496:{\displaystyle t={\frac {5}{256}}\,{\frac {c^{5}}{G^{3}}}\,{\frac {r^{4}}{(m_{1}m_{2})(m_{1}+m_{2})}}.} 1965:
In theory, the loss of energy through gravitational radiation could eventually drop the Earth into the
1105: 1094: 895: 661: 209: 5577: 5177:
Gertsenshtein, M.E.; Pustovoit, V.I. (1962). "On the detection of low frequency gravitational waves".
3004: 2860:, this is sufficient to identify the direction of the origin of the wave with considerable precision. 1401:. Further, it was Dirac who predicted gravitational waves with a well defined energy density in 1964. 30:
This article is about the phenomenon of general relativity. For the movement of classical fluids, see
10032: 9658: 9339: 8199: 5081: 4965: 1892: 1429: 1176: 852: 825: 461: 273: 5937: 3477: 10293: 10057: 9607: 9367: 9278: 7997:
M.E. Gerstenstein; V.I. Pustovoit (1962). "On the Detection of Low-Frequency Gravitational Waves".
7317: 7241: 7120: 6708: 6261: 5604: 3831: 3312: 3195: 2978:, created from the merger of the black holes at the center of two merging galaxies detected by the 2911: 1888: 1360: 1309:, accelerated masses in a relativistic field theory of gravity should produce gravitational waves. 1076: 914: 696: 686: 536: 353: 5007: 2013:
over time, but the radius varies only slowly for most of the time and plunges at later stages, as
10416: 10351: 10185: 10150: 9786: 9708: 9328: 9319: 9196: 7012: 5313: 3943: 3698: 3037: 2975: 1849: 1433: 1184: 975: 906: 681: 415: 7866:
Halpern, L.; Laurent, B. (1964-08-01). "On the gravitational radiation of microscopic systems".
5061: 4576: 3335:
and a third (formerly installed as a second detector at Hanford) that is planned to be moved to
1959: 1575:-significance will be achieved by 2025 by combining the measurements of several collaborations. 1424:
In the same period, the first indirect evidence of gravitational waves was discovered. In 1974,
1022: 10570: 10520: 10223: 10012: 9875: 9781: 9739: 9413: 9377: 8299: 7745: 6637: 6635: 5845: 4610: 3984: 3810: 3554: 2979: 2764: 2530:
10 m (189,000 km) has an orbital period of 1,000 seconds, and an expected lifetime of 1.30
2342: 1499: 1437: 1123:
observatories were the most sensitive detectors, operating at resolutions of about one part in
1098: 1070: 936: 928:
was made in 2015, when a signal generated by the merger of two black holes was received by the
918: 651: 636: 481: 243: 10407: 7480:"Upper limits on the isotropic gravitational radiation background from pulsar timing analysis" 5724: 5688: 4225: 1555: 1532: 10686: 10246: 10017: 9622: 9561: 7082: 4549: 4155: 3511: 3427: 3324: 2669: 1764: 1278: 1274: 1144: 626: 194: 6860: 6632: 1471:) detected at 09:50:45 GMT on 14 September 2015 of two black holes with masses of 29 and 36 10691: 10476: 10468: 10433: 9922: 9848: 9692: 9294: 8719: 8173: 8132: 8084: 8006: 7926: 7875: 7842: 7800: 7778: 7679: 7613: 7550: 7491: 7395: 7272: 7269:
Spherical Gravitational Wave Detectors: cooling and quality factor of a small CuAl6% sphere
7249: 7206: 7163: 7049: 6976: 6935: 6856: 6785: 6738: 6541: 6484: 6431: 6367: 6310: 6211: 6138: 6069: 6014: 5860: 5810: 5332: 5247: 5135: 5090: 5019: 4939: 4902: 4827: 4628: 4503: 4408: 4329: 4278: 4198: 4117: 4081: 4006: 3948: 3895: 3526: 3361: 3332: 3291: 3203: 2776: 2736: 2109: 1921:(denoted by the small red cross) in a circle with the larger mass having the smaller orbit. 1651: 1526: 1453: 1379: 1306: 1120: 446: 6729:
Grishchuk, L. P. (1976). "Primordial Gravitons and the Possibility of Their Observation".
5546: 5286: 4979: 4484:
Krauss, LM; Dodelson, S; Meyer, S (2010). "Primordial Gravitational Waves and Cosmology".
3730:
with high critical current. The amplification mechanism can be described as the effect of
3609: 1517:
In 2023, NANOGrav, EPTA, PPTA, and IPTA announced that they found evidence of a universal
1488:. The confidence level of this being an observation of gravitational waves was 99.99994%. 1086:, accelerating objects generate changes in this curvature which propagate outwards at the 8: 10658: 10511: 10487: 10236: 9997: 9992: 9982: 9814: 9763: 9581: 9566: 9392: 9323: 9271: 9181: 9061: 9041: 8988: 8881: 8607: 8365: 8352: 8162:
Barish, Barry C.; Weiss, Rainer (1999). "LIGO and the Detection of Gravitational Waves".
7407: 7061: 5641: 5502: 5008:"A short biography of Paul A.M. Dirac and historical development of Dirac delta function" 4685: 4382: 3836: 3647: 3522: 3494: 3472: 3369: 2784: 2006: 1884: 1746: 1728:
The speed, wavelength, and frequency of a gravitational wave are related by the equation
1344: 860: 801: 641: 611: 606: 358: 9987: 8376: 8177: 8136: 8088: 8010: 7930: 7879: 7804: 7683: 7625: 7617: 7554: 7495: 7399: 7276: 7253: 7210: 7167: 7053: 6980: 6939: 6789: 6742: 6545: 6488: 6435: 6371: 6314: 6215: 6142: 6073: 6018: 5864: 5814: 5382: 5336: 5251: 5139: 5094: 5023: 4943: 4906: 4831: 4507: 4412: 4282: 4202: 4121: 4085: 4010: 3936:
discovered and the first experimental evidence for the existence of gravitational waves.
3364:
should increase the sensitivity still further. Another highly sensitive interferometer,
621: 591: 10646: 10634: 10170: 10062: 9962: 9886: 9744: 9725: 9719: 9612: 9521: 9439: 9357: 9334: 9302: 9201: 9088: 8904: 8792: 8107: 8074: 8060: 8038: 7918: 7899: 7824: 7790: 7717:"This collision was 50 times more powerful than all the stars in the universe combined" 7669: 7637: 7603: 7576: 7540: 7465:"After 15 years, pulsar timing yields evidence of cosmic gravitational wave background" 7411: 7385: 7222: 7153: 7065: 7039: 6994: 6966: 6925: 6872: 6846: 6531: 6500: 6474: 6447: 6443: 6421: 6391: 6357: 6326: 6300: 6243: 6201: 6170: 6128: 6101: 6059: 6032: 5776: 5613: 5582: 5476:"LIGO's First-Ever Detection of Gravitational Waves Opens a New Window on the Universe" 5456:"This collision was 50 times more powerful than all the stars in the universe combined" 5431: 5364: 5322: 5237: 5159: 5043: 4929: 4845: 4817: 4749:. The Electrician printing and publishing company, limited. pp. 455–66 Appendix B. 4527: 4493: 4440: 4398: 4347: 4304: 4268: 4230: 3996: 3913: 3821: 3534: 3498: 3154: 2808: 2800: 2644: 1656: 1643: 1425: 1313: 1227: 1136: 691: 576: 501: 348: 238: 199: 61: 10119: 7925:. Lecture Notes in Physics. Vol. 475. Berlin, Heidelberg: Springer. p. 151. 7112: 6519: 4920:
Robinson, D.C. (2019). "Gravitation and general relativity at King's College London".
4386: 4210: 3485:
model (dashed purple) and if there were no gravitational wave background (solid green)
1591: 10305: 10072: 9904: 9896: 9497: 9454: 8853: 8406: 8322: 8307: 8289: 8271: 8256: 8238: 8224: 8207: 8148: 8112: 7977: 7942: 7903: 7891: 7828: 7816: 7753: 7697: 7629: 7568: 7509: 7288: 7069: 6998: 6989: 6954: 6619: 6588: 6568: 6383: 6235: 6227: 6162: 6154: 6093: 6085: 6036: 5901: 5891: 5826: 5730: 5435: 5368: 5356: 5348: 5265: 5198:"Ripples in space: U.S. trio wins physics Nobel for discovery of gravitational waves" 5151: 5106: 5047: 5035: 4955: 4873: 4586: 4555: 4519: 4432: 4357: 4343: 4308: 4296: 4022: 3923: 3885: 3866: 3710: 3639: 3188: 3184: 3067: 2964: 2951: 2716:. Or it may carry gas, allowing the recoiling black hole to appear temporarily as a " 2613: 2607: 2543: 1650:. In this case the amplitude of the gravitational wave is constant, but its plane of 1583: 1485: 1302: 1160: 1090:
in a wave-like manner. These propagating phenomena are known as gravitational waves.
521: 296: 10262: 9942: 7641: 7580: 7415: 7226: 6876: 6451: 6395: 6330: 6247: 6105: 5163: 4531: 4018: 3232:. The INFN Genoa detector is a resonant antenna consisting of two coupled spherical 1298: 821: 571: 10610: 10539: 10371: 10241: 10195: 10190: 9977: 9967: 9914: 9891: 9469: 9186: 9177: 8396: 8356: 8181: 8140: 8102: 8092: 8026: 7969: 7934: 7883: 7812: 7808: 7687: 7621: 7558: 7499: 7403: 7280: 7214: 7057: 6984: 6898: 6864: 6793: 6608:
Lightman, A.P.; Press, W.H.; Price, R.H.; Teukolsky, S.A. (1975). "Problem 12.16".
6549: 6504: 6492: 6439: 6375: 6318: 6219: 6174: 6146: 6077: 6022: 5868: 5818: 5423: 5344: 5340: 5255: 5143: 5126: 5098: 5027: 5003: 4947: 4849: 4835: 4511: 4444: 4424: 4416: 4286: 4206: 4014: 3856: 3782: 3744: 3727: 3542: 3229: 3056: 2982:, is theorized to have been ejected from the merger center by gravitational waves. 2915: 2796: 2752: 2724: 2701: 1938: 1713: 1706:, this is the distance along the wave between points of maximum stretch or squeeze. 1408:
started designing and building the first gravitational wave detectors now known as
1324: 1294: 1290: 1207: 910: 817: 809: 646: 601: 581: 526: 10037: 6868: 6661:
Update on Gravitational Wave Science from the LIGO-Virgo Scientific Collaborations
6223: 6150: 6081: 4951: 4257:"Observation of Gravitational Waves from Two Neutron Star–Black Hole Coalescences" 1678: = 0.5 (or 50%). Gravitational waves passing through the Earth are many 1615:
that changed the length of a 4 km LIGO arm by a thousandth of the width of a
1249:
that make up light (hence carrier of electromagnetic force), and the hypothetical
666: 10442: 10052: 10027: 9952: 9947: 9830: 9791: 9753: 9697: 9571: 9507: 7973: 7349: 7145: 7100: 6576: 6027: 6002: 5493: 5031: 4869:
Traveling at the Speed of Thought: Einstein and the Quest for Gravitational Waves
4867: 4606: 3630: 3381: 3233: 3206:, China. The Birmingham detector measures changes in the polarization state of a 3016: 2939: 2907: 2812: 2583: 2570:, and 70 observatories collaborated to detect the electromagnetic counterpart, a 1914: 1476: 1413: 1371: 1338: 1191: 1164: 1062: 829: 701: 676: 561: 556: 420: 301: 263: 9835: 7921:. In Klamut, Jan; Veal, Boyd W.; Dabrowski, Bogdan M.; Klamut, Piotr W. (eds.). 7375: 7197:
Levine, J. (April 2004). "Early Gravity-Wave Detection Experiments, 1960–1975".
3389:
by analysis before detection may be considered a true gravitational wave event.
2822:(because the gravitational force appears to have unlimited range) and must be a 2099:{\displaystyle r(t)=r_{0}\left(1-{\frac {t}{t_{\text{coalesce}}}}\right)^{1/4},} 1767:
waves. Gravitational waves are polarized because of the nature of their source.
471: 10670: 10598: 10387: 10077: 9749: 9733: 9729: 9632: 9602: 9459: 9362: 9135: 8808: 8417: 7692: 7657: 7563: 7528: 7284: 6553: 6189: 5573: 5224:
Cervantes-Cota, Jorge; Galindo-Uribarri, Salvador; Smoot, George (2016-09-13).
4721: 4712: 4582: 4420: 4291: 4256: 3769: 3507: 3183:
is a spherical gravitational wave antenna using this principle. It is based at
3162: 2955: 2853: 2823: 2804: 2350: 1970: 1918: 1822:
radiate except in the unlikely event that the explosion is perfectly symmetric.
1717: 1666:, there are a number of characteristics used to describe a gravitational wave: 1647: 1620: 1383: 1352: 1329: 1218: 1087: 848: 813: 744: 711: 706: 394: 258: 7963: 7218: 6902: 6893:
Cowen, Ron (2015-01-30). "Gravitational waves discovery now officially dead".
6660: 5872: 5427: 4114:
Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften Berlin
4077:
Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften Berlin
3048:
of radio signals given off by the pulsar. Each of the stars is about 1.4 
10680: 10359: 10327: 10178: 10067: 10047: 10042: 9957: 9825: 9653: 9597: 9429: 9382: 9245: 9066: 8920: 8410: 8216: 8164: 8124: 7895: 7701: 7633: 7572: 7513: 6584: 6409: 6387: 6345: 6288: 6231: 6158: 6089: 5905: 5830: 5352: 5269: 5155: 5110: 5039: 4964:
David Robinson, Gravitation and general relativity at King's College London,
4959: 4893:
F.A.E., Pirani (1956). "On the physical significance of the Riemann tensor".
4436: 4300: 4026: 3933: 3929: 3926:, for an important class of exact solutions modelling gravitational radiation 3764: 3757: 3731: 3423: 3416: 3398: 3170: 3102: 3045: 3041: 2903: 2869: 2849: 2788: 2743:
and frequency due to the relative velocities of the source and observer (the
2557:
Artist's impression of merging neutron stars, a source of gravitational waves
1990: 1387: 1195: 671: 586: 566: 491: 389: 268: 5822: 5260: 5225: 4840: 4805: 4515: 3951:, for a physical way to see that gravitational radiation should carry energy 631: 10622: 10087: 10007: 9972: 9502: 9464: 9206: 8270:(CRC Press, Taylor & Francis Group, Boca Raton/London/New York, 2020). 8116: 7820: 7658:"The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background" 7362: 7030:
Damour, Thibault (2015). "1974: the discovery of the first binary pulsar".
6609: 6239: 6166: 6097: 5954: 5530: 5360: 4523: 4186: 3918: 3816: 3328: 3158: 3114:
evidence for gravitational waves. A more conclusive observation would be a
2885: 2709: 2519: 2511: 1511: 1503: 1405: 1356: 1333: 1328:(transverse–transverse) type that Eddington showed always propagate at the 1317: 948: 940: 883: 616: 596: 31: 7447:"Focus on NANOGrav's 15 yr Data Set and the Gravitational Wave Background" 7321: 3713:
that are characterized by a macroscopic collective wave-function. Cuprate
1989:(joules per second) is lost through gravitational radiation, leading to a 1293:, using the analogy between the inverse-square law of gravitation and the 1269: 10459: 10379: 10218: 9871: 9840: 9387: 8378: 8281: 8248: 6930: 6305: 5012:
International Journal of Mathematical Education in Science and Technology
3954: 3706: 3666: 3588: 3149:
A simple device theorised to detect the expected wave motion is called a
3110:
Though the Hulse–Taylor observations were very important, they give only
3024: 3020: 2857: 2717: 2587: 2515: 1595:
The effect of a cross-polarized gravitational wave on a ring of particles
879: 875: 506: 476: 8097: 8043: 7266: 6348:(2008-05-10). "Ejection of Supermassive Black Holes from Galaxy Cores". 5890:. Vol. 1, Theory and Experiments. Oxford: Oxford University Press. 3869:, for gravitationally induced electromagnetic radiation from black holes 1587:
The effect of a plus-polarized gravitational wave on a ring of particles
10531: 10528: 10082: 9648: 9492: 9487: 9172: 9144: 8930: 7938: 7887: 7141: 6572: 6291:; et al. (May 2004). "Consequences of Gravitational Wave Recoil". 3753: 3678: 3643: 3626: 3579:
Primordial gravitational waves are gravitational waves observed in the
3460: 3456: 3452: 3404: 3377: 2884:
Two-dimensional representation of gravitational waves generated by two
2770: 2591: 2579: 2539: 2523: 1929:
Two stars of similar mass in circular orbits about their center of mass
1872: 1699: 1679: 1608: 1507: 1472: 1394: 989: in this section. Unsourced material may be challenged and removed. 944: 887: 716: 278: 204: 136:{\displaystyle G_{\mu \nu }+\Lambda g_{\mu \nu }={\kappa }T_{\mu \nu }} 51: 10665: 8755: 8037:
Chakrabarty, Indrajit (1999). "Gravitational Waves: An Introduction".
7919:"On the "s" and "d" wave symmetry in high-T c cuprate superconductors" 7654: 7158: 6955:"Relativistic Measurements from Timing the Binary Pulsar PSR B1913+16" 6797: 6206: 6133: 6064: 6050:
Pretorius, Frans (2005). "Evolution of Binary Black-Hole Spacetimes".
4428: 4001: 3493:
takes the pulses to travel from the pulsar to a telescope on Earth. A
2692:
Water waves, sound waves, and electromagnetic waves are able to carry
2534:
10 seconds or about 414,000 years. Such a system could be observed by
2367:
the masses of the bodies. This leads to an expected time to merger of
10548: 10398: 10343: 9479: 9229: 9124: 8694: 8627: 8623: 8591: 8520: 8401: 8382: 8370: 8185: 7150:
Particle and Nuclear Astrophysics and Cosmology in the Next Millenium
6266: 5202: 5147: 3939: 3872: 3790: 3777: 3431: 3412: 3408: 3207: 3180: 3150: 3144: 2943: 2927: 2899: 2748: 2633: 2612:
Black hole binaries emit gravitational waves during their in-spiral,
2595: 1816: 1787: 1689: 1639: 1632: 1627: 1612: 1417: 1409: 891: 837: 287: 5578:"2017 Nobel Prize in Physics Awarded to LIGO Black Hole Researchers" 5383:"Gravitational waves detected 100 years after Einstein's prediction" 4717:"Detection of Waves in Space Buttresses Landmark Theory of Big Bang" 3008:
Now disproved evidence allegedly showing gravitational waves in the
2590:) seconds after the merger, followed by a longer optical transient ( 1855:
A spherically pulsating spherical star (non-zero monopole moment or
1825:
An isolated non-spinning solid object moving at a constant velocity
964: 10507: 10450: 10251: 10022: 9372: 9129: 9103: 9005: 8999: 8994: 8984: 8979: 8974: 8969: 8964: 8745: 8740: 7795: 7674: 7545: 7504: 7479: 7267:
de Waard, Arlette; Luciano Gottardi; Giorgio Frossati (July 2000).
6971: 6851: 6496: 6379: 6322: 6118: 5551: 5327: 5242: 5223: 5102: 4934: 4822: 4803: 4273: 3907: 3861: 3682: 3674: 3661: 3009: 2935: 2864: 2780: 2740: 2697: 2621: 2575: 2571: 2567: 1954:
plane. To a good approximation, the masses follow simple Keplerian
1840:
radiate. This can be regarded as a consequence of the principle of
1829:
radiate. This can be regarded as a consequence of the principle of
1791: 1604: 1468: 1282: 1250: 899: 656: 466: 306: 8079: 7608: 7390: 7044: 6536: 6479: 6426: 6362: 5979: 5526:"Gravitational waves turn to dust after claims of flawed analysis" 4498: 4403: 3517:
Globally there are three active pulsar timing array projects. The
1801:
Two objects orbiting each other, as a planet would orbit the Sun,
10202: 10154: 8863: 8144: 3723: 3385: 2923: 2919: 2792: 2163:
More generally, the rate of orbital decay can be approximated by
1183:
can result from passing gravitational waves generated by merging
1150: 805: 7429: 5729:(4thRevised English ed.). Pergamon Press. pp. 356–57. 4804:
Cervantes-Cota, J.L.; Galindo-Uribarri, S.; Smoot, G.F. (2016).
4072:"NĂ€herungsweise Integration der Feldgleichungen der Gravitation" 3081:≈ 10. At least eight other binary pulsars have been discovered. 2009:
to spiral onto the Sun. This estimate overlooks the decrease in
9702: 9151: 8699: 8510: 8339: 7996: 7749: 6835: 6287: 3899: 3584: 3489: 3448: 3336: 3013: 2833: 2721: 2693: 2656: 1998: 1982: 1616: 1445: 1367: 1246: 951:
for their role in the direct detection of gravitational waves.
935:
in Livingston, Louisiana, and in Hanford, Washington. The 2017
7527:
Arzoumanian, Z.; et al. (NANOGrav Collaboration) (2018).
6675:"Gravitational Waves Discovered: A New Window on the Universe" 6644:"Black Holes, Cosmic Collisions and the Rippling of Spacetime" 3557:. These three groups also collaborate under the title of the 1370:. This matter was settled by a thought experiment proposed by 1273:
Primordial gravitational waves are hypothesized to arise from
10162: 9263: 8925: 8714: 8683: 8561: 8061:"The Confrontation between General Relativity and Experiment" 6701:"Listening to the gravitational universe: what can't we see?" 5669:"15 Years of Radio Data Reveals Evidence of Spacetime Murmur" 5078: 3903: 3638:, in the rough direction of (but much farther away than) the 3376:
Interferometric detectors are limited at high frequencies by
3365: 3174: 3044:. The characteristics of their orbit can be deduced from the 2947: 2827: 1955: 1709: 1600: 1484:, in the rough direction of (but much farther away than) the 1242: 1132: 1109: 804: – generated by the motion or acceleration of 8383:"A two-part feature: The Mathematics of Gravitational waves" 8129:
Fundamentals of Interferometric Gravitational Wave Detectors
7242:"MiniGRAIL, the first spherical gravitational wave detector" 6663:(Video of the press conference), retrieved 27 September 2017 5846:"Gravitational Radiation and the Motion of Two Point Masses" 3519:
North American Nanohertz Observatory for Gravitational Waves
2852:. This technique uses the fact that the waves travel at the 1779:
The gravitational wave spectrum with sources and detectors.
1619:, proportionally equivalent to changing the distance to the 1523:
North American Nanohertz Observatory for Gravitational Waves
9683: 8704: 8689: 8679: 7965:
Gravity-Superconductors Interactions: Theory and Experiment
6607: 4690: 4163: 3942:, a consequence of gravitational wave emission from binary 3891: 3719: 3618: 3320: 2727:
is thought to contain a recoiling supermassive black hole.
2561:
When the orbit of a neutron star binary has decayed to 1.89
1986: 1969:. However, the total energy of the Earth orbiting the Sun ( 1856: 1663: 1449: 1257: 1116: 929: 10617: 5917: 5915: 3541:
uses data from the four largest telescopes in Europe: the
2795:. However the graviton is not yet proven to exist, and no 1495:. However, they were later forced to retract this result. 10318: 7923:
Recent Developments in High Temperature Superconductivity
6813:"Gravitational Waves Send Supermassive Black Hole Flying" 6187: 4578:
Gravity: An introduction to Einstein's General Relativity
3295:
Simplified operation of a gravitational wave observatory
2687: 2526:
neutron stars in a circular orbit at a separation of 1.89
2522:
can be constituents of binaries. For example, a pair of
1966: 1962:. That is, the system will give off gravitational waves. 1933: 1925: 1909: 7239: 7195:
For a review of early experiments using Weber bars, see
6408: 1514:
for their role in the detection of gravitational waves.
1101:
to the distance (not distance squared) from the source.
1069:, gravity is treated as a phenomenon resulting from the 10149: 5912: 5414:
Castelvecchi, Davide; Witze, Witze (11 February 2016).
4651: 4459:"LIGO, Virgo, and KAGRA raise their signal score to 90" 3506:
galaxy mergers. Other potential signal sources include
2880: 2001:. At this rate, it would take the Earth approximately 3 1332:
regardless of coordinate system. In 1936, Einstein and
1139:, is under development. A space-based observatory, the 5176: 3287:
Ground-based interferometric gravitational-wave search
3040: – a pair of stars, one of which is a 1171:
gives new insights into the workings of the universe.
832:
demonstrated that gravitational waves result from his
10582: 10292: 7962:
Modanese, Giovanni; A. Robertson, Glen, eds. (2012).
7742:
MYP Physics Years 4 & 5: A concept-based approach
5123: 4554:. Cambridge: Cambridge University Press. p. 98. 3742:
An episode of the 1962 Russian science-fiction novel
2376: 2172: 2139: 2112: 2019: 1745:
In the above example, it is assumed that the wave is
1558: 1535: 79: 8235:
Gravity's Kiss: The Detection of Gravitational Waves
8221:
Gravity's Shadow: The Search for Gravitational Waves
7961: 6112: 4103: 4101: 4099: 3169:. Modern forms of the Weber bar are still operated, 2771:
Quantum gravity, wave-particle aspects, and graviton
1871:
More technically, the second time derivative of the
8377:Christina Sormani; C. Denson Hill; PaweƂ Nurowski; 8340:
Laser Interferometer Gravitational Wave Observatory
7134: 6952: 6567: 6518:MacLeod, Chelsea L.; Hogan, Craig J. (2008-02-14). 4483: 1073:. This curvature is caused by the presence of mass. 6888: 6886: 6181: 4063: 3055:and the size of their orbits is about 1/75 of the 2842: 2759:gravitational waves is different from redshifting 2495: 2318: 2152: 2125: 2098: 1567: 1544: 135: 7240:De Waard, A.; Gottardi, L.; Frossati, G. (2006). 6343: 6003:"Nobel Lecture: LIGO and gravitational waves III" 5885: 5413: 5409: 5407: 5405: 4096: 3983:Flanagan, Éanna É; Hughes, Scott A (2005-09-29). 10678: 8447: 8381:; David Garfinkle; NicolĂĄs Yunes (August 2017). 6756: 5752:The Science and Detection of Gravitational Waves 4861: 4859: 4679: 4677: 4675: 4551:General Relativity: An Einstein Centenary Survey 4465:. Max Planck Institute for Gravitational Physics 4156:"The Detection of Gravitational Waves with LIGO" 3568: 3311:A more sensitive class of detector uses a laser 3255:, with an expectation to reach a sensitivity of 2818:If such a particle exists, it is expected to be 8306:(Princeton University Press, Princeton, 1995). 8288:(Princeton University Press, Princeton, 1993). 7441: 7439: 6883: 5634: 5545:Rincon, Paul; Amos, Jonathan (3 October 2017). 5287:"Gravitational waves from black holes detected" 2875: 1997:10 meters per day or roughly the diameter of a 1958:. However, such an orbit represents a changing 1631:the distortion in spacetime, oscillating in a " 7865: 7260: 6915: 5722: 5597: 5416:"Einstein's gravitational waves found at last" 5402: 5281: 5279: 4646: 4644: 4642: 4250: 4248: 3982: 3978: 3976: 3974: 3972: 3970: 3594: 3438: 3202:Genoa, Italy. A third is under development at 1607:reached Earth after travelling over a billion 1378:in 1957. In short, his argument known as the " 10278: 10135: 9279: 9002:(first-ever possible light from bh-bh merger) 8433: 7477: 6464: 6043: 5800: 4856: 4799: 4797: 4795: 4793: 4791: 4789: 4787: 4785: 4686:"NASA Technology Views Birth of the Universe" 4672: 4605: 4547: 4184: 3653:Since then LIGO and Virgo have reported more 3466: 3106:A schematic diagram of a laser interferometer 778: 8388:Notices of the American Mathematical Society 8371:Video (94:34) – Scientific Talk on Discovery 7733: 7436: 7246:Recent Developments in Gravitational Physics 6775: 6517: 5566: 5538: 4705: 3175:superconducting quantum interference devices 2834:Significance for study of the early universe 2815:, have been made, but are not yet accepted. 8268:Gravitational Waves: A history of discovery 8161: 8036: 8033:. Washington, DC: Joseph Henry Press, 2000. 7766: 7526: 6511: 6281: 6262:"Neutron Star Crust Is Stronger than Steel" 5628: 5276: 4639: 4352:(2nd ed.). Cambridge ; New York: 4245: 3967: 3910:– Ground-based gravitational-wave detectors 2682: 2624:, came from the merger of two black holes. 1599:Gravitational waves are constantly passing 824:in 1905 as the gravitational equivalent of 10285: 10271: 10142: 10128: 9286: 9272: 8440: 8426: 7369: 6611:Problem book in Relativity and Gravitation 5544: 4782: 4336: 4217: 4189:(January 1937). "On gravitational waves". 3510:and the primordial background of GWs from 2618:Binary Black Hole Grand Challenge Alliance 785: 771: 8400: 8106: 8096: 8078: 8042: 7794: 7739: 7691: 7673: 7607: 7562: 7544: 7503: 7389: 7157: 7043: 6988: 6970: 6929: 6850: 6728: 6535: 6478: 6425: 6361: 6304: 6205: 6132: 6063: 6049: 6026: 5492: 5326: 5259: 5241: 4933: 4865: 4839: 4821: 4742: 4497: 4402: 4290: 4272: 4000: 3985:"The basics of gravitational wave theory" 3097: 2872:, a factor 20 more accurate than before. 2650: 2645:generated by a changing quadrupole moment 2418: 2393: 2238: 2213: 2160:the total time needed to fully coalesce. 1682:times weaker than this – 1049:Learn how and when to remove this message 926:direct observation of gravitational waves 9014:(first black hole - neutron star merger) 7343:High Frequency Relic Gravitational Waves 5469: 5467: 5465: 5306: 5304: 5302: 5300: 5226:"A Brief History of Gravitational Waves" 4919: 4806:"A Brief History of Gravitational Waves" 4107: 4069: 3827:First observation of gravitational waves 3623:first observation of gravitational waves 3608: 3601:First observation of gravitational waves 3476: 3290: 3101: 3003: 2879: 2799:yet exists that successfully reconciles 2552: 1932: 1924: 1908: 1781:Credit: NASA Goddard Space Flight Center 1774: 1590: 1582: 1465:first observation of gravitational waves 1268: 1212:The speed of gravitational waves in the 1149: 843:Gravitational waves transport energy as 36: 9119: 8373:, Barry Barish, CERN (11 February 2016) 8204:Principles of ĐĄosmology and Gravitation 8123: 7752:: Oxford University Press. p. 56. 7314:Astrophysics & Space Research Group 5777:"Gravitational Astrophysics Laboratory" 5635:O'Callaghan, Jonathan (4 August 2023). 5572: 5074: 5072: 5070: 5002: 4711: 3605:List of gravitational wave observations 3000:List of gravitational wave observations 1143:(LISA), is also being developed by the 14: 10679: 7916: 7772: 7714: 7196: 7140: 7029: 6000: 5843: 5723:Landau, L. D.; Lifshitz, E.M. (1975). 5713:LIGO press conference 11 February 2016 5603: 5523: 5498:"Gravity Waves from Big Bang Detected" 5473: 5310: 5064:The Royal Swedish Academy of Sciences. 4892: 4683: 4574: 4376: 4342: 4255:Abbott, R.; et al. (2021-07-01). 4254: 3726:, which is pure s-wave, by means of a 3692: 3689:before the gravitational observation. 3583:. They were allegedly detected by the 2688:Energy, momentum, and angular momentum 2601: 2333:is the separation between the bodies, 1905:Two-body problem in general relativity 10266: 10123: 9267: 8421: 8348:Massachusetts Institute of Technology 8321:(Addison–Wesley, Reading, MA, 1980). 8237:(The MIT Press, Cambridge MA, 2017). 8223:, University of Chicago Press, 2004. 7593: 7180: 6892: 6769: 6698: 6672: 6402: 5462: 5297: 4977: 4543: 4541: 4223: 4153: 3443:Space-based interferometers, such as 3344:an interferometer is most sensitive. 3031: 3019:. The microscopic examination of the 2739:, gravitational waves should exhibit 1578: 1154:Linearly polarised gravitational wave 857:Newton's law of universal gravitation 8572:Stanford gravitational wave detector 8255:(Cambridge University Press, 1980). 8058: 7478:Hellings, R.W.; Downs, G.S. (1983). 7183:The detection of gravitational waves 6747:PACS numbers: 04.30. + x, 04.90. + e 6641: 5716: 5067: 4349:A first course in general relativity 4315: 3547:Westerbork Synthesis Radio Telescope 3138: 2783:is the name given to a hypothetical 1937:Two stars of similar mass in highly 1913:Two stars of dissimilar mass are in 1749:with a "plus" polarization, written 1374:during the first "GR" conference at 987:adding citations to reliable sources 958: 9858:Tolman–Oppenheimer–Volkoff equation 9811:Friedmann–LemaĂźtre–Robertson–Walker 8342:. LIGO Laboratory, operated by the 8206:(Adam Hilger, Philadelphia, 1989). 7117:gwoptics: Gravitational wave E-book 6458: 5609:"Learning from Gravitational Waves" 5375: 5195: 4548:Hawking, S. W.; Israel, W. (1979). 4451: 2926:, for example. Observations in the 2848:to determine direction by means of 2803:, which describes gravity, and the 2506: 2153:{\displaystyle t_{\text{coalesce}}} 1917:. Each revolves about their common 1245:(carrier of the strong force), the 1201: 872:observations of gravitational waves 24: 8724:European Gravitational Observatory 8344:California Institute of Technology 8319:Some Strangeness in the Proportion 8020: 7715:Kramer, Sarah (11 February 2016). 7307: 6953:Huang, Y.; Weisberg, J.M. (2016). 6699:Berry, Christopher (14 May 2015). 5936:. 9 September 2015. Archived from 5649:from the original on 4 August 2023 5547:"Einstein's waves win Nobel Prize" 4538: 4138: 3657:from merging black hole binaries. 3280: 3189:deformation of the detector sphere 2747:), but also due to distortions of 2187: 2177: 1552:-significance. They expect that a 1404:After the Chapel Hill conference, 1351:again. Nonetheless, his assistant 1141:Laser Interferometer Space Antenna 96: 25: 10723: 9628:Hamilton–Jacobi–Einstein equation 9008:(first-ever "mass gap" collision) 8333: 8051:Landau, L.D. and Lifshitz, E.M., 7662:The Astrophysical Journal Letters 7451:The Astrophysical Journal Letters 6293:The Astrophysical Journal Letters 4684:Clavin, Whitney (17 March 2014). 4261:The Astrophysical Journal Letters 4191:Journal of the Franklin Institute 3559:International Pulsar Timing Array 3319:Currently, the most sensitive is 800:are transient displacements in a 10664: 10652: 10640: 10628: 10616: 10604: 10592: 10106: 10105: 8286:Principles of Physical Cosmology 7990: 7955: 7910: 7859: 7835: 7708: 7648: 7587: 7520: 7471: 7457: 7422: 6810: 6673:Gough, Evan (11 February 2016). 5701:"Ein neuer Zugang zum Universum" 5671:. NASA Jet Propulsion Laboratory 4322:"First Second of the Big Bang". 4174:from the original on 2016-03-03. 3888:– proposed space-based detectors 3715:high temperature superconductors 3392: 1842:conservation of angular momentum 963: 752: 751: 738: 68: 8193: 7354: 7336: 7301: 7233: 7189: 7174: 7105: 7087: 7076: 7023: 7005: 6946: 6909: 6829: 6817:Scientific American – Space.com 6804: 6750: 6722: 6692: 6666: 6654: 6601: 6560: 6337: 6254: 5994: 5972: 5947: 5879: 5837: 5794: 5769: 5743: 5707: 5693: 5682: 5661: 5517: 5486: 5448: 5217: 5189: 5170: 5117: 5054: 4996: 4971: 4922:The European Physical Journal H 4913: 4886: 4765: 4753: 4736: 4621: 4599: 4568: 4477: 4370: 4224:Chang, Kenneth (29 June 2021). 3671:Fermi Gamma-ray Space Telescope 3655:gravitational wave observations 3373:observation, to tens per year. 3135:≈ 10, but generally no bigger. 3084: 2843:Determining direction of travel 2005:10 times more than the current 1831:conservation of linear momentum 1738:, just like the equation for a 1312:In 1915 Einstein published his 974:needs additional citations for 954: 27:Aspect of relativity in physics 9435:Mass–energy equivalence (E=mc) 9293: 8465:Gravitational-wave observatory 8053:The Classical Theory of Fields 8031:Einstein's Unfinished Symphony 7968:. Bentham Science Publishers. 7813:10.1103/PhysRevLett.119.161101 7408:10.1088/0264-9381/27/17/173001 7094:Binary and Millisecond Pulsars 7062:10.1088/0264-9381/32/12/124009 5726:The Classical Theory of Fields 5388:US National Science Foundation 5345:10.1103/PhysRevLett.116.061102 5196:Cho, Adrian (3 October 2017). 4872:. Princeton University Press. 4178: 4147: 4132: 4070:Einstein, Albert (June 1916). 4033: 3852:Gravitational-wave observatory 2996:Gravitational-wave observatory 2918:, astronomers have discovered 2730: 2540:masses in the order of the Sun 2484: 2458: 2455: 2432: 2294: 2268: 2265: 2242: 2029: 2023: 1975:gravitational potential energy 1859:, but zero quadrupole moment) 816:. They were first proposed by 13: 1: 9157:Gravitational wave background 8709:LIGO Scientific Collaboration 7775:LIGO Scientific Collaboration 7626:10.1088/0264-9381/27/8/084013 7596:Classical and Quantum Gravity 7378:Classical and Quantum Gravity 7185:. Cambridge University Press. 7032:Classical and Quantum Gravity 6778:American Institute of Physics 6224:10.1103/PhysRevLett.96.111102 6151:10.1103/PhysRevLett.96.111101 6082:10.1103/PhysRevLett.95.121101 5923:"Chapter 16 Gravity [ 4652:"BICEP2 2014 Results Release" 4379:LIGO Scientific Collaboration 4211:10.1016/S0016-0032(37)90583-0 3961: 3847:Gravitational wave background 3737: 3636:Southern Celestial Hemisphere 3575:Primordial gravitational wave 3569:Primordial gravitational wave 2930:band led to the detection of 2677:gravitational wave background 1797:Some more detailed examples: 1519:gravitational wave background 1482:Southern Celestial Hemisphere 1463:collaborations announced the 1436:, which earned them the 1993 808:masses – that 10712:Unsolved problems in physics 10488:CRISPR genome-editing method 8960:First observation (GW150914) 8746:TAMA 20, later known as LISM 8449:Gravitational-wave astronomy 8253:The Search for Gravity Waves 8066:Living Reviews in Relativity 7974:10.2174/97816080539951120101 7013:"Nobel Prizes and Laureates" 6839:Astronomy & Astrophysics 6444:10.1088/0004-637X/699/2/1690 6028:10.1103/RevModPhys.90.040503 5474:Scoles, Sarah (2016-02-11). 5032:10.1080/0020739X.2013.770091 4746:Electromagnetic theory Vol 1 3842:Gravitational-wave astronomy 3621:collaboration announced the 3539:European Pulsar Timing Array 3198:, England, and the other at 2992:Gravitational-wave detection 2985: 2894:Gravitational-wave astronomy 2876:Gravitational wave astronomy 2807:, which describes all other 2714:hyper-compact stellar system 2663: 2640:transient astronomical event 2627: 1314:general theory of relativity 1214:general theory of relativity 1169:gravitational wave astronomy 1083: 1067:general theory of relativity 939:was subsequently awarded to 933:gravitational wave detectors 868:gravitational-wave astronomy 834:general theory of relativity 7: 9450:Relativistic Doppler effect 9094:Tests of general relativity 7740:Heathcote, William (2018). 6869:10.1051/0004-6361/201629522 6648:Scientific American (blogs) 4952:10.1140/epjh/e2019-100020-1 4657:National Science Foundation 4617:(2nd ed.). p. 12. 3802: 3796:Remembrance of Earth's Past 3750:Arkady and Boris Strugatsky 3595:LIGO and Virgo observations 3581:cosmic microwave background 3521:uses data collected by the 3439:Space-based interferometers 3339:. Each observatory has two 1898: 1879:-th time derivative of the 1863:radiate, in agreement with 1670:Amplitude: Usually denoted 1493:cosmic microwave background 1074: 894:; and the formation of the 249:Gravitational time dilation 10: 10728: 10562:James Webb Space Telescope 9921:In computational physics: 9445:Relativity of simultaneity 8756:Caltech 40m interferometer 8059:Will, Clifford M. (2014). 7285:10.1142/9789812777386_0420 6990:10.3847/0004-637X/829/1/55 6642:Mack, Katie (2017-06-12). 6616:Princeton University Press 6554:10.1103/PhysRevD.77.043512 6001:Thorne, Kip (2018-12-18). 5886:Maggiore, Michele (2007). 5524:Sample, Ian (2014-06-04). 4866:Kennefick, Daniel (2016). 4743:Heaviside, Oliver (1894). 4421:10.1103/PhysRevD.85.082002 4354:Cambridge University Press 3598: 3572: 3531:Parkes Pulsar Timing Array 3470: 3467:Using pulsar timing arrays 3455:, and artifacts caused by 3396: 3368:, which is located in the 3284: 3230:amplitude spectral density 3142: 2989: 2891: 2667: 2631: 2605: 1941:about their center of mass 1902: 1887:) of an isolated system's 1770: 1264: 1205: 907:Hulse–Taylor binary pulsar 820:in 1893 and then later by 369:Mathisson–Papapetrou–Dixon 210:Pseudo-Riemannian manifold 29: 10542:developed at record speed 10303: 10297:Breakthroughs of the Year 10232: 10211: 10161: 10103: 9935: 9800: 9772: 9758:Lense–Thirring precession 9641: 9590: 9552: 9531: 9520: 9478: 9422: 9406: 9348: 9340:Doubly special relativity 9312: 9301: 9165: 9112: 9081: 9021: 8947: 8940: 8913: 8880: 8846: 8830: 8821: 8801: 8780: 8764: 8733: 8672: 8661: 8616: 8600: 8534: 8493: 8482: 8473: 8455: 7533:The Astrophysical Journal 7484:The Astrophysical Journal 7219:10.1007/s00016-003-0179-6 6903:10.1038/nature.2015.16830 6467:The Astrophysical Journal 6414:The Astrophysical Journal 6350:The Astrophysical Journal 5873:10.1103/PhysRev.136.B1224 5428:10.1038/nature.2016.19361 5082:The Astrophysical Journal 5060:Nobel Prize Award (1993) 4978:Skuse, Ben (2022-09-01). 4966:European Physical Journal 4377:Abadie, J.; et al. ( 4110:"Über Gravitationswellen" 4108:Einstein, Albert (1918). 4019:10.1088/1367-2630/7/1/204 3617:On 11 February 2016, the 3126:term in the formulas for 2898:During the past century, 1893:electromagnetic radiation 1430:Joseph Hooton Taylor, Jr. 853:electromagnetic radiation 812:from their source at the 10151:Fundamental interactions 9618:Post-Newtonian formalism 9608:Einstein field equations 9544:Mathematical formulation 9368:Hyperbolic orthogonality 9197:Supermassive black holes 8355:– Collected articles at 8302:and Ciufolini, Ignazio, 7917:MĂŒller, K. Alex (1996). 7843:"GW170817 Press Release" 7773:Abbott BP, et al. ( 7693:10.3847/2041-8213/acdac6 7564:10.3847/1538-4357/aabd3b 7318:University of Birmingham 7121:University of Birmingham 6709:University of Birmingham 6705:University of Birmingham 4984:Lindau Nobel Mediatheque 4968:H 44, pp. 181–270 (2019) 4629:"GW170817 Press Release" 4325:How The Universe Works 3 4292:10.3847/2041-8213/ac082e 4049:www.academie-sciences.fr 3944:supermassive black holes 3832:Gravitational plane wave 3313:Michelson interferometer 3196:University of Birmingham 2912:electromagnetic spectrum 2725:SDSS J092712.65+294344.0 2683:Properties and behaviour 1568:{\displaystyle 5\sigma } 1545:{\displaystyle 3\sigma } 1467:, from a signal (dubbed 1361:Riemann curvature tensor 1185:supermassive black holes 1131:. The Japanese detector 915:Joseph Hooton Taylor Jr. 374:Hamilton–Jacobi–Einstein 354:Einstein field equations 177:Mathematical formulation 10417:Human genetic variation 10352:Whole genome sequencing 10186:Electroweak interaction 9329:Galilean transformation 9320:Principle of relativity 9036:Resonant mass detectors 8304:Gravitation and Inertia 8300:Wheeler, John Archibald 8055:(Pergamon Press), 1987. 7783:Physical Review Letters 7113:"Noise and Sensitivity" 6861:2017A&A...600A..57C 6194:Physical Review Letters 6121:Physical Review Letters 6052:Physical Review Letters 5823:10.1103/PhysRev.131.435 5314:Physical Review Letters 5261:10.3390/universe2030022 4841:10.3390/universe2030022 4611:Wheeler, John Archibald 4516:10.1126/science.1179541 3523:Arecibo Radio Telescope 3360:. Upgrades to LIGO and 2976:supermassive black hole 2582:away, emitting a short 2133:the initial radius and 1421:results were spurious. 1226:. Within the theory of 845:gravitational radiation 10521:Single-cell sequencing 10425:Cellular reprogramming 9414:Lorentz transformation 7746:Great Clarendon Street 7199:Physics in Perspective 7181:Blair DG, ed. (1991). 5758:, p. Introduction 3989:New Journal of Physics 3811:Nobel Prize in Physics 3669:) was detected by the 3614: 3555:Nancay Radio Telescope 3535:Parkes radio-telescope 3486: 3308: 3107: 3098:Ground-based detectors 3028: 2980:Hubble Space Telescope 2889: 2765:gravitational redshift 2741:shifting of wavelength 2651:Spinning neutron stars 2558: 2497: 2343:gravitational constant 2320: 2154: 2127: 2100: 1942: 1930: 1922: 1783: 1596: 1588: 1569: 1546: 1500:Nobel Prize in Physics 1438:Nobel Prize in Physics 1286: 1155: 1099:inversely proportional 1071:curvature of spacetime 937:Nobel Prize in Physics 919:Nobel Prize in Physics 244:Gravitational redshift 137: 55: 10707:Concepts in astronomy 10336:Accelerating universe 10247:Philosophy of physics 9882:Weyl−Lewis−Papapetrou 9623:Raychaudhuri equation 9562:Equivalence principle 9221:Rotating neutron star 9032:Laser interferometers 8364:– Collected articles 7146:"Gravitational Waves" 6959:Astrophysical Journal 6344:Gualandris, Alessia; 5781:science.gsfc/nasa.gov 4980:"Black Holes – Topic" 4895:Acta Physica Polonica 4575:Hartle, J.B. (2003). 3612: 3480: 3428:distributed computing 3325:Livingston, Louisiana 3294: 3120:extraordinarily small 3105: 3007: 2883: 2787:speculated to be the 2737:electromagnetic waves 2670:inflation (cosmology) 2657:spinning neutron star 2556: 2498: 2321: 2155: 2128: 2126:{\displaystyle r_{0}} 2101: 1936: 1928: 1912: 1778: 1594: 1586: 1570: 1547: 1336:submitted a paper to 1307:electromagnetic waves 1279:accelerated expansion 1272: 1153: 1145:European Space Agency 1084:certain circumstances 826:electromagnetic waves 532:Weyl−Lewis−Papapetrou 487:Kerr–Newman–de Sitter 307:Einstein–Rosen bridge 239:Gravitational lensing 195:Equivalence principle 138: 49: 10469:Cancer immunotherapy 10434:Ardipithecus ramidus 9923:Numerical relativity 9764:pulsar timing arrays 9113:Effects / properties 9042:Atom interferometers 8955:List of observations 8882:Pulsar timing arrays 8131:. World Scientific. 7310:"Research Interests" 7083:Crashing Black Holes 6918:Binary Radio Pulsars 6731:Sov. Phys. JETP Lett 3949:Sticky bead argument 3896:Virgo interferometer 3591:in the Milky Way"). 3551:Effelsberg Telescope 3527:Green Bank Telescope 3333:Richland, Washington 3204:Chongqing University 2888:orbiting each other. 2863:Only in the case of 2811:. Attempts, such as 2777:quantum field theory 2775:In the framework of 2374: 2170: 2137: 2110: 2017: 1889:stress–energy tensor 1765:circularly polarized 1556: 1533: 1527:Hellings-Downs curve 1380:sticky bead argument 1256:In August 2017, the 1106:binary neutron stars 1077:Stress–energy tensor 998:"Gravitational wave" 983:improve this article 921:for this discovery. 878:systems composed of 462:Einstein–Rosen waves 188:Fundamental concepts 77: 10702:Gravitational waves 10512:neutron star merger 10500:gravitational waves 10408:PoincarĂ© conjecture 10237:Glossary of physics 10212:Hypothetical forces 9815:Friedmann equations 9709:Hulse–Taylor binary 9671:Gravitational waves 9567:Riemannian geometry 9393:Proper acceleration 9378:Maxwell's equations 9324:Galilean relativity 9202:Stellar black holes 9182:quantum fluctuation 9062:Pulsar timing array 9049:Indirect detection 8989:neutron star merger 8772:INDIGO (LIGO-India) 8366:Scientific American 8362:Gravitational Waves 8353:Gravitational Waves 8317:Woolf, Harry, ed., 8178:1999PhT....52j..44B 8137:1994figw.book.....S 8098:10.12942/lrr-2014-4 8089:2014LRR....17....4W 8011:1963JETP...16..433G 7931:1996LNP...475..151M 7880:1964NCim...33..728H 7805:2017PhRvL.119p1101A 7779:Virgo Collaboration 7684:2023ApJ...951L...8A 7618:2010CQGra..27h4013H 7555:2018ApJ...859...47A 7496:1983ApJ...265L..39H 7400:2010CQGra..27q3001A 7277:2002nmgm.meet.1899D 7254:2006rdgp.conf..415D 7211:2004PhP.....6...42L 7168:1995pnac.conf..160T 7054:2015CQGra..32l4009D 6981:2016ApJ...829...55W 6940:2005ASPC..328...25W 6790:2006AIPC..813.1280B 6743:1976ZhPmR..23..326G 6546:2008PhRvD..77d3512M 6489:2008ApJ...678L..81K 6436:2009ApJ...699.1690M 6372:2008ApJ...678..780G 6315:2004ApJ...607L...9M 6216:2006PhRvL..96k1102B 6143:2006PhRvL..96k1101C 6074:2005PhRvL..95l1101P 6019:2018RvMP...90d0503T 5943:on 29 January 2016. 5888:Gravitational Waves 5865:1964PhRv..136.1224P 5844:Peters, P. (1964). 5815:1963PhRv..131..435P 5642:Scientific American 5503:Scientific American 5337:2016PhRvL.116f1102A 5293:. 11 February 2016. 5252:2016Univ....2...22C 5140:1979Natur.277..437T 5095:1982ApJ...253..908T 5024:2013IJMES..44.1201D 4944:2019EPJH...44..181R 4907:1956AcPP...15..389P 4832:2016Univ....2...22C 4508:2010Sci...328..989K 4413:2012PhRvD..85h2002A 4383:Virgo Collaboration 4283:2021ApJ...915L...5A 4203:1937FrInJ.223...43E 4122:1918SPAW.......154E 4086:1916SPAW.......688E 4011:2005NJPh....7..204F 3837:Gravitational field 3693:Microscopic sources 3648:statistical physics 3533:uses data from the 3499:millisecond pulsars 3495:pulsar timing array 3473:Pulsar timing array 3430:project similar to 3370:Kamioka Observatory 3038:Hulse–Taylor binary 2785:elementary particle 2602:Black hole binaries 2007:age of the universe 1434:first binary pulsar 1345:Howard P. Robertson 1295:electrostatic force 861:classical mechanics 802:gravitational field 798:Gravitational waves 416:Kaluza–Klein theory 302:Minkowski spacetime 254:Gravitational waves 18:Gravitational waves 10697:Effects of gravity 10553:protein structures 10171:Strong interaction 9864:Reissner–Nordström 9782:Brans–Dicke theory 9613:Linearized gravity 9440:Length contraction 9358:Frame of reference 9335:Special relativity 9089:General relativity 8793:Einstein Telescope 8695:Fermilab holometer 8460:Gravitational wave 7939:10.1007/BFb0102023 7888:10.1007/BF02749891 7348:2016-02-16 at the 7099:2012-03-01 at the 5614:The New York Times 5607:(3 October 2017). 5583:The New York Times 5576:(3 October 2017). 4633:LIGO Lab – Caltech 4344:Schutz, Bernard F. 4231:The New York Times 4185:Einstein, Albert; 4154:C. Barish, Barry. 4116:. part 1: 154–67. 4080:. part 1: 688–96. 3914:Linearized gravity 3822:Artificial gravity 3728:Josephson junction 3615: 3487: 3341:light storage arms 3309: 3155:resonant frequency 3108: 3032:Indirect detection 3029: 2890: 2809:fundamental forces 2801:general relativity 2559: 2493: 2316: 2150: 2123: 2096: 1991:decay in the orbit 1985:of which only 200 1943: 1931: 1923: 1865:Birkhoff's theorem 1784: 1747:linearly polarized 1702:: Usually denoted 1692:: Usually denoted 1657:quadrupole formula 1644:linearized gravity 1642:(as formulated in 1597: 1589: 1579:Effects of passing 1565: 1542: 1426:Russell Alan Hulse 1287: 1228:special relativity 1161:optical telescopes 1156: 1137:Einstein Telescope 898:shortly after the 745:Physics portal 517:Oppenheimer–Snyder 457:Reissner–Nordström 349:Linearized gravity 297:Spacetime diagrams 200:Special relativity 133: 62:General relativity 56: 10580: 10579: 10540:COVID-19 vaccines 10496:First observation 10364:Molecular circuit 10260: 10259: 10117: 10116: 9931: 9930: 9910:OzsvĂĄth–SchĂŒcking 9516: 9515: 9498:Minkowski diagram 9455:Thomas precession 9398:Relativistic mass 9261: 9260: 9077: 9076: 9028:Direct detection 8876: 8875: 8872: 8871: 8854:Big Bang Observer 8817: 8816: 8657: 8656: 8276:978-0-367-13681-9 8243:978-0-262-03618-4 8154:978-981-02-1820-1 8125:Saulson, Peter R. 8027:Bartusiak, Marcia 7983:978-1-60805-400-8 7948:978-3-540-70695-3 7759:978-0-19-839796-0 7294:978-981-277-738-6 6798:10.1063/1.2169312 6625:978-0-691-08162-5 6594:978-0-7167-0344-0 6524:Physical Review D 6013:(40503): 040503. 5934:AW Physics Macros 5897:978-0-19-152474-5 5736:978-0-08-025072-4 5496:(17 March 2014). 5134:(5696): 437–440. 5004:Debnath, Lokenath 4879:978-1-4008-8274-8 4715:(17 March 2014). 4615:Spacetime Physics 4592:978-981-02-2749-4 4561:978-0-521-22285-3 4391:Physical Review D 4363:978-0-521-88705-2 4330:Discovery Science 3924:pp-wave spacetime 3867:Hawking radiation 3640:Magellanic Clouds 3529:. The Australian 3185:Leiden University 3139:Resonant antennas 3094:< 10 Hz. 3012:was found by the 2965:interstellar dust 2952:ultraviolet light 2638:A supernova is a 2608:Binary black hole 2546:and explode in a 2488: 2416: 2391: 2312: 2308: 2236: 2211: 2195: 2147: 2072: 2069: 1960:quadrupole moment 1939:elliptical orbits 1873:quadrupole moment 1611:, as a ripple in 1486:Magellanic Clouds 1386:. Shortly after, 1303:electrical charge 1059: 1058: 1051: 1033: 890:; events such as 795: 794: 428: 427: 314: 313: 47: 16:(Redirected from 10719: 10669: 10668: 10657: 10656: 10655: 10645: 10644: 10643: 10633: 10632: 10631: 10621: 10620: 10609: 10608: 10607: 10597: 10596: 10588: 10573: 10565: 10556: 10543: 10534: 10523: 10515: 10502: 10490: 10482: 10471: 10463: 10454: 10445: 10437: 10427: 10419: 10411: 10402: 10393: 10382: 10374: 10372:RNA interference 10366: 10354: 10346: 10338: 10330: 10322: 10287: 10280: 10273: 10264: 10263: 10242:Particle physics 10196:electromagnetism 10191:weak interaction 10144: 10137: 10130: 10121: 10120: 10109: 10108: 9892:van Stockum dust 9664:Two-body problem 9582:Mach's principle 9529: 9528: 9470:Terrell rotation 9310: 9309: 9288: 9281: 9274: 9265: 9264: 9193:Binary inspiral 9187:Phase transition 9178:Cosmic inflation 8945: 8944: 8828: 8827: 8670: 8669: 8491: 8490: 8480: 8479: 8442: 8435: 8428: 8419: 8418: 8414: 8404: 8402:10.1090/noti1551 8282:P. J. E. Peebles 8266:Grote, Hartmut, 8233:Collins, Harry, 8189: 8186:10.1063/1.882861 8158: 8120: 8110: 8100: 8082: 8048: 8046: 8015: 8014: 7994: 7988: 7987: 7959: 7953: 7952: 7914: 7908: 7907: 7868:Il Nuovo Cimento 7863: 7857: 7856: 7854: 7853: 7839: 7833: 7832: 7798: 7770: 7764: 7763: 7737: 7731: 7730: 7728: 7727: 7721:Business Insider 7712: 7706: 7705: 7695: 7677: 7652: 7646: 7645: 7611: 7591: 7585: 7584: 7566: 7548: 7524: 7518: 7517: 7507: 7475: 7469: 7468: 7461: 7455: 7454: 7443: 7434: 7433: 7426: 7420: 7419: 7393: 7373: 7367: 7358: 7352: 7340: 7334: 7333: 7331: 7329: 7320:. Archived from 7305: 7299: 7298: 7264: 7258: 7257: 7237: 7231: 7230: 7193: 7187: 7186: 7178: 7172: 7171: 7161: 7138: 7132: 7131: 7129: 7127: 7109: 7103: 7091: 7085: 7080: 7074: 7073: 7047: 7027: 7021: 7020: 7009: 7003: 7002: 6992: 6974: 6950: 6944: 6943: 6933: 6931:astro-ph/0407149 6913: 6907: 6906: 6890: 6881: 6880: 6854: 6833: 6827: 6826: 6824: 6823: 6808: 6802: 6801: 6784:. AIP: 1280–89. 6773: 6767: 6766: 6754: 6748: 6746: 6726: 6720: 6719: 6717: 6715: 6696: 6690: 6689: 6687: 6685: 6670: 6664: 6658: 6652: 6651: 6639: 6630: 6629: 6605: 6599: 6598: 6564: 6558: 6557: 6539: 6515: 6509: 6508: 6482: 6462: 6456: 6455: 6429: 6420:(2): 1690–1710. 6406: 6400: 6399: 6365: 6341: 6335: 6334: 6308: 6306:astro-ph/0402057 6285: 6279: 6278: 6276: 6275: 6258: 6252: 6251: 6209: 6188:Baker, John G.; 6185: 6179: 6178: 6136: 6116: 6110: 6109: 6067: 6047: 6041: 6040: 6030: 5998: 5992: 5991: 5990: 5988: 5976: 5970: 5969: 5967: 5965: 5951: 5945: 5944: 5942: 5931: 5919: 5910: 5909: 5883: 5877: 5876: 5859:(4B): B1224–32. 5850: 5841: 5835: 5834: 5798: 5792: 5791: 5789: 5787: 5773: 5767: 5766: 5765: 5763: 5757: 5747: 5741: 5740: 5720: 5714: 5711: 5705: 5704: 5697: 5691: 5686: 5680: 5679: 5677: 5676: 5665: 5659: 5658: 5656: 5654: 5632: 5626: 5625: 5623: 5621: 5601: 5595: 5594: 5592: 5590: 5570: 5564: 5563: 5561: 5559: 5542: 5536: 5535: 5521: 5515: 5514: 5512: 5510: 5494:Moskowitz, Clara 5490: 5484: 5483: 5471: 5460: 5459: 5452: 5446: 5445: 5443: 5442: 5411: 5400: 5399: 5397: 5396: 5379: 5373: 5372: 5330: 5308: 5295: 5294: 5283: 5274: 5273: 5263: 5245: 5221: 5215: 5214: 5212: 5210: 5193: 5187: 5186: 5174: 5168: 5167: 5148:10.1038/277437a0 5121: 5115: 5114: 5076: 5065: 5058: 5052: 5051: 5000: 4994: 4993: 4991: 4990: 4975: 4969: 4963: 4937: 4917: 4911: 4910: 4890: 4884: 4883: 4863: 4854: 4853: 4843: 4825: 4801: 4780: 4779: 4777: 4769: 4763: 4757: 4751: 4750: 4740: 4734: 4733: 4731: 4729: 4709: 4703: 4702: 4700: 4698: 4681: 4670: 4669: 4667: 4665: 4648: 4637: 4636: 4625: 4619: 4618: 4607:Taylor, Edwin F. 4603: 4597: 4596: 4572: 4566: 4565: 4545: 4536: 4535: 4501: 4492:(5981): 989–92. 4481: 4475: 4474: 4472: 4470: 4455: 4449: 4448: 4406: 4385:) (2012-04-19). 4374: 4368: 4367: 4340: 4334: 4333: 4319: 4313: 4312: 4294: 4276: 4252: 4243: 4242: 4240: 4238: 4221: 4215: 4214: 4182: 4176: 4175: 4173: 4160: 4151: 4145: 4144: 4136: 4130: 4129: 4124:. Archived from 4105: 4094: 4093: 4088:. Archived from 4067: 4061: 4060: 4058: 4056: 4046: 4037: 4031: 4030: 4004: 3980: 3857:Gravitomagnetism 3745:Space Apprentice 3543:Lovell Telescope 3512:cosmic inflation 3417:Doppler shifting 3359: 3357: 3272: 3271: 3270: 3264: 3254: 3253: 3252: 3246: 3227: 3226: 3225: 3219: 3090:10 Hz < 3046:Doppler shifting 2916:radio telescopes 2797:scientific model 2753:cosmic expansion 2702:angular momentum 2564: 2533: 2529: 2507:Compact binaries 2502: 2500: 2499: 2494: 2489: 2487: 2483: 2482: 2470: 2469: 2454: 2453: 2444: 2443: 2430: 2429: 2420: 2417: 2415: 2414: 2405: 2404: 2395: 2392: 2384: 2325: 2323: 2322: 2317: 2310: 2309: 2307: 2306: 2297: 2293: 2292: 2280: 2279: 2264: 2263: 2254: 2253: 2240: 2237: 2235: 2234: 2225: 2224: 2215: 2212: 2204: 2196: 2194: 2190: 2184: 2180: 2174: 2159: 2157: 2156: 2151: 2149: 2148: 2145: 2132: 2130: 2129: 2124: 2122: 2121: 2105: 2103: 2102: 2097: 2092: 2091: 2087: 2078: 2074: 2073: 2071: 2070: 2067: 2058: 2044: 2043: 2004: 1996: 1980: 1885:multipole moment 1836:A spinning disk 1737: 1716:is equal to the 1686: â‰ˆ 10. 1574: 1572: 1571: 1566: 1551: 1549: 1548: 1543: 1325:Arthur Eddington 1291:Oliver Heaviside 1275:cosmic inflation 1237: 1233: 1225: 1216:is equal to the 1208:Speed of gravity 1202:Speed of gravity 1165:radio telescopes 1130: 1128: 1080: 1054: 1047: 1043: 1040: 1034: 1032: 991: 967: 959: 911:Russell A. Hulse 818:Oliver Heaviside 787: 780: 773: 760: 755: 754: 747: 743: 742: 527:van Stockum dust 512:Robertson–Walker 338: 337: 228: 227: 142: 140: 139: 134: 132: 131: 119: 111: 110: 92: 91: 72: 58: 57: 48: 21: 10727: 10726: 10722: 10721: 10720: 10718: 10717: 10716: 10677: 10676: 10675: 10663: 10653: 10651: 10641: 10639: 10629: 10627: 10615: 10605: 10603: 10591: 10583: 10581: 10576: 10568: 10559: 10546: 10537: 10526: 10518: 10505: 10493: 10485: 10474: 10466: 10457: 10448: 10443:quantum machine 10440: 10430: 10422: 10414: 10405: 10396: 10385: 10377: 10369: 10357: 10349: 10341: 10333: 10328:Dolly the sheep 10325: 10316: 10309: 10299: 10291: 10261: 10256: 10228: 10207: 10163:Physical forces 10157: 10148: 10118: 10113: 10099: 9927: 9831:BKL singularity 9821:LemaĂźtre–Tolman 9796: 9792:Quantum gravity 9774: 9768: 9754:geodetic effect 9728:(together with 9698:LISA Pathfinder 9637: 9586: 9572:Penrose diagram 9554: 9548: 9523: 9512: 9508:Minkowski space 9474: 9418: 9402: 9350: 9344: 9304: 9297: 9292: 9262: 9257: 9166:Types / sources 9161: 9108: 9099:Metric theories 9073: 9017: 8936: 8909: 8868: 8842: 8824:interferometers 8823: 8813: 8797: 8788:Cosmic Explorer 8776: 8760: 8729: 8665:interferometers 8664: 8653: 8648:Mario Schenberg 8612: 8596: 8530: 8526:Mario Schenberg 8485: 8469: 8451: 8446: 8336: 8196: 8155: 8044:physics/9908041 8023: 8021:Further reading 8018: 7995: 7991: 7984: 7960: 7956: 7949: 7915: 7911: 7864: 7860: 7851: 7849: 7841: 7840: 7836: 7771: 7767: 7760: 7738: 7734: 7725: 7723: 7713: 7709: 7653: 7649: 7592: 7588: 7525: 7521: 7476: 7472: 7463: 7462: 7458: 7453:. 29 June 2023. 7445: 7444: 7437: 7430:"Einstein@Home" 7428: 7427: 7423: 7374: 7370: 7359: 7355: 7350:Wayback Machine 7341: 7337: 7327: 7325: 7324:on 21 June 2017 7306: 7302: 7295: 7265: 7261: 7238: 7234: 7194: 7190: 7179: 7175: 7139: 7135: 7125: 7123: 7111: 7110: 7106: 7101:Wayback Machine 7092: 7088: 7081: 7077: 7028: 7024: 7011: 7010: 7006: 6951: 6947: 6914: 6910: 6891: 6884: 6834: 6830: 6821: 6819: 6809: 6805: 6774: 6770: 6759:Physics Letters 6755: 6751: 6727: 6723: 6713: 6711: 6697: 6693: 6683: 6681: 6671: 6667: 6659: 6655: 6640: 6633: 6626: 6606: 6602: 6595: 6565: 6561: 6516: 6512: 6463: 6459: 6407: 6403: 6342: 6338: 6286: 6282: 6273: 6271: 6260: 6259: 6255: 6190:Centrella, Joan 6186: 6182: 6117: 6113: 6048: 6044: 5999: 5995: 5986: 5984: 5978: 5977: 5973: 5963: 5961: 5953: 5952: 5948: 5940: 5929: 5921: 5920: 5913: 5898: 5884: 5880: 5853:Physical Review 5848: 5842: 5838: 5803:Physical Review 5799: 5795: 5785: 5783: 5775: 5774: 5770: 5761: 5759: 5755: 5749: 5748: 5744: 5737: 5721: 5717: 5712: 5708: 5699: 5698: 5694: 5687: 5683: 5674: 5672: 5667: 5666: 5662: 5652: 5650: 5633: 5629: 5619: 5617: 5602: 5598: 5588: 5586: 5574:Overbye, Dennis 5571: 5567: 5557: 5555: 5543: 5539: 5522: 5518: 5508: 5506: 5491: 5487: 5472: 5463: 5454: 5453: 5449: 5440: 5438: 5412: 5403: 5394: 5392: 5381: 5380: 5376: 5309: 5298: 5285: 5284: 5277: 5222: 5218: 5208: 5206: 5194: 5190: 5175: 5171: 5122: 5118: 5077: 5068: 5059: 5055: 5001: 4997: 4988: 4986: 4976: 4972: 4918: 4914: 4891: 4887: 4880: 4864: 4857: 4802: 4783: 4775: 4771: 4770: 4766: 4758: 4754: 4741: 4737: 4727: 4725: 4713:Overbye, Dennis 4710: 4706: 4696: 4694: 4682: 4673: 4663: 4661: 4660:. 17 March 2014 4650: 4649: 4640: 4627: 4626: 4622: 4604: 4600: 4593: 4585:. p. 332. 4573: 4569: 4562: 4546: 4539: 4482: 4478: 4468: 4466: 4457: 4456: 4452: 4375: 4371: 4364: 4341: 4337: 4321: 4320: 4316: 4253: 4246: 4236: 4234: 4222: 4218: 4183: 4179: 4171: 4158: 4152: 4148: 4137: 4133: 4106: 4097: 4068: 4064: 4054: 4052: 4044: 4039: 4038: 4034: 3981: 3968: 3964: 3959: 3805: 3740: 3711:superconductors 3695: 3607: 3599:Main articles: 3597: 3577: 3571: 3475: 3469: 3441: 3401: 3395: 3382:Brownian motion 3355: 3353: 3307: 3301: 3289: 3283: 3281:Interferometers 3268: 3266: 3262: 3260: 3250: 3248: 3244: 3242: 3234:superconducting 3223: 3221: 3217: 3215: 3147: 3141: 3100: 3087: 3057:Earth–Sun orbit 3054: 3051: 3034: 3017:radio telescope 3010:infant universe 3002: 2990:Main articles: 2988: 2940:Stephen Hawking 2908:Galileo Galilei 2896: 2878: 2845: 2836: 2813:quantum gravity 2773: 2755:. Redshifting 2733: 2690: 2685: 2672: 2666: 2653: 2636: 2630: 2610: 2604: 2584:gamma ray burst 2562: 2531: 2527: 2509: 2478: 2474: 2465: 2461: 2449: 2445: 2439: 2435: 2431: 2425: 2421: 2419: 2410: 2406: 2400: 2396: 2394: 2383: 2375: 2372: 2371: 2366: 2359: 2302: 2298: 2288: 2284: 2275: 2271: 2259: 2255: 2249: 2245: 2241: 2239: 2230: 2226: 2220: 2216: 2214: 2203: 2186: 2185: 2176: 2175: 2173: 2171: 2168: 2167: 2144: 2140: 2138: 2135: 2134: 2117: 2113: 2111: 2108: 2107: 2083: 2079: 2066: 2062: 2057: 2050: 2046: 2045: 2039: 2035: 2018: 2015: 2014: 2002: 1994: 1978: 1977:) is about 1.14 1915:circular orbits 1907: 1901: 1850:gravitomagnetic 1773: 1762: 1755: 1729: 1581: 1557: 1554: 1553: 1534: 1531: 1530: 1502:was awarded to 1432:discovered the 1414:Galactic Center 1399:Lindau Meetings 1372:Richard Feynman 1349:Physical Review 1339:Physical Review 1281:just after the 1267: 1235: 1231: 1230:, the constant 1223: 1210: 1204: 1192:Stephen Hawking 1167:; accordingly, 1126: 1124: 1063:Albert Einstein 1055: 1044: 1038: 1035: 992: 990: 980: 968: 957: 830:Albert Einstein 810:radiate outward 791: 750: 737: 736: 729: 728: 552: 551: 542: 541: 497:LemaĂźtre–Tolman 442: 441: 430: 429: 421:Quantum gravity 408:Advanced theory 335: 334: 333: 316: 315: 264:Geodetic effect 225: 224: 215: 214: 190: 189: 173: 143: 124: 120: 115: 103: 99: 84: 80: 78: 75: 74: 37: 35: 28: 23: 22: 15: 12: 11: 5: 10725: 10715: 10714: 10709: 10704: 10699: 10694: 10689: 10674: 10673: 10661: 10649: 10637: 10625: 10613: 10601: 10578: 10577: 10575: 10574: 10566: 10557: 10544: 10535: 10524: 10516: 10503: 10491: 10483: 10472: 10464: 10455: 10453:clinical trial 10446: 10438: 10428: 10420: 10412: 10403: 10394: 10383: 10375: 10367: 10355: 10347: 10339: 10331: 10323: 10313: 10311: 10301: 10300: 10290: 10289: 10282: 10275: 10267: 10258: 10257: 10255: 10254: 10249: 10244: 10239: 10233: 10230: 10229: 10227: 10226: 10221: 10215: 10213: 10209: 10208: 10206: 10205: 10200: 10199: 10198: 10193: 10183: 10182: 10181: 10176: 10167: 10165: 10159: 10158: 10147: 10146: 10139: 10132: 10124: 10115: 10114: 10104: 10101: 10100: 10098: 10097: 10090: 10085: 10080: 10075: 10070: 10065: 10060: 10055: 10050: 10045: 10040: 10035: 10030: 10025: 10020: 10018:Choquet-Bruhat 10015: 10010: 10005: 10000: 9995: 9990: 9985: 9980: 9975: 9970: 9965: 9960: 9955: 9950: 9945: 9939: 9937: 9933: 9932: 9929: 9928: 9926: 9925: 9918: 9917: 9912: 9907: 9900: 9899: 9894: 9889: 9884: 9879: 9870:Axisymmetric: 9867: 9866: 9861: 9855: 9844: 9843: 9838: 9833: 9828: 9823: 9818: 9809:Cosmological: 9806: 9804: 9798: 9797: 9795: 9794: 9789: 9784: 9778: 9776: 9770: 9769: 9767: 9766: 9761: 9750:frame-dragging 9747: 9742: 9737: 9734:Einstein rings 9730:Einstein cross 9723: 9712: 9711: 9706: 9700: 9695: 9690: 9677: 9667: 9666: 9661: 9656: 9651: 9645: 9643: 9639: 9638: 9636: 9635: 9633:Ernst equation 9630: 9625: 9620: 9615: 9610: 9605: 9603:BSSN formalism 9600: 9594: 9592: 9588: 9587: 9585: 9584: 9579: 9574: 9569: 9564: 9558: 9556: 9550: 9549: 9547: 9546: 9541: 9535: 9533: 9526: 9518: 9517: 9514: 9513: 9511: 9510: 9505: 9500: 9495: 9490: 9484: 9482: 9476: 9475: 9473: 9472: 9467: 9462: 9460:Ladder paradox 9457: 9452: 9447: 9442: 9437: 9432: 9426: 9424: 9420: 9419: 9417: 9416: 9410: 9408: 9404: 9403: 9401: 9400: 9395: 9390: 9385: 9380: 9375: 9370: 9365: 9363:Speed of light 9360: 9354: 9352: 9346: 9345: 9343: 9342: 9337: 9332: 9326: 9316: 9314: 9307: 9299: 9298: 9291: 9290: 9283: 9276: 9268: 9259: 9258: 9256: 9255: 9254: 9253: 9239: 9238: 9237: 9224: 9223: 9222: 9216: 9215: 9214: 9209: 9204: 9199: 9191: 9190: 9189: 9184: 9169: 9167: 9163: 9162: 9160: 9159: 9154: 9148: 9143:Chirp signal ( 9141: 9138: 9136:speed of light 9132: 9127: 9122: 9116: 9114: 9110: 9109: 9107: 9106: 9101: 9096: 9091: 9085: 9083: 9079: 9078: 9075: 9074: 9072: 9071: 9070: 9069: 9064: 9059: 9047: 9046: 9045: 9037: 9034: 9025: 9023: 9019: 9018: 9016: 9015: 9009: 9003: 8997: 8992: 8982: 8977: 8972: 8967: 8962: 8957: 8951: 8949: 8942: 8938: 8937: 8935: 8934: 8928: 8923: 8917: 8915: 8911: 8910: 8908: 8907: 8902: 8897: 8892: 8886: 8884: 8878: 8877: 8874: 8873: 8870: 8869: 8867: 8866: 8861: 8856: 8850: 8848: 8844: 8843: 8841: 8840: 8834: 8832: 8825: 8819: 8818: 8815: 8814: 8812: 8811: 8809:LIGO-Australia 8805: 8803: 8802:Past proposals 8799: 8798: 8796: 8795: 8790: 8784: 8782: 8778: 8777: 8775: 8774: 8768: 8766: 8762: 8761: 8759: 8758: 8753: 8748: 8743: 8737: 8735: 8731: 8730: 8728: 8727: 8720:Advanced Virgo 8717: 8712: 8702: 8697: 8692: 8687: 8676: 8674: 8667: 8659: 8658: 8655: 8654: 8652: 8651: 8646:(downsized to 8641: 8636: 8631: 8626:(downsized to 8620: 8618: 8617:Past proposals 8614: 8613: 8611: 8610: 8604: 8602: 8598: 8597: 8595: 8594: 8589: 8584: 8579: 8574: 8569: 8559: 8549: 8538: 8536: 8532: 8531: 8529: 8528: 8523: 8518: 8508: 8497: 8495: 8488: 8477: 8471: 8470: 8468: 8467: 8462: 8456: 8453: 8452: 8445: 8444: 8437: 8430: 8422: 8416: 8415: 8395:(7): 684–707. 8374: 8368: 8359: 8357:Nature Journal 8350: 8335: 8334:External links 8332: 8331: 8330: 8315: 8297: 8279: 8264: 8249:Davies, P.C.W. 8246: 8231: 8217:Collins, Harry 8214: 8200:Berry, Michael 8195: 8192: 8191: 8190: 8159: 8153: 8121: 8056: 8049: 8034: 8022: 8019: 8017: 8016: 8001:(in Russian). 7989: 7982: 7954: 7947: 7909: 7858: 7834: 7789:(16): 161101. 7765: 7758: 7732: 7707: 7647: 7586: 7519: 7505:10.1086/183954 7470: 7456: 7435: 7421: 7368: 7353: 7335: 7308:Cruise, Mike. 7300: 7293: 7259: 7232: 7188: 7173: 7144:(1995-07-01). 7142:Thorne, Kip S. 7133: 7104: 7086: 7075: 7038:(12): 124009. 7022: 7017:NobelPrize.org 7004: 6945: 6908: 6882: 6828: 6803: 6768: 6749: 6721: 6691: 6679:Universe Today 6665: 6653: 6631: 6624: 6600: 6593: 6559: 6510: 6497:10.1086/588656 6473:(2): L81–L84. 6457: 6401: 6380:10.1086/586877 6346:Merritt, David 6336: 6323:10.1086/421551 6280: 6253: 6200:(11): 111102. 6180: 6127:(11): 111101. 6111: 6058:(12): 121101. 6042: 6007:Rev. Mod. Phys 5993: 5971: 5946: 5911: 5896: 5878: 5836: 5793: 5768: 5742: 5735: 5715: 5706: 5692: 5681: 5660: 5627: 5596: 5565: 5537: 5516: 5485: 5461: 5447: 5401: 5374: 5296: 5275: 5216: 5188: 5169: 5116: 5103:10.1086/159690 5066: 5053: 5018:(8): 1201–23. 4995: 4970: 4928:(3): 181–270. 4912: 4885: 4878: 4855: 4781: 4764: 4752: 4735: 4722:New York Times 4704: 4671: 4638: 4620: 4598: 4591: 4583:Addison-Wesley 4567: 4560: 4537: 4476: 4463:www.aei.mpg.de 4450: 4369: 4362: 4335: 4314: 4244: 4216: 4177: 4146: 4139:Finley, Dave. 4131: 4128:on 2016-01-15. 4095: 4092:on 2016-01-15. 4062: 4032: 3965: 3963: 3960: 3958: 3957: 3952: 3946: 3937: 3927: 3921: 3916: 3911: 3889: 3875: 3870: 3864: 3859: 3854: 3849: 3844: 3839: 3834: 3829: 3824: 3819: 3814: 3806: 3804: 3801: 3780:'s 1997 novel 3767:'s 1986 novel 3739: 3736: 3694: 3691: 3596: 3593: 3573:Main article: 3570: 3567: 3508:cosmic strings 3483:Hellings-Downs 3471:Main article: 3468: 3465: 3440: 3437: 3397:Main article: 3394: 3391: 3302: 3296: 3285:Main article: 3282: 3279: 3228:, given as an 3167:David Douglass 3163:Richard Garwin 3143:Main article: 3140: 3137: 3099: 3096: 3086: 3083: 3052: 3049: 3033: 3030: 2987: 2984: 2956:infrared light 2938:, a discovery 2932:faint imprints 2892:Main article: 2877: 2874: 2854:speed of light 2844: 2841: 2835: 2832: 2805:Standard Model 2791:that mediates 2772: 2769: 2745:Doppler effect 2732: 2729: 2689: 2686: 2684: 2681: 2668:Main article: 2665: 2662: 2652: 2649: 2632:Main article: 2629: 2626: 2606:Main article: 2603: 2600: 2574:in the galaxy 2508: 2505: 2504: 2503: 2492: 2486: 2481: 2477: 2473: 2468: 2464: 2460: 2457: 2452: 2448: 2442: 2438: 2434: 2428: 2424: 2413: 2409: 2403: 2399: 2390: 2387: 2382: 2379: 2364: 2357: 2351:speed of light 2327: 2326: 2315: 2305: 2301: 2296: 2291: 2287: 2283: 2278: 2274: 2270: 2267: 2262: 2258: 2252: 2248: 2244: 2233: 2229: 2223: 2219: 2210: 2207: 2202: 2199: 2193: 2189: 2183: 2179: 2143: 2120: 2116: 2095: 2090: 2086: 2082: 2077: 2065: 2061: 2056: 2053: 2049: 2042: 2038: 2034: 2031: 2028: 2025: 2022: 1971:kinetic energy 1919:center of mass 1900: 1897: 1869: 1868: 1853: 1844:. However, it 1834: 1823: 1813: 1806: 1772: 1769: 1760: 1753: 1726: 1725: 1718:speed of light 1707: 1697: 1687: 1662:As with other 1648:circular orbit 1580: 1577: 1564: 1561: 1541: 1538: 1353:Leopold Infeld 1330:speed of light 1299:Henri PoincarĂ© 1266: 1263: 1219:speed of light 1206:Main article: 1203: 1200: 1088:speed of light 1057: 1056: 971: 969: 962: 956: 953: 896:early universe 849:radiant energy 836:as ripples in 822:Henri PoincarĂ© 814:speed of light 793: 792: 790: 789: 782: 775: 767: 764: 763: 762: 761: 748: 731: 730: 727: 726: 719: 714: 709: 704: 699: 694: 689: 684: 679: 674: 669: 664: 659: 654: 649: 644: 639: 634: 629: 624: 619: 614: 609: 604: 599: 594: 589: 584: 579: 574: 569: 564: 559: 553: 549: 548: 547: 544: 543: 540: 539: 534: 529: 524: 519: 514: 509: 504: 499: 494: 489: 484: 479: 474: 469: 464: 459: 454: 443: 437: 436: 435: 432: 431: 426: 425: 424: 423: 418: 410: 409: 405: 404: 403: 402: 400:Post-Newtonian 397: 392: 384: 383: 379: 378: 377: 376: 371: 366: 361: 356: 351: 343: 342: 336: 332: 331: 328: 324: 323: 322: 321: 318: 317: 312: 311: 310: 309: 304: 299: 291: 290: 284: 283: 282: 281: 276: 271: 266: 261: 259:Frame-dragging 256: 251: 246: 241: 236: 234:Kepler problem 226: 222: 221: 220: 217: 216: 213: 212: 207: 202: 197: 191: 187: 186: 185: 182: 181: 180: 179: 174: 172: 171: 166: 161: 155: 153: 145: 144: 130: 127: 123: 118: 114: 109: 106: 102: 98: 95: 90: 87: 83: 73: 65: 64: 26: 9: 6: 4: 3: 2: 10724: 10713: 10710: 10708: 10705: 10703: 10700: 10698: 10695: 10693: 10690: 10688: 10685: 10684: 10682: 10672: 10667: 10662: 10660: 10650: 10648: 10638: 10636: 10626: 10624: 10619: 10614: 10612: 10602: 10600: 10595: 10590: 10589: 10586: 10572: 10567: 10563: 10558: 10554: 10550: 10545: 10541: 10536: 10533: 10530: 10525: 10522: 10517: 10513: 10509: 10504: 10501: 10497: 10492: 10489: 10484: 10481: 10480:comet mission 10479: 10473: 10470: 10465: 10461: 10456: 10452: 10447: 10444: 10439: 10436: 10435: 10429: 10426: 10421: 10418: 10413: 10409: 10404: 10400: 10395: 10392: 10390: 10384: 10381: 10376: 10373: 10368: 10365: 10361: 10356: 10353: 10348: 10345: 10340: 10337: 10332: 10329: 10324: 10321:understanding 10320: 10315: 10314: 10312: 10308: 10307: 10302: 10298: 10296: 10288: 10283: 10281: 10276: 10274: 10269: 10268: 10265: 10253: 10250: 10248: 10245: 10243: 10240: 10238: 10235: 10234: 10231: 10225: 10222: 10220: 10217: 10216: 10214: 10210: 10204: 10201: 10197: 10194: 10192: 10189: 10188: 10187: 10184: 10180: 10177: 10174: 10173: 10172: 10169: 10168: 10166: 10164: 10160: 10156: 10152: 10145: 10140: 10138: 10133: 10131: 10126: 10125: 10122: 10112: 10102: 10096: 10095: 10091: 10089: 10086: 10084: 10081: 10079: 10076: 10074: 10071: 10069: 10066: 10064: 10061: 10059: 10056: 10054: 10051: 10049: 10046: 10044: 10041: 10039: 10036: 10034: 10031: 10029: 10026: 10024: 10021: 10019: 10016: 10014: 10011: 10009: 10006: 10004: 10003:Chandrasekhar 10001: 9999: 9996: 9994: 9991: 9989: 9986: 9984: 9981: 9979: 9976: 9974: 9971: 9969: 9966: 9964: 9963:Schwarzschild 9961: 9959: 9956: 9954: 9951: 9949: 9946: 9944: 9941: 9940: 9938: 9934: 9924: 9920: 9919: 9916: 9913: 9911: 9908: 9906: 9902: 9901: 9898: 9895: 9893: 9890: 9888: 9885: 9883: 9880: 9877: 9873: 9869: 9868: 9865: 9862: 9859: 9856: 9854: 9850: 9849:Schwarzschild 9846: 9845: 9842: 9839: 9837: 9834: 9832: 9829: 9827: 9824: 9822: 9819: 9816: 9812: 9808: 9807: 9805: 9803: 9799: 9793: 9790: 9788: 9785: 9783: 9780: 9779: 9777: 9771: 9765: 9762: 9759: 9755: 9751: 9748: 9746: 9745:Shapiro delay 9743: 9741: 9738: 9735: 9731: 9727: 9724: 9721: 9717: 9714: 9713: 9710: 9707: 9704: 9701: 9699: 9696: 9694: 9691: 9689: 9688:collaboration 9685: 9681: 9678: 9676: 9672: 9669: 9668: 9665: 9662: 9660: 9657: 9655: 9654:Event horizon 9652: 9650: 9647: 9646: 9644: 9640: 9634: 9631: 9629: 9626: 9624: 9621: 9619: 9616: 9614: 9611: 9609: 9606: 9604: 9601: 9599: 9598:ADM formalism 9596: 9595: 9593: 9589: 9583: 9580: 9578: 9575: 9573: 9570: 9568: 9565: 9563: 9560: 9559: 9557: 9551: 9545: 9542: 9540: 9537: 9536: 9534: 9530: 9527: 9525: 9519: 9509: 9506: 9504: 9503:Biquaternions 9501: 9499: 9496: 9494: 9491: 9489: 9486: 9485: 9483: 9481: 9477: 9471: 9468: 9466: 9463: 9461: 9458: 9456: 9453: 9451: 9448: 9446: 9443: 9441: 9438: 9436: 9433: 9431: 9430:Time dilation 9428: 9427: 9425: 9421: 9415: 9412: 9411: 9409: 9405: 9399: 9396: 9394: 9391: 9389: 9386: 9384: 9383:Proper length 9381: 9379: 9376: 9374: 9371: 9369: 9366: 9364: 9361: 9359: 9356: 9355: 9353: 9347: 9341: 9338: 9336: 9333: 9330: 9327: 9325: 9321: 9318: 9317: 9315: 9311: 9308: 9306: 9300: 9296: 9289: 9284: 9282: 9277: 9275: 9270: 9269: 9266: 9251: 9250:other unknown 9247: 9246:cosmic string 9243: 9242: 9240: 9235: 9231: 9228: 9227: 9225: 9220: 9219: 9217: 9213: 9210: 9208: 9207:Neutron stars 9205: 9203: 9200: 9198: 9195: 9194: 9192: 9188: 9185: 9183: 9179: 9176: 9175: 9174: 9171: 9170: 9168: 9164: 9158: 9155: 9153: 9149: 9146: 9142: 9139: 9137: 9133: 9131: 9128: 9126: 9123: 9121: 9118: 9117: 9115: 9111: 9105: 9102: 9100: 9097: 9095: 9092: 9090: 9087: 9086: 9084: 9080: 9068: 9067:Binary pulsar 9065: 9063: 9060: 9058: 9054: 9051: 9050: 9048: 9044: 9043: 9038: 9035: 9033: 9030: 9029: 9027: 9026: 9024: 9020: 9013: 9010: 9007: 9004: 9001: 8998: 8996: 8993: 8990: 8986: 8983: 8981: 8978: 8976: 8973: 8971: 8968: 8966: 8963: 8961: 8958: 8956: 8953: 8952: 8950: 8946: 8943: 8939: 8933:: Gravity Spy 8932: 8929: 8927: 8924: 8922: 8921:Einstein@Home 8919: 8918: 8916: 8914:Data analysis 8912: 8906: 8903: 8901: 8898: 8896: 8893: 8891: 8888: 8887: 8885: 8883: 8879: 8865: 8862: 8860: 8857: 8855: 8852: 8851: 8849: 8845: 8839: 8836: 8835: 8833: 8829: 8826: 8820: 8810: 8807: 8806: 8804: 8800: 8794: 8791: 8789: 8786: 8785: 8783: 8779: 8773: 8770: 8769: 8767: 8763: 8757: 8754: 8752: 8749: 8747: 8744: 8742: 8739: 8738: 8736: 8732: 8725: 8721: 8718: 8716: 8713: 8710: 8706: 8705:Advanced LIGO 8703: 8701: 8698: 8696: 8693: 8691: 8688: 8685: 8681: 8678: 8677: 8675: 8671: 8668: 8666: 8660: 8649: 8645: 8642: 8640: 8637: 8635: 8632: 8629: 8625: 8622: 8621: 8619: 8615: 8609: 8606: 8605: 8603: 8599: 8593: 8590: 8588: 8585: 8583: 8580: 8578: 8575: 8573: 8570: 8567: 8563: 8560: 8557: 8553: 8550: 8547: 8543: 8540: 8539: 8537: 8533: 8527: 8524: 8522: 8519: 8516: 8512: 8509: 8506: 8502: 8499: 8498: 8496: 8492: 8489: 8487: 8484:Resonant mass 8481: 8478: 8476: 8472: 8466: 8463: 8461: 8458: 8457: 8454: 8450: 8443: 8438: 8436: 8431: 8429: 8424: 8423: 8420: 8412: 8408: 8403: 8398: 8394: 8390: 8389: 8384: 8380: 8375: 8372: 8369: 8367: 8363: 8360: 8358: 8354: 8351: 8349: 8345: 8341: 8338: 8337: 8328: 8327:0-201-09924-1 8324: 8320: 8316: 8313: 8312:0-691-03323-4 8309: 8305: 8301: 8298: 8295: 8294:0-691-01933-9 8291: 8287: 8283: 8280: 8277: 8273: 8269: 8265: 8262: 8261:0-521-23197-3 8258: 8254: 8250: 8247: 8244: 8240: 8236: 8232: 8230: 8229:0-226-11378-7 8226: 8222: 8218: 8215: 8213: 8212:0-85274-037-9 8209: 8205: 8201: 8198: 8197: 8187: 8183: 8179: 8175: 8171: 8167: 8166: 8165:Physics Today 8160: 8156: 8150: 8146: 8142: 8138: 8134: 8130: 8126: 8122: 8118: 8114: 8109: 8104: 8099: 8094: 8090: 8086: 8081: 8076: 8072: 8068: 8067: 8062: 8057: 8054: 8050: 8045: 8040: 8035: 8032: 8028: 8025: 8024: 8012: 8008: 8005:(8): 605–07. 8004: 8000: 7993: 7985: 7979: 7975: 7971: 7967: 7966: 7958: 7950: 7944: 7940: 7936: 7932: 7928: 7924: 7920: 7913: 7905: 7901: 7897: 7893: 7889: 7885: 7881: 7877: 7874:(3): 728–51. 7873: 7869: 7862: 7848: 7844: 7838: 7830: 7826: 7822: 7818: 7814: 7810: 7806: 7802: 7797: 7792: 7788: 7784: 7780: 7776: 7769: 7761: 7755: 7751: 7747: 7743: 7736: 7722: 7718: 7711: 7703: 7699: 7694: 7689: 7685: 7681: 7676: 7671: 7667: 7663: 7659: 7651: 7643: 7639: 7635: 7631: 7627: 7623: 7619: 7615: 7610: 7605: 7602:(8): 084013. 7601: 7597: 7590: 7582: 7578: 7574: 7570: 7565: 7560: 7556: 7552: 7547: 7542: 7538: 7534: 7530: 7523: 7515: 7511: 7506: 7501: 7497: 7493: 7489: 7485: 7481: 7474: 7466: 7460: 7452: 7448: 7442: 7440: 7431: 7425: 7417: 7413: 7409: 7405: 7401: 7397: 7392: 7387: 7384:(17): 17300. 7383: 7379: 7372: 7364: 7357: 7351: 7347: 7344: 7339: 7323: 7319: 7315: 7311: 7304: 7296: 7290: 7286: 7282: 7278: 7274: 7270: 7263: 7255: 7251: 7247: 7243: 7236: 7228: 7224: 7220: 7216: 7212: 7208: 7204: 7200: 7192: 7184: 7177: 7169: 7165: 7160: 7159:gr-qc/9506086 7155: 7151: 7147: 7143: 7137: 7122: 7118: 7114: 7108: 7102: 7098: 7095: 7090: 7084: 7079: 7071: 7067: 7063: 7059: 7055: 7051: 7046: 7041: 7037: 7033: 7026: 7018: 7014: 7008: 7000: 6996: 6991: 6986: 6982: 6978: 6973: 6968: 6964: 6960: 6956: 6949: 6941: 6937: 6932: 6927: 6923: 6919: 6912: 6904: 6900: 6896: 6889: 6887: 6878: 6874: 6870: 6866: 6862: 6858: 6853: 6848: 6844: 6840: 6832: 6818: 6814: 6807: 6799: 6795: 6791: 6787: 6783: 6779: 6772: 6765:(5): 165–200. 6764: 6760: 6753: 6744: 6740: 6737:(6): 293–96. 6736: 6732: 6725: 6710: 6706: 6702: 6695: 6680: 6676: 6669: 6662: 6657: 6649: 6645: 6638: 6636: 6627: 6621: 6617: 6613: 6612: 6604: 6596: 6590: 6586: 6585:W. H. Freeman 6582: 6578: 6577:Wheeler, J.A. 6574: 6570: 6563: 6555: 6551: 6547: 6543: 6538: 6533: 6530:(4): 043512. 6529: 6525: 6521: 6514: 6506: 6502: 6498: 6494: 6490: 6486: 6481: 6476: 6472: 6468: 6461: 6453: 6449: 6445: 6441: 6437: 6433: 6428: 6423: 6419: 6415: 6411: 6405: 6397: 6393: 6389: 6385: 6381: 6377: 6373: 6369: 6364: 6359: 6356:(2): 780–97. 6355: 6351: 6347: 6340: 6332: 6328: 6324: 6320: 6316: 6312: 6307: 6302: 6299:(1): L9–L12. 6298: 6294: 6290: 6284: 6270:. 18 May 2009 6269: 6268: 6263: 6257: 6249: 6245: 6241: 6237: 6233: 6229: 6225: 6221: 6217: 6213: 6208: 6207:gr-qc/0511103 6203: 6199: 6195: 6191: 6184: 6176: 6172: 6168: 6164: 6160: 6156: 6152: 6148: 6144: 6140: 6135: 6134:gr-qc/0511048 6130: 6126: 6122: 6115: 6107: 6103: 6099: 6095: 6091: 6087: 6083: 6079: 6075: 6071: 6066: 6065:gr-qc/0507014 6061: 6057: 6053: 6046: 6038: 6034: 6029: 6024: 6020: 6016: 6012: 6008: 6004: 5997: 5983: 5982: 5975: 5960: 5956: 5950: 5939: 5935: 5928: 5926: 5918: 5916: 5907: 5903: 5899: 5893: 5889: 5882: 5874: 5870: 5866: 5862: 5858: 5854: 5847: 5840: 5832: 5828: 5824: 5820: 5816: 5812: 5809:(1): 435–40. 5808: 5804: 5797: 5782: 5778: 5772: 5754: 5753: 5746: 5738: 5732: 5728: 5727: 5719: 5710: 5702: 5696: 5690: 5685: 5670: 5664: 5648: 5644: 5643: 5638: 5631: 5616: 5615: 5610: 5606: 5605:Kaiser, David 5600: 5585: 5584: 5579: 5575: 5569: 5554: 5553: 5548: 5541: 5533: 5532: 5527: 5520: 5505: 5504: 5499: 5495: 5489: 5481: 5477: 5470: 5468: 5466: 5457: 5451: 5437: 5433: 5429: 5425: 5421: 5417: 5410: 5408: 5406: 5390: 5389: 5384: 5378: 5370: 5366: 5362: 5358: 5354: 5350: 5346: 5342: 5338: 5334: 5329: 5324: 5321:(6): 061102. 5320: 5316: 5315: 5307: 5305: 5303: 5301: 5292: 5288: 5282: 5280: 5271: 5267: 5262: 5257: 5253: 5249: 5244: 5239: 5235: 5231: 5227: 5220: 5205: 5204: 5199: 5192: 5184: 5180: 5173: 5165: 5161: 5157: 5153: 5149: 5145: 5141: 5137: 5133: 5129: 5128: 5120: 5112: 5108: 5104: 5100: 5096: 5092: 5088: 5084: 5083: 5075: 5073: 5071: 5063: 5062:Press Release 5057: 5049: 5045: 5041: 5037: 5033: 5029: 5025: 5021: 5017: 5013: 5009: 5005: 4999: 4985: 4981: 4974: 4967: 4961: 4957: 4953: 4949: 4945: 4941: 4936: 4931: 4927: 4923: 4916: 4908: 4904: 4900: 4896: 4889: 4881: 4875: 4871: 4870: 4862: 4860: 4851: 4847: 4842: 4837: 4833: 4829: 4824: 4819: 4815: 4811: 4807: 4800: 4798: 4796: 4794: 4792: 4790: 4788: 4786: 4774: 4768: 4761: 4756: 4748: 4747: 4739: 4724: 4723: 4718: 4714: 4708: 4693: 4692: 4687: 4680: 4678: 4676: 4659: 4658: 4653: 4647: 4645: 4643: 4634: 4630: 4624: 4616: 4612: 4608: 4602: 4594: 4588: 4584: 4580: 4579: 4571: 4563: 4557: 4553: 4552: 4544: 4542: 4533: 4529: 4525: 4521: 4517: 4513: 4509: 4505: 4500: 4495: 4491: 4487: 4480: 4464: 4460: 4454: 4446: 4442: 4438: 4434: 4430: 4426: 4422: 4418: 4414: 4410: 4405: 4400: 4397:(8): 082002. 4396: 4392: 4388: 4384: 4380: 4373: 4365: 4359: 4355: 4351: 4350: 4345: 4339: 4331: 4327: 4326: 4318: 4310: 4306: 4302: 4298: 4293: 4288: 4284: 4280: 4275: 4270: 4266: 4262: 4258: 4251: 4249: 4233: 4232: 4227: 4220: 4212: 4208: 4204: 4200: 4196: 4192: 4188: 4187:Rosen, Nathan 4181: 4170: 4166: 4165: 4157: 4150: 4142: 4135: 4127: 4123: 4119: 4115: 4111: 4104: 4102: 4100: 4091: 4087: 4083: 4079: 4078: 4073: 4066: 4050: 4042: 4036: 4028: 4024: 4020: 4016: 4012: 4008: 4003: 4002:gr-qc/0501041 3998: 3994: 3990: 3986: 3979: 3977: 3975: 3973: 3971: 3966: 3956: 3953: 3950: 3947: 3945: 3941: 3938: 3935: 3934:binary pulsar 3931: 3928: 3925: 3922: 3920: 3917: 3915: 3912: 3909: 3905: 3901: 3897: 3893: 3890: 3887: 3883: 3879: 3876: 3874: 3871: 3868: 3865: 3863: 3860: 3858: 3855: 3853: 3850: 3848: 3845: 3843: 3840: 3838: 3835: 3833: 3830: 3828: 3825: 3823: 3820: 3818: 3815: 3812: 3808: 3807: 3800: 3798: 3797: 3792: 3787: 3785: 3784: 3779: 3774: 3772: 3771: 3766: 3765:Stanislaw Lem 3761: 3759: 3758:Mount Everest 3755: 3751: 3747: 3746: 3735: 3733: 3732:superradiance 3729: 3725: 3721: 3716: 3712: 3708: 3703: 3700: 3690: 3686: 3684: 3680: 3676: 3672: 3668: 3663: 3658: 3656: 3651: 3649: 3645: 3641: 3637: 3632: 3628: 3624: 3620: 3611: 3606: 3602: 3592: 3590: 3586: 3582: 3576: 3566: 3562: 3560: 3556: 3552: 3548: 3544: 3540: 3536: 3532: 3528: 3524: 3520: 3515: 3513: 3509: 3503: 3500: 3496: 3491: 3484: 3479: 3474: 3464: 3462: 3458: 3454: 3450: 3446: 3436: 3433: 3429: 3426:project is a 3425: 3424:Einstein@Home 3420: 3418: 3414: 3410: 3406: 3405:monochromatic 3400: 3399:Einstein@Home 3393:Einstein@Home 3390: 3387: 3383: 3379: 3374: 3371: 3367: 3363: 3351: 3345: 3342: 3338: 3334: 3330: 3327:, one at the 3326: 3322: 3317: 3314: 3305: 3299: 3293: 3288: 3278: 3276: 3258: 3240: 3235: 3231: 3213: 3209: 3205: 3201: 3197: 3192: 3190: 3186: 3182: 3178: 3176: 3173:cooled, with 3172: 3171:cryogenically 3168: 3164: 3160: 3156: 3152: 3146: 3136: 3134: 3129: 3125: 3121: 3117: 3113: 3104: 3095: 3093: 3082: 3080: 3076: 3071: 3069: 3064: 3060: 3058: 3047: 3043: 3039: 3026: 3022: 3018: 3015: 3011: 3006: 3001: 2997: 2993: 2983: 2981: 2977: 2972: 2968: 2966: 2960: 2957: 2953: 2949: 2945: 2941: 2937: 2933: 2929: 2925: 2921: 2917: 2913: 2909: 2905: 2904:visible light 2901: 2895: 2887: 2886:neutron stars 2882: 2873: 2871: 2866: 2861: 2859: 2855: 2851: 2850:triangulation 2840: 2831: 2829: 2825: 2821: 2816: 2814: 2810: 2806: 2802: 2798: 2794: 2790: 2789:force carrier 2786: 2782: 2778: 2768: 2766: 2762: 2758: 2754: 2750: 2746: 2742: 2738: 2728: 2726: 2723: 2719: 2715: 2711: 2706: 2703: 2699: 2695: 2680: 2678: 2671: 2661: 2658: 2648: 2646: 2641: 2635: 2625: 2623: 2619: 2615: 2609: 2599: 2597: 2594:) powered by 2593: 2589: 2585: 2581: 2577: 2573: 2569: 2555: 2551: 2549: 2545: 2541: 2537: 2525: 2521: 2520:neutron stars 2517: 2513: 2512:Compact stars 2490: 2479: 2475: 2471: 2466: 2462: 2450: 2446: 2440: 2436: 2426: 2422: 2411: 2407: 2401: 2397: 2388: 2385: 2380: 2377: 2370: 2369: 2368: 2363: 2356: 2352: 2348: 2344: 2340: 2336: 2332: 2313: 2303: 2299: 2289: 2285: 2281: 2276: 2272: 2260: 2256: 2250: 2246: 2231: 2227: 2221: 2217: 2208: 2205: 2200: 2197: 2191: 2181: 2166: 2165: 2164: 2161: 2141: 2118: 2114: 2093: 2088: 2084: 2080: 2075: 2063: 2059: 2054: 2051: 2047: 2040: 2036: 2032: 2026: 2020: 2012: 2008: 2000: 1992: 1988: 1984: 1976: 1972: 1968: 1963: 1961: 1957: 1953: 1949: 1940: 1935: 1927: 1920: 1916: 1911: 1906: 1896: 1894: 1890: 1886: 1882: 1878: 1874: 1866: 1862: 1858: 1854: 1851: 1847: 1843: 1839: 1835: 1832: 1828: 1824: 1821: 1818: 1814: 1811: 1807: 1804: 1800: 1799: 1798: 1795: 1793: 1789: 1782: 1777: 1768: 1766: 1759: 1752: 1748: 1743: 1741: 1736: 1732: 1723: 1719: 1715: 1711: 1708: 1705: 1701: 1698: 1695: 1691: 1688: 1685: 1681: 1677: 1673: 1669: 1668: 1667: 1665: 1660: 1658: 1653: 1649: 1645: 1641: 1636: 1634: 1629: 1624: 1622: 1618: 1614: 1610: 1606: 1602: 1593: 1585: 1576: 1562: 1559: 1539: 1536: 1528: 1524: 1520: 1515: 1513: 1509: 1505: 1501: 1498:In 2017, the 1496: 1494: 1489: 1487: 1483: 1478: 1474: 1470: 1466: 1462: 1457: 1455: 1451: 1447: 1441: 1439: 1435: 1431: 1427: 1422: 1419: 1415: 1411: 1407: 1402: 1400: 1396: 1392: 1389: 1388:Hermann Bondi 1385: 1381: 1377: 1373: 1369: 1364: 1362: 1358: 1354: 1350: 1346: 1341: 1340: 1335: 1331: 1326: 1321: 1319: 1315: 1310: 1308: 1304: 1300: 1296: 1292: 1284: 1280: 1277:, a phase of 1276: 1271: 1262: 1259: 1254: 1252: 1248: 1244: 1239: 1229: 1221: 1220: 1215: 1209: 1199: 1197: 1196:Werner Israel 1193: 1188: 1186: 1180: 1178: 1177:recombination 1172: 1170: 1166: 1162: 1152: 1148: 1146: 1142: 1138: 1134: 1122: 1118: 1113: 1111: 1107: 1102: 1100: 1096: 1091: 1089: 1085: 1078: 1072: 1068: 1064: 1053: 1050: 1042: 1031: 1028: 1024: 1021: 1017: 1014: 1010: 1007: 1003: 1000: â€“  999: 995: 994:Find sources: 988: 984: 978: 977: 972:This section 970: 966: 961: 960: 952: 950: 946: 942: 938: 934: 931: 927: 922: 920: 917:received the 916: 912: 908: 903: 901: 897: 893: 889: 885: 884:neutron stars 881: 877: 873: 869: 864: 862: 858: 854: 850: 846: 841: 839: 835: 831: 827: 823: 819: 815: 811: 807: 803: 799: 788: 783: 781: 776: 774: 769: 768: 766: 765: 759: 749: 746: 741: 735: 734: 733: 732: 725: 724: 720: 718: 715: 713: 710: 708: 705: 703: 700: 698: 695: 693: 690: 688: 685: 683: 680: 678: 675: 673: 670: 668: 665: 663: 662:Chandrasekhar 660: 658: 655: 653: 650: 648: 645: 643: 640: 638: 635: 633: 630: 628: 625: 623: 620: 618: 615: 613: 610: 608: 605: 603: 600: 598: 595: 593: 590: 588: 585: 583: 580: 578: 577:Schwarzschild 575: 573: 570: 568: 565: 563: 560: 558: 555: 554: 546: 545: 538: 537:Hartle–Thorne 535: 533: 530: 528: 525: 523: 520: 518: 515: 513: 510: 508: 505: 503: 500: 498: 495: 493: 490: 488: 485: 483: 480: 478: 475: 473: 470: 468: 465: 463: 460: 458: 455: 452: 448: 447:Schwarzschild 445: 444: 440: 434: 433: 422: 419: 417: 414: 413: 412: 411: 407: 406: 401: 398: 396: 393: 391: 388: 387: 386: 385: 381: 380: 375: 372: 370: 367: 365: 362: 360: 357: 355: 352: 350: 347: 346: 345: 344: 340: 339: 329: 326: 325: 320: 319: 308: 305: 303: 300: 298: 295: 294: 293: 292: 289: 286: 285: 280: 277: 275: 272: 270: 269:Event horizon 267: 265: 262: 260: 257: 255: 252: 250: 247: 245: 242: 240: 237: 235: 232: 231: 230: 229: 219: 218: 211: 208: 206: 203: 201: 198: 196: 193: 192: 184: 183: 178: 175: 170: 167: 165: 162: 160: 157: 156: 154: 152: 149: 148: 147: 146: 128: 125: 121: 116: 112: 107: 104: 100: 93: 88: 85: 81: 71: 67: 66: 63: 60: 59: 53: 33: 19: 10687:Binary stars 10659:Solar System 10532:made visible 10499: 10477: 10441:2010: First 10432: 10388: 10360:Nanocircuits 10304: 10294: 10224:Quintessence 10093: 9787:Kaluza–Klein 9670: 9539:Introduction 9465:Twin paradox 9249: 9233: 9134:Travel with 9120:Polarization 9039: 8941:Observations 8663:Ground-based 8459: 8392: 8386: 8318: 8303: 8285: 8267: 8252: 8234: 8220: 8203: 8194:Bibliography 8169: 8163: 8145:10.1142/2410 8128: 8070: 8064: 8052: 8030: 8002: 7998: 7992: 7964: 7957: 7922: 7912: 7871: 7867: 7861: 7850:. Retrieved 7846: 7837: 7786: 7782: 7768: 7741: 7735: 7724:. Retrieved 7720: 7710: 7665: 7661: 7650: 7599: 7595: 7589: 7536: 7532: 7522: 7487: 7483: 7473: 7459: 7450: 7424: 7381: 7377: 7371: 7363:Rainer Weiss 7356: 7338: 7326:. Retrieved 7322:the original 7313: 7303: 7268: 7262: 7245: 7235: 7205:(1): 42–75. 7202: 7198: 7191: 7182: 7176: 7149: 7136: 7124:. Retrieved 7116: 7107: 7089: 7078: 7035: 7031: 7025: 7016: 7007: 6962: 6958: 6948: 6921: 6917: 6911: 6894: 6842: 6838: 6831: 6820:. Retrieved 6816: 6811:Wall, Mike. 6806: 6781: 6777: 6771: 6762: 6758: 6752: 6734: 6730: 6724: 6712:. Retrieved 6704: 6694: 6682:. Retrieved 6678: 6668: 6656: 6647: 6610: 6603: 6580: 6573:Thorne, K.S. 6569:Misner, C.W. 6562: 6527: 6523: 6513: 6470: 6466: 6460: 6417: 6413: 6404: 6353: 6349: 6339: 6296: 6292: 6283: 6272:. Retrieved 6265: 6256: 6197: 6193: 6183: 6124: 6120: 6114: 6055: 6051: 6045: 6010: 6006: 5996: 5985:, retrieved 5980: 5974: 5962:. Retrieved 5958: 5949: 5938:the original 5933: 5927:] Waves" 5924: 5887: 5881: 5856: 5852: 5839: 5806: 5802: 5796: 5786:20 September 5784:. Retrieved 5780: 5771: 5760:, retrieved 5751: 5745: 5725: 5718: 5709: 5695: 5684: 5673:. Retrieved 5663: 5651:. Retrieved 5640: 5630: 5618:. Retrieved 5612: 5599: 5587:. Retrieved 5581: 5568: 5556:. Retrieved 5550: 5540: 5531:The Guardian 5529: 5519: 5507:. Retrieved 5501: 5488: 5479: 5450: 5439:. Retrieved 5419: 5393:. Retrieved 5391:. 2016-02-11 5386: 5377: 5318: 5312: 5290: 5233: 5229: 5219: 5207:. Retrieved 5201: 5191: 5182: 5178: 5172: 5131: 5125: 5119: 5086: 5080: 5056: 5015: 5011: 4998: 4987:. Retrieved 4983: 4973: 4925: 4921: 4915: 4898: 4894: 4888: 4868: 4813: 4809: 4767: 4755: 4745: 4738: 4726:. Retrieved 4720: 4707: 4695:. Retrieved 4689: 4662:. Retrieved 4655: 4632: 4623: 4614: 4601: 4577: 4570: 4550: 4489: 4485: 4479: 4467:. Retrieved 4462: 4453: 4394: 4390: 4372: 4348: 4338: 4323: 4317: 4264: 4260: 4235:. Retrieved 4229: 4219: 4197:(1): 43–54. 4194: 4190: 4180: 4162: 4149: 4134: 4126:the original 4113: 4090:the original 4075: 4065: 4053:. Retrieved 4048: 4035: 3992: 3988: 3932:, the first 3930:PSR B1913+16 3919:Peres metric 3817:Anti-gravity 3794: 3788: 3781: 3775: 3768: 3762: 3756:the size of 3743: 3741: 3707:Cooper pairs 3704: 3696: 3687: 3659: 3652: 3627:solar masses 3616: 3578: 3563: 3516: 3504: 3488: 3482: 3442: 3421: 3402: 3375: 3349: 3346: 3329:Hanford site 3318: 3310: 3303: 3297: 3274: 3256: 3238: 3211: 3193: 3179: 3159:Joseph Weber 3148: 3132: 3127: 3123: 3115: 3111: 3109: 3091: 3088: 3085:Difficulties 3078: 3074: 3072: 3065: 3061: 3035: 2973: 2969: 2961: 2897: 2862: 2858:milliseconds 2846: 2837: 2817: 2774: 2760: 2756: 2734: 2718:naked quasar 2710:astrophysics 2707: 2691: 2673: 2654: 2637: 2611: 2560: 2516:white dwarfs 2510: 2361: 2354: 2346: 2338: 2334: 2330: 2328: 2162: 2010: 1964: 1951: 1947: 1944: 1880: 1876: 1870: 1860: 1845: 1837: 1826: 1819: 1809: 1802: 1796: 1785: 1780: 1757: 1750: 1744: 1734: 1730: 1727: 1721: 1703: 1693: 1683: 1675: 1671: 1661: 1652:polarization 1637: 1625: 1621:nearest star 1598: 1516: 1512:Barry Barish 1504:Rainer Weiss 1497: 1490: 1473:solar masses 1458: 1442: 1423: 1406:Joseph Weber 1403: 1393: 1365: 1357:Felix Pirani 1348: 1337: 1334:Nathan Rosen 1322: 1318:Hermann Weyl 1311: 1288: 1255: 1240: 1217: 1211: 1189: 1181: 1173: 1157: 1114: 1104:Inspiraling 1103: 1092: 1060: 1045: 1036: 1026: 1019: 1012: 1005: 993: 981:Please help 976:verification 973: 955:Introduction 949:Barry Barish 941:Rainer Weiss 923: 904: 880:white dwarfs 865: 847:, a form of 844: 842: 797: 796: 722: 682:Raychaudhuri 253: 151:Introduction 32:Gravity wave 10692:Black holes 10647:Outer space 10635:Spaceflight 10571:GLP-1 Drugs 10460:Higgs boson 10380:Dark energy 10219:Fifth force 10203:Gravitation 10175:fundamental 9876:Kerr–Newman 9847:Spherical: 9716:Other tests 9659:Singularity 9591:Formulation 9553:Fundamental 9407:Formulation 9388:Proper time 9349:Fundamental 9241:Hypothesis 9218:Continuous 8822:Space-based 8379:Lydia Bieri 7328:29 November 7126:10 December 6714:29 November 6581:Gravitation 6410:Merritt, D. 6289:Merritt, D. 5987:14 February 5959:www.eso.org 5420:Nature News 4901:: 389–405. 4773:"page 1507" 4469:13 November 4143:. Phys.Org. 4051:(in French) 3955:Tidal force 3667:GRB 170817A 3457:cosmic rays 3277:≈10 to 10. 3068:black holes 3025:cosmic dust 3021:focal plane 2731:Redshifting 2588:GRB 170817A 2580:megaparsecs 1609:light-years 1376:Chapel Hill 1297:. In 1905, 1222:in vacuum, 1039:August 2024 888:black holes 876:binary star 851:similar to 828:. In 1916, 806:gravitating 697:van Stockum 627:Oppenheimer 482:Kerr–Newman 274:Singularity 52:black holes 10681:Categories 10529:black hole 10028:Zel'dovich 9936:Scientists 9915:Alcubierre 9722:of Mercury 9720:precession 9649:Black hole 9532:Background 9524:relativity 9493:World line 9488:Light cone 9313:Background 9305:relativity 9295:Relativity 9244:Colliding 9173:Stochastic 9145:chirp mass 9040:Proposed: 8931:Zooniverse 8172:(10): 44. 7852:2017-10-17 7796:1710.05832 7726:2020-09-06 7675:2306.16213 7546:1801.02617 6972:1606.02744 6852:1611.05501 6822:2017-03-27 6274:2016-07-01 5964:18 October 5675:2023-06-30 5441:2016-02-11 5395:2016-02-11 5328:1602.03837 5243:1609.09400 4989:2023-11-02 4935:1811.07303 4823:1609.09400 4429:2440/74812 4274:2106.15163 4055:3 November 3995:(1): 204. 3962:References 3754:15 Eunomia 3738:In fiction 3699:L. Halpern 3679:AT 2017gfo 3644:experiment 3461:solar wind 3453:shot noise 3378:shot noise 2944:gamma rays 2751:, such as 2592:AT 2017gfo 2524:solar mass 1993:by about 1 1903:See also: 1740:light wave 1714:wave speed 1700:Wavelength 1680:sextillion 1508:Kip Thorne 1461:LIGO-Virgo 1410:Weber bars 1395:Paul Dirac 1305:producing 1009:newspapers 945:Kip Thorne 924:The first 892:supernovae 859:, part of 550:Scientists 382:Formalisms 330:Formalisms 279:Black hole 205:World line 10611:Astronomy 10462:discovery 10401:in action 10399:Evolution 10344:Stem cell 9998:Robertson 9983:Friedmann 9978:Eddington 9968:de Sitter 9802:Solutions 9680:detectors 9675:astronomy 9642:Phenomena 9577:Geodesics 9480:Spacetime 9423:Phenomena 9230:Supernova 9125:Spin-flip 8751:TENKO-100 8628:MiniGRAIL 8592:Weber bar 8521:MiniGRAIL 8475:Detectors 8411:1088-9477 8080:1403.7377 7904:121980464 7896:1827-6121 7829:217163611 7702:2041-8205 7668:(1): L8. 7634:0264-9381 7609:0911.5206 7573:0004-637X 7539:(1): 47. 7514:0004-637X 7391:1003.2480 7070:118307286 7045:1411.3930 6999:119283147 6965:(1): 55. 6537:0712.0618 6480:0804.4585 6427:0809.5046 6388:0004-637X 6363:0708.0771 6267:Space.com 6232:0031-9007 6159:0031-9007 6090:0031-9007 6037:125431568 5906:319064125 5831:0031-899X 5762:8 October 5620:3 October 5589:3 October 5558:3 October 5436:182916902 5369:124959784 5353:0031-9007 5270:2218-1997 5236:(3): 22. 5203:Space.com 5185:: 605–07. 5156:0028-0836 5111:0004-637X 5048:121423215 5040:0020-739X 4960:2102-6459 4816:(3): 22. 4499:1004.2504 4437:1550-7998 4404:1111.7314 4309:235670241 4301:2041-8205 4267:(1): L5. 4027:1367-2630 3940:Spin-flip 3873:HM Cancri 3791:Liu Cixin 3778:Greg Egan 3697:In 1964, 3561:project. 3432:SETI@home 3413:acoustics 3409:pure tone 3265:10 / 3247:10 / 3220:10 / 3208:microwave 3181:MiniGRAIL 3151:Weber bar 3145:Weber bar 2986:Detection 2928:microwave 2900:astronomy 2763:gravity ( 2749:spacetime 2664:Inflation 2634:Supernova 2628:Supernova 2596:r-process 2548:supernova 2201:− 2055:− 1817:supernova 1788:symmetric 1690:Frequency 1640:amplitude 1633:cruciform 1628:spacetime 1613:spacetime 1563:σ 1540:σ 1418:Milky Way 1251:gravitons 838:spacetime 642:Robertson 607:Friedmann 602:Eddington 592:Nordström 582:de Sitter 439:Solutions 364:Geodesics 359:Friedmann 341:Equations 327:Equations 288:Spacetime 223:Phenomena 129:ν 126:μ 117:κ 108:ν 105:μ 97:Λ 89:ν 86:μ 10527:2019: A 10508:GW170817 10451:HPTN 052 10252:Universe 10179:residual 10111:Category 9988:LemaĂźtre 9953:Einstein 9943:PoincarĂ© 9903:Others: 9887:Taub–NUT 9853:interior 9775:theories 9773:Advanced 9740:redshift 9555:concepts 9373:Rapidity 9351:concepts 9232:or from 9150:Carried 9140:h strain 9130:Redshift 9104:Graviton 9012:GW200105 9006:GW190814 9000:GW190521 8995:GW190412 8985:GW170817 8980:GW170814 8975:GW170608 8970:GW170104 8965:GW151226 8900:NANOGrav 8847:Proposed 8781:Proposed 8741:TAMA 300 8644:Graviton 8601:Proposed 8542:EXPLORER 8501:NAUTILUS 8486:antennas 8346:and the 8127:(1994). 8117:28179848 8073:(1): 4. 7821:29099225 7642:56073764 7581:89615050 7416:15200690 7346:Archived 7227:76657516 7097:Archived 6877:27351189 6684:30 March 6579:(1973). 6452:17260029 6396:14314439 6331:15404149 6248:23409406 6240:16605809 6167:16605808 6106:24225193 6098:16197061 5653:4 August 5647:Archived 5552:BBC News 5509:21 March 5361:26918975 5291:BBC News 5230:Universe 5164:22984747 5006:(2013). 4810:Universe 4728:17 March 4697:17 March 4664:18 March 4613:(1991). 4532:11804455 4524:20489015 4346:(2009). 4328:. 2014. 4169:Archived 3908:TAMA 300 3862:Graviton 3803:See also 3793:'s 2006 3783:Diaspora 3683:kilonova 3675:NGC 4993 3662:GW170817 3553:and the 3304:Figure 2 3298:Figure 1 3112:indirect 3053:☉ 2936:Big Bang 2865:GW170814 2820:massless 2781:graviton 2698:momentum 2622:GW150914 2576:NGC 4993 2572:kilonova 2568:GW170817 2146:coalesce 2068:coalesce 1899:Binaries 1875:(or the 1861:will not 1852:effects. 1838:will not 1827:will not 1812:radiate. 1805:radiate. 1792:dumbbell 1605:GW150914 1469:GW150914 1283:Big Bang 900:Big Bang 758:Category 622:LemaĂźtre 587:Reissner 572:PoincarĂ© 557:Einstein 502:Taub–NUT 467:Wormhole 451:interior 164:Timeline 10671:Science 10599:Physics 10585:Portals 10551:brings 10478:Rosetta 10310:journal 10306:Science 10295:Science 10155:physics 10053:Hawking 10048:Penrose 10033:Novikov 10013:Wheeler 9958:Hilbert 9948:Lorentz 9905:pp-wave 9726:lensing 9522:General 9303:Special 9252:sources 9236:sources 9234:unknown 9053:B-modes 9022:Methods 8987:(first 8864:TianQin 8831:Planned 8765:Planned 8582:GEOGRAV 8552:ALLEGRO 8174:Bibcode 8133:Bibcode 8108:5255900 8085:Bibcode 8007:Bibcode 7927:Bibcode 7876:Bibcode 7847:Caltech 7801:Bibcode 7680:Bibcode 7614:Bibcode 7551:Bibcode 7492:Bibcode 7490:: L39. 7467:. 2022. 7396:Bibcode 7273:Bibcode 7250:Bibcode 7248:: 415. 7207:Bibcode 7164:Bibcode 7152:: 160. 7050:Bibcode 6977:Bibcode 6936:Bibcode 6857:Bibcode 6845:: A57. 6786:Bibcode 6739:Bibcode 6542:Bibcode 6505:6860884 6485:Bibcode 6432:Bibcode 6368:Bibcode 6311:Bibcode 6212:Bibcode 6175:5954627 6139:Bibcode 6070:Bibcode 6015:Bibcode 5861:Bibcode 5811:Bibcode 5333:Bibcode 5248:Bibcode 5136:Bibcode 5091:Bibcode 5089:: 908. 5020:Bibcode 4940:Bibcode 4903:Bibcode 4850:2187981 4828:Bibcode 4504:Bibcode 4486:Science 4445:6842810 4409:Bibcode 4279:Bibcode 4237:29 June 4199:Bibcode 4118:Bibcode 4082:Bibcode 4007:Bibcode 3724:niobium 3490:Pulsars 3386:seismic 3267:√ 3249:√ 3222:√ 2934:of the 2924:quasars 2920:pulsars 2793:gravity 2720:". The 1771:Sources 1285:(2014). 1265:History 1247:photons 1023:scholar 677:Hawking 672:Penrose 647:Bardeen 637:Wheeler 567:Hilbert 562:Lorentz 522:pp-wave 159:History 50:As two 10569:2023: 10560:2022: 10555:to all 10547:2021: 10538:2020: 10519:2018: 10506:2017: 10494:2016: 10486:2015: 10475:2014: 10467:2013: 10458:2012: 10449:2011: 10431:2009: 10423:2008: 10415:2007: 10406:2006: 10397:2005: 10389:Spirit 10386:2004: 10378:2003: 10370:2002: 10358:2001: 10350:2000: 10342:1999: 10334:1998: 10326:1997: 10317:1996: 10094:others 10083:Thorne 10073:Misner 10058:Taylor 10043:Geroch 10038:Ehlers 10008:Zwicky 9826:Kasner 9226:Burst 9152:energy 9082:Theory 8948:Events 8859:DECIGO 8700:GEO600 8673:Active 8577:ALTAIR 8511:AURIGA 8494:Active 8409:  8325:  8310:  8292:  8274:  8259:  8241:  8227:  8210:  8151:  8115:  8105:  7980:  7945:  7902:  7894:  7827:  7819:  7777:& 7756:  7750:Oxford 7700:  7640:  7632:  7579:  7571:  7512:  7414:  7291:  7225:  7068:  6997:  6924:: 25. 6895:nature 6875:  6622:  6591:  6503:  6450:  6394:  6386:  6329:  6246:  6238:  6230:  6173:  6165:  6157:  6104:  6096:  6088:  6035:  5904:  5894:  5829:  5733:  5434:  5367:  5359:  5351:  5268:  5209:20 May 5162:  5154:  5127:Nature 5109:  5046:  5038:  4958:  4876:  4848:  4589:  4558:  4530:  4522:  4443:  4435:  4360:  4307:  4299:  4025:  3906:, and 3900:GEO600 3882:DECIGO 3770:Fiasco 3585:BICEP2 3549:, the 3545:, the 3537:. The 3449:DECIGO 3116:direct 3042:pulsar 3014:BICEP2 2998:, and 2954:, and 2948:x-rays 2779:, the 2761:due to 2722:quasar 2700:, and 2694:energy 2614:merger 2353:, and 2337:time, 2329:where 2311:  1999:proton 1983:joules 1956:orbits 1617:proton 1452:, and 1446:GEO600 1368:energy 1095:strain 1075:(See: 1025:  1018:  1011:  1004:  996:  886:, and 756:  723:others 717:Thorne 707:Newman 687:Taylor 667:Ehlers 652:Walker 617:Zwicky 492:Kasner 10623:Stars 10564:debut 10410:proof 10391:rover 10088:Weiss 10068:Bondi 10063:Hulse 9993:Milne 9897:discs 9841:Milne 9836:Gödel 9693:Virgo 8926:PyCBC 8715:KAGRA 8684:ACIGA 8639:SFERA 8624:GRAIL 8587:AGATA 8562:NIOBE 8075:arXiv 8039:arXiv 7999:ZhETF 7900:S2CID 7825:S2CID 7791:arXiv 7670:arXiv 7638:S2CID 7604:arXiv 7577:S2CID 7541:arXiv 7412:S2CID 7386:arXiv 7223:S2CID 7154:arXiv 7066:S2CID 7040:arXiv 6995:S2CID 6967:arXiv 6926:arXiv 6873:S2CID 6847:arXiv 6532:arXiv 6501:S2CID 6475:arXiv 6448:S2CID 6422:arXiv 6392:S2CID 6358:arXiv 6327:S2CID 6301:arXiv 6244:S2CID 6202:arXiv 6171:S2CID 6129:arXiv 6102:S2CID 6060:arXiv 6033:S2CID 5941:(PDF) 5930:(PDF) 5849:(PDF) 5756:(PDF) 5480:Wired 5432:S2CID 5365:S2CID 5323:arXiv 5238:arXiv 5160:S2CID 5044:S2CID 4930:arXiv 4846:S2CID 4818:arXiv 4776:(PDF) 4760:(PDF) 4528:S2CID 4494:arXiv 4441:S2CID 4399:arXiv 4305:S2CID 4269:arXiv 4172:(PDF) 4159:(PDF) 4045:(PDF) 3997:arXiv 3904:KAGRA 3809:2017 3631:power 3497:uses 3366:KAGRA 3362:Virgo 3337:India 2828:boson 2735:Like 2578:, 40 2544:merge 2514:like 2106:with 1987:watts 1848:show 1710:Speed 1664:waves 1601:Earth 1477:power 1454:Virgo 1243:gluon 1133:KAGRA 1121:VIRGO 1110:orbit 1030:JSTOR 1016:books 692:Hulse 632:Gödel 612:Milne 507:Milne 472:Gödel 169:Tests 10023:Kerr 9973:Weyl 9872:Kerr 9732:and 9686:and 9684:LIGO 9248:and 9212:EMRI 8905:PPTA 8895:IPTA 8890:EPTA 8838:LISA 8734:Past 8690:CLIO 8680:AIGO 8634:TIGA 8608:TOBA 8566:IGEC 8556:IGEC 8546:IGEC 8535:Past 8515:IGEC 8505:IGEC 8407:ISSN 8323:ISBN 8308:ISBN 8290:ISBN 8272:ISBN 8257:ISBN 8239:ISBN 8225:ISBN 8208:ISBN 8149:ISBN 8113:PMID 7978:ISBN 7943:ISBN 7892:ISSN 7817:PMID 7754:ISBN 7698:ISSN 7630:ISSN 7569:ISSN 7510:ISSN 7330:2015 7289:ISBN 7128:2015 6716:2015 6686:2021 6620:ISBN 6589:ISBN 6384:ISSN 6236:PMID 6228:ISSN 6163:PMID 6155:ISSN 6094:PMID 6086:ISSN 5989:2016 5966:2017 5902:OCLC 5892:ISBN 5827:ISSN 5788:2016 5764:2022 5731:ISBN 5655:2023 5622:2017 5591:2017 5560:2017 5511:2016 5357:PMID 5349:ISSN 5266:ISSN 5211:2019 5179:JETP 5152:ISSN 5107:ISSN 5036:ISSN 4956:ISSN 4874:ISBN 4730:2014 4699:2014 4691:NASA 4666:2014 4587:ISBN 4556:ISBN 4520:PMID 4471:2021 4433:ISSN 4358:ISBN 4297:ISSN 4239:2021 4164:UCLA 4057:2023 4023:ISSN 3892:LIGO 3884:and 3878:LISA 3720:lead 3619:LIGO 3603:and 3589:dust 3525:and 3459:and 3447:and 3445:LISA 3422:The 3407:: a 3321:LIGO 3200:INFN 3165:and 2922:and 2824:spin 2536:LISA 2518:and 2360:and 2349:the 2341:the 1883:-th 1857:mass 1846:will 1820:will 1810:will 1803:will 1510:and 1450:LIGO 1428:and 1384:work 1258:LIGO 1194:and 1119:and 1117:LIGO 1002:news 947:and 930:LIGO 913:and 702:Taub 657:Kerr 597:Weyl 477:Kerr 395:BSSN 10498:of 10362:or 10319:HIV 10153:of 10078:Yau 9703:GEO 9057:CMB 9055:of 8397:doi 8182:doi 8141:doi 8103:PMC 8093:doi 7970:doi 7935:doi 7884:doi 7809:doi 7787:119 7688:doi 7666:951 7622:doi 7559:doi 7537:859 7500:doi 7488:265 7404:doi 7366:54. 7281:doi 7215:doi 7058:doi 6985:doi 6963:829 6922:328 6899:doi 6865:doi 6843:600 6794:doi 6782:813 6550:doi 6493:doi 6471:678 6440:doi 6418:699 6376:doi 6354:678 6319:doi 6297:607 6220:doi 6147:doi 6078:doi 6023:doi 5925:sic 5869:doi 5857:136 5819:doi 5807:131 5424:doi 5341:doi 5319:116 5256:doi 5144:doi 5132:277 5099:doi 5087:253 5028:doi 4948:doi 4836:doi 4512:doi 4490:328 4425:hdl 4417:doi 4287:doi 4265:915 4207:doi 4195:223 4015:doi 3886:BBO 3789:In 3776:In 3763:In 3748:by 3722:or 3709:in 3646:of 3411:in 3331:in 2870:deg 2826:-2 2767:). 2389:256 1981:10 1967:Sun 1163:or 1065:'s 1061:In 985:by 866:In 712:Yau 390:ADM 10683:: 10549:AI 9752:/ 9718:: 9673:: 8405:. 8393:64 8391:. 8385:. 8284:, 8251:, 8219:, 8202:, 8180:. 8170:54 8168:. 8147:. 8139:. 8111:. 8101:. 8091:. 8083:. 8071:17 8069:. 8063:. 8029:. 8003:16 7976:. 7941:. 7933:. 7898:. 7890:. 7882:. 7872:33 7870:. 7845:. 7823:. 7815:. 7807:. 7799:. 7785:. 7748:, 7744:. 7719:. 7696:. 7686:. 7678:. 7664:. 7660:. 7636:. 7628:. 7620:. 7612:. 7600:27 7598:. 7575:. 7567:. 7557:. 7549:. 7535:. 7531:. 7508:. 7498:. 7486:. 7482:. 7449:. 7438:^ 7410:. 7402:. 7394:. 7382:27 7380:. 7316:. 7312:. 7287:. 7279:. 7244:. 7221:. 7213:. 7201:. 7162:. 7148:. 7119:. 7115:. 7064:. 7056:. 7048:. 7036:32 7034:. 7015:. 6993:. 6983:. 6975:. 6961:. 6957:. 6934:. 6920:. 6897:. 6885:^ 6871:. 6863:. 6855:. 6841:. 6815:. 6792:. 6780:. 6763:46 6761:. 6735:23 6733:. 6707:. 6703:. 6677:. 6646:. 6634:^ 6618:. 6614:. 6587:. 6583:. 6575:; 6571:; 6548:. 6540:. 6528:77 6526:. 6522:. 6499:. 6491:. 6483:. 6469:. 6446:. 6438:. 6430:. 6416:. 6390:. 6382:. 6374:. 6366:. 6352:. 6325:. 6317:. 6309:. 6295:. 6264:. 6242:. 6234:. 6226:. 6218:. 6210:. 6198:96 6196:. 6169:. 6161:. 6153:. 6145:. 6137:. 6125:96 6123:. 6100:. 6092:. 6084:. 6076:. 6068:. 6056:95 6054:. 6031:. 6021:. 6011:90 6009:. 6005:. 5957:. 5932:. 5914:^ 5900:. 5867:. 5855:. 5851:. 5825:. 5817:. 5805:. 5779:. 5645:. 5639:. 5611:. 5580:. 5549:. 5528:. 5500:. 5478:. 5464:^ 5430:. 5422:. 5418:. 5404:^ 5385:. 5363:. 5355:. 5347:. 5339:. 5331:. 5317:. 5299:^ 5289:. 5278:^ 5264:. 5254:. 5246:. 5232:. 5228:. 5200:. 5183:43 5181:. 5158:. 5150:. 5142:. 5130:. 5105:. 5097:. 5085:. 5069:^ 5042:. 5034:. 5026:. 5016:44 5014:. 5010:. 4982:. 4954:. 4946:. 4938:. 4926:44 4924:. 4899:15 4897:. 4858:^ 4844:. 4834:. 4826:. 4812:. 4808:. 4784:^ 4719:. 4688:. 4674:^ 4654:. 4641:^ 4631:. 4609:; 4581:. 4540:^ 4526:. 4518:. 4510:. 4502:. 4488:. 4461:. 4439:. 4431:. 4423:. 4415:. 4407:. 4395:85 4393:. 4389:. 4381:; 4356:. 4303:. 4295:. 4285:. 4277:. 4263:. 4259:. 4247:^ 4228:. 4205:. 4193:. 4167:. 4161:. 4112:. 4098:^ 4074:. 4047:. 4021:. 4013:. 4005:. 3991:. 3987:. 3969:^ 3902:, 3898:, 3894:, 3880:, 3760:. 3685:. 3650:. 3514:. 3463:. 3358:10 3352:~ 3269:Hz 3259:~ 3251:Hz 3241:~ 3224:Hz 3214:~ 2994:, 2974:A 2950:, 2946:, 2906:. 2757:of 2696:, 2345:, 2206:64 1973:+ 1895:. 1815:A 1735:λf 1733:= 1724:). 1659:. 1521:. 1506:, 1456:. 1448:, 1363:. 1320:. 1147:. 1129:10 943:, 902:. 882:, 870:, 855:. 840:. 10587:: 10514:) 10510:( 10286:e 10279:t 10272:v 10143:e 10136:t 10129:v 9878:) 9874:( 9860:) 9851:( 9817:) 9813:( 9760:) 9756:( 9736:) 9705:) 9682:( 9331:) 9322:( 9287:e 9280:t 9273:v 9180:- 9147:) 8991:) 8726:) 8722:( 8711:) 8707:( 8686:) 8682:( 8650:) 8630:) 8568:) 8564:( 8558:) 8554:( 8548:) 8544:( 8517:) 8513:( 8507:) 8503:( 8441:e 8434:t 8427:v 8413:. 8399:: 8329:. 8314:. 8296:. 8278:. 8263:. 8245:. 8188:. 8184:: 8176:: 8157:. 8143:: 8135:: 8119:. 8095:: 8087:: 8077:: 8047:. 8041:: 8013:. 8009:: 7986:. 7972:: 7951:. 7937:: 7929:: 7906:. 7886:: 7878:: 7855:. 7831:. 7811:: 7803:: 7793:: 7762:. 7729:. 7704:. 7690:: 7682:: 7672:: 7644:. 7624:: 7616:: 7606:: 7583:. 7561:: 7553:: 7543:: 7516:. 7502:: 7494:: 7432:. 7418:. 7406:: 7398:: 7388:: 7332:. 7297:. 7283:: 7275:: 7256:. 7252:: 7229:. 7217:: 7209:: 7203:6 7170:. 7166:: 7156:: 7130:. 7072:. 7060:: 7052:: 7042:: 7019:. 7001:. 6987:: 6979:: 6969:: 6942:. 6938:: 6928:: 6905:. 6901:: 6879:. 6867:: 6859:: 6849:: 6825:. 6800:. 6796:: 6788:: 6745:. 6741:: 6718:. 6688:. 6650:. 6628:. 6597:. 6556:. 6552:: 6544:: 6534:: 6507:. 6495:: 6487:: 6477:: 6454:. 6442:: 6434:: 6424:: 6398:. 6378:: 6370:: 6360:: 6333:. 6321:: 6313:: 6303:: 6277:. 6250:. 6222:: 6214:: 6204:: 6177:. 6149:: 6141:: 6131:: 6108:. 6080:: 6072:: 6062:: 6039:. 6025:: 6017:: 5968:. 5908:. 5875:. 5871:: 5863:: 5833:. 5821:: 5813:: 5790:. 5739:. 5703:. 5678:. 5657:. 5624:. 5593:. 5562:. 5534:. 5513:. 5482:. 5458:. 5444:. 5426:: 5398:. 5371:. 5343:: 5335:: 5325:: 5272:. 5258:: 5250:: 5240:: 5234:2 5213:. 5166:. 5146:: 5138:: 5113:. 5101:: 5093:: 5050:. 5030:: 5022:: 4992:. 4962:. 4950:: 4942:: 4932:: 4909:. 4905:: 4882:. 4852:. 4838:: 4830:: 4820:: 4814:2 4778:. 4732:. 4701:. 4668:. 4635:. 4595:. 4564:. 4534:. 4514:: 4506:: 4496:: 4473:. 4447:. 4427:: 4419:: 4411:: 4401:: 4366:. 4332:. 4311:. 4289:: 4281:: 4271:: 4241:. 4213:. 4209:: 4201:: 4120:: 4084:: 4059:. 4029:. 4017:: 4009:: 3999:: 3993:7 3356:× 3354:5 3350:h 3275:h 3263:× 3261:2 3257:h 3245:× 3243:2 3239:h 3218:× 3216:2 3212:h 3133:h 3128:h 3124:R 3092:f 3079:h 3075:h 3050:M 3027:. 2586:( 2563:× 2532:× 2528:× 2491:. 2485:) 2480:2 2476:m 2472:+ 2467:1 2463:m 2459:( 2456:) 2451:2 2447:m 2441:1 2437:m 2433:( 2427:4 2423:r 2412:3 2408:G 2402:5 2398:c 2386:5 2381:= 2378:t 2365:2 2362:m 2358:1 2355:m 2347:c 2339:G 2335:t 2331:r 2314:, 2304:3 2300:r 2295:) 2290:2 2286:m 2282:+ 2277:1 2273:m 2269:( 2266:) 2261:2 2257:m 2251:1 2247:m 2243:( 2232:5 2228:c 2222:3 2218:G 2209:5 2198:= 2192:t 2188:d 2182:r 2178:d 2142:t 2119:0 2115:r 2094:, 2089:4 2085:/ 2081:1 2076:) 2064:t 2060:t 2052:1 2048:( 2041:0 2037:r 2033:= 2030:) 2027:t 2024:( 2021:r 2011:r 2003:× 1995:× 1979:× 1952:y 1950:– 1948:x 1881:l 1877:l 1867:. 1833:. 1761:× 1758:h 1754:+ 1751:h 1731:c 1722:c 1720:( 1704:λ 1694:f 1684:h 1676:h 1672:h 1560:5 1537:3 1236:c 1232:c 1224:c 1127:× 1125:5 1079:) 1052:) 1046:( 1041:) 1037:( 1027:· 1020:· 1013:· 1006:· 979:. 786:e 779:t 772:v 453:) 449:( 122:T 113:= 101:g 94:+ 82:G 34:. 20:)

Index

Gravitational waves
Gravity wave
black holes
General relativity
Spacetime curvature schematic
Introduction
History
Timeline
Tests
Mathematical formulation
Equivalence principle
Special relativity
World line
Pseudo-Riemannian manifold
Kepler problem
Gravitational lensing
Gravitational redshift
Gravitational time dilation
Gravitational waves
Frame-dragging
Geodetic effect
Event horizon
Singularity
Black hole
Spacetime
Spacetime diagrams
Minkowski spacetime
Einstein–Rosen bridge
Linearized gravity
Einstein field equations

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑