Knowledge

Fluorescence-lifetime imaging microscopy

Source đź“ť

540:) or a single photon avalanche photo diode (SPAD)) with respect to the excitation laser pulse. The recordings are repeated for multiple laser pulses and after enough recorded events, one is able to build a histogram of the number of events across all of these recorded time points. This histogram can then be fit to an exponential function that contains the exponential lifetime decay function of interest, and the lifetime parameter can accordingly be extracted. Multi-channel PMT systems with 16 to 64 elements have been commercially available, whereas the recently demonstrated CMOS single-photon avalanche diode (SPAD)-TCSPC FLIM systems can offer even higher number of detection channels and additional low-cost options. 566:. The fluorescence is (a.) demodulated and (b.) phase shifted; both quantities are related to the characteristic decay times of the fluorophore. Also, y-components to the excitation and fluorescence sine waves will be modulated, and lifetime can be determined from the modulation ratio of these y-components. Hence, 2 values for the lifetime can be determined from the phase-modulation method. The lifetimes are determined through a fitting procedures of these experimental parameters. An advantage of PMT-based or camera-based frequency domain FLIM is its fast lifetime image acquisition making it suitable for applications such as live cell research. 549:
allows for detection for the fraction of time when it is open after the delay. Thus, with an adjustable delay generator, one is able to collect fluorescence emission after multiple delay times encompassing the time range of the fluorescence decay of the sample. In recent years integrated intensified CCD cameras entered the market. These cameras consist of an image intensifier, CCD sensor and an integrated delay generator. ICCD cameras with shortest gating times of down to 200ps and delay steps of 10ps allow sub-nanosecond resolution FLIM. In combination with an endoscope this technique is used for intraoperative diagnosis of brain tumors.
1627: 1243: 580: 1168:
Laplace and Fourier transformation along with Laguerre gauss expansion have been used to estimate the lifetime in transformed space. These approaches are faster than the deconvolution based methods but they suffer from truncation and sampling problems. Moreover, application of methods like Laguerre gauss expansion is mathematically complicated. In Fourier methods the lifetime of a single exponential decay curve is given by:
677:
technique is the least square iterative re-convolution which is based on the minimization of the weighted sum of the residuals. In this technique theoretical exponential decay curves are convoluted with the instrument response function, which is measured separately, and the best fit is found by iterative calculation of the residuals for different inputs until a minimum is found. For a set of observations
1622:{\displaystyle {\begin{matrix}{{A}_{n}}={\frac {\sum \limits _{t}{d(t)\sin(n\omega t)}}{\sum \limits _{t}{IRF(t)\sin(n\omega t)}}}={\frac {\omega \tau }{1+{{\omega }^{2}}{{\tau }^{2}}}},&{{B}_{n}}={\frac {\sum \limits _{t}{d(t)\cos(n\omega t)}}{\sum \limits _{t}{IRF\cos(n\omega t)}}}={\frac {1}{1+n{{\omega }^{2}}{{\tau }^{2}}}},&\omega ={\frac {2\pi }{T}}\\\end{matrix}}} 1696:
a method to discriminate between the states/environments of the fluorophore. In contrast to intensity-based FRET measurements, the FLIM-based FRET measurements are also insensitive to the concentration of fluorophores and can thus filter out artifacts introduced by variations in the concentration and emission intensity across the sample.
873:
fitting methods are attractive because they offer a very fast solution to lifetime estimation. One of the major and straightforward techniques in this category is the rapid lifetime determination (RLD) method. RLD calculates the lifetimes and their amplitudes directly by dividing the decay curve into two parts of equal width
1076: 548:
Pulse excitation is still used in this method. Before the pulse reaches the sample, some of the light is reflected by a dichroic mirror and gets detected by a photodiode that activates a delay generator controlling a gated optical intensifier (GOI) that sits in front of the CCD detector. The GOI only
1695:
Since the fluorescence lifetime of a fluorophore depends on both radiative (i.e. fluorescence) and non-radiative (i.e. quenching, FRET) processes, energy transfer from the donor molecule to the acceptor molecule will decrease the lifetime of the donor. Thus, FRET measurements using FLIM can provide
1163:
For multi exponential decays this equation provides the average lifetime. This method can be extended to analyze bi-exponential decays. One major drawback of this method is that it cannot take into account the instrument response effect and for this reason the early part of the measured decay curves
511:
The instrumental response of the source, detector, and electronics can be measured, usually from scattered excitation light. Recovering the decay function (and corresponding lifetimes) poses additional challenges as division in the frequency domain tends to produce high noise when the denominator is
1648:
signaling and trafficking. Time domain FLIM (tdFLIM) has also been used to show the interaction of both types of nuclear intermediate filament proteins lamins A and B1 in distinct homopolymers at the nuclear envelope, which further interact with each other in higher order structures. FLIM imaging
1167:
One of the interesting features of the convolution theorem is that the integral of the convolution is the product of the factors that make up the integral. There are a few techniques which work in transformed space that exploit this property to recover the pure decay curve from the measured curve.
872:
Besides experimental difficulties, including the wavelength dependent instrument response function, mathematical treatment of the iterative de-convolution problem is not straightforward and it is a slow process which in the early days of FLIM made it impractical for a pixel-by-pixel analysis. Non
56:
lifetime (FLT) of the fluorophore, rather than its intensity, is used to create the image in FLIM. Fluorescence lifetime depends on the local micro-environment of the fluorophore, thus precluding any erroneous measurements in fluorescence intensity due to change in brightness of the light source,
676:
The goal of the analysis algorithm is to extract the pure decay curve from the measured decay and to estimate the lifetime(s). The latter is usually accomplished by fitting single or multi exponential functions. A variety of methods have been developed to solve this problem. The most widely used
524:) is usually employed because it compensates for variations in source intensity and single photon pulse amplitudes. Using commercial TCSPC equipment a fluorescence decay curve can be recorded with a time resolution down to 405 fs. The recorded fluorescence decay histogram obeys 431:
pulse of light, the time-resolved fluorescence will decay exponentially as described above. However, if the excitation pulse or detection response is wide, the measured fluorescence, d(t), will not be purely exponential. The instrumental response function, IRF(t) will be
57:
background light intensity or limited photo-bleaching. This technique also has the advantage of minimizing the effect of photon scattering in thick layers of sample. Being dependent on the micro-environment, lifetime measurements have been used as an indicator for
1643:
is difficult. The technique was developed in the late 1980s and early 1990s (Gating method: Bugiel et al. 1989. König 1989, Phase modulation: Lakowicz at al. 1992,) before being more widely applied in the late 1990s. In cell culture, it has been used to study
415:, which allows one to view contrast between materials with different fluorescence decay rates (even if those materials fluoresce at exactly the same wavelength), and also produces images which show changes in other decay pathways, such as in 918: 557:
Fluorescence lifetimes can be determined in the frequency domain by a phase-modulation method. The method uses a light source that is pulsed or modulated at high frequency (up to 500 MHz) such as an LED, diode laser or a
1234: 868: 2185: 1159: 1649:
is particularly useful in neurons, where light scattering by brain tissue is problematic for ratiometric imaging. In neurons, FLIM imaging using pulsed illumination has been used to study
93:
with a certain probability based on the decay rates through a number of different (radiative and/or nonradiative) decay pathways. To observe fluorescence, one of these pathways must be by
507: 214: 2133:
Elson, D. S.; Munro, I; Requejo-Isidro, J; McGinty, J; Dunsby, C; Galletly, N; Stamp, G W; Neil, M A A; Lever, M J; Kellett, P A; Dymoke-Bradshaw, A; Hares, J; French, P M W (2004).
165: 1705: 715: 2572:
Yasuda, Ryohei (2006). "Imaging spatiotemporal dynamics of neuronal signaling using fluorescence resonance energy transfer and fluorescence lifetime imaging microscopy".
1661:, and Ran family proteins. FLIM has been used in clinical multiphoton tomography to detect intradermal cancer cells as well as pharmaceutical and cosmetic compounds. 911: 891: 597: 413: 385: 365: 338: 285: 258: 311: 2485:
Verveer, Peter J.; Wouters, FS; Reynolds, AR; Bastiaens, PI (2000). "Quantitative Imaging of Lateral ErbB1 Receptor Signal Propagation in the Plasma Membrane".
238: 1071:{\displaystyle {\begin{matrix}{{D}_{0}}=\sum \limits _{i=1}^{K/2}{{{I}_{i}}\delta t}&{{D}_{1}}=\sum \limits _{i=K/2}^{K}{{{I}_{i}}\delta t}\\\end{matrix}}} 1640: 2912: 427:
Fluorescence lifetimes can be determined in the time domain by using a pulsed source. When a population of fluorophores is excited by an ultrashort or
387:
is independent of the initial intensity and of the emitted light. This can be utilized for making non-intensity based measurements in chemical sensing.
644: 616: 623: 1164:
should be ignored in the analyses. This means that part of the signal is discarded and the accuracy for estimating short lifetimes goes down.
2273:"Fluorescence lifetime imaging microscopy (flimscopy). Methodology development and application to studies of endosome fusion in single cells" 1173: 2725:
Mueller-Harvey, Irene; Feucht, Walter; Polster, Juergen; Trnková, Lucie; Burgos, Pierre; Parker, Anthony W.; Botchway, Stanley W. (2012).
630: 2184:
Sun, Yinghua; Hatami, Nisa; Yee, Matthew; Marcu, Jennifer; Elson, Daniel S.; Gorin, Fredric; Schrot, Rudolph J.; Phipps, Laura (2010).
2029:
Li, Day-Uei; Arlt, Jochen; Richardson, Justin; Walker, Richard; Buts, Alex; Stoppa, David; Charbon, Edoardo; Henderson, Robert (2010).
1639:
FLIM has primarily been used in biology as a method to detect photosensitizers in cells and tumors as well as FRET in instances where
612: 2135:"Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intensifier" 722: 2956: 416: 2031:"Real-time fluorescence lifetime imaging system with a 32 × 32 0.13μm CMOS low dark-count single-photon avalanche diode array" 2530:"The truncated prelamin A in Hutchinson–Gilford progeria syndrome alters segregation of A-type and B-type lamin homopolymers" 2255: 1085: 536:
records times at which individual photons are detected by a fast single-photon detector (typically a photo-multiplier tube (
1960: 2528:
Delbarre, Erwan; Tramier, Marc; Coppey-Moisan, Maïté; Gaillard, Claire; Courvalin, Jean-Claude; Buendia, Brigitte (2006).
1779:
Levitt, James A.; Kuimova, Marina K.; Yahioglu, Gokhan; Chung, Pei-Hua; Suhling, Klaus; Phillips, David (9 July 2009).
1836:
Ruedas-Rama, Maria J.; Orte, Angel; Hall, Elizabeth A. H.; Alvarez-Pez, Jose M.; Talavera, Eva M. (20 February 2012).
637: 2109: 1999: 1726:"Application of fluorescence lifetime imaging of enhanced green fluorescent protein to intracellular pH measurements" 1673: 663: 1080:
Ii is the recorded signal in the i-th channel and K is the number of channels. The lifetime can be estimated using:
2951: 2529: 1952: 441: 176: 46: 2727:"Two-photon excitation with pico-second fluorescence lifetime imaging to detect nuclear association of flavanols" 601: 2831:"Optimization of FLIM imaging, fitting and analysis for auto-fluorescent NAD(P)H and FAD in cells and tissues" 2678:"The design of Förster (fluorescence) resonance energy transfer (FRET)-based molecular sensors for Ran GTPase" 107: 2328:
Lakowicz, Joseph R.; Szmacinski, Henryk; Nowaczyk, Kazimierz; Berndt, Klaus W.; Johnson, Michael (1992).
1677: 2030: 717:
of the fluorescence signal in time bin i, the lifetime estimation is carried out by minimization of:
2616: 1781:"Membrane-Bound Molecular Rotors Measure Viscosity in Live Cells via Fluorescence Lifetime Imaging" 2921: 680: 1837: 1684: 590: 563: 340:
are the rates for each decay pathway, at least one of which must be the fluorescence decay rate
1725: 2093: 2084: 896: 876: 20: 2842: 2632: 2494: 2390: 2284: 2200: 2146: 2042: 1904: 1849: 1838:"A chloride ion nanosensor for time-resolved fluorimetry and fluorescence lifetime imaging" 525: 428: 398: 395:
Fluorescence-lifetime imaging yields images with the intensity of each pixel determined by
370: 343: 316: 263: 243: 98: 94: 8: 290: 42: 2935: 2846: 2636: 2498: 2394: 2288: 2204: 2150: 2046: 1908: 1853: 2874: 2806: 2773: 2754: 2702: 2677: 2653: 2620: 2597: 2467: 2354: 2329: 2305: 2272: 2221: 1818: 1761: 223: 2454: 2437: 2296: 2101: 1724:
Nakabayashi, Takakazu; Wang, Hui-Ping; Kinjo, Masataka; Ohta, Nobuhiro (4 June 2008).
2930: 2878: 2866: 2858: 2811: 2793: 2746: 2707: 2658: 2589: 2554: 2510: 2459: 2418: 2413: 2378: 2359: 2345: 2310: 2251: 2226: 2115: 2105: 2060: 1956: 1930: 1922: 1873: 1865: 1810: 1753: 1745: 893:
t. The analysis is performed by integrating the decay curve in equal time intervals
34: 2758: 2601: 2159: 2134: 1822: 1765: 2850: 2801: 2785: 2738: 2697: 2689: 2648: 2640: 2581: 2544: 2502: 2471: 2449: 2408: 2398: 2349: 2341: 2300: 2292: 2216: 2208: 2164: 2154: 2097: 2050: 1912: 1857: 1800: 1792: 1737: 2506: 2925: 2772:
Datta, Rupsa; Alfonso-GarcĂ­a, Alba; Cinco, Rachel; Gratton, Enrico (2015-05-20).
2245: 1948: 1780: 559: 537: 529: 2693: 2621:"The Spread of Ras Activity Triggered by Activation of a Single Dendritic Spine" 2854: 2829:
Cao, Ruofan; Wallrabe, Horst; Siller, Karsten; Periasamy, Ammasi (2020-02-05).
2585: 2383:
Proceedings of the National Academy of Sciences of the United States of America
2186:"Fluorescence lifetime imaging microscopy for brain tumor image-guided surgery" 2079: 2742: 2945: 2893: 2862: 2797: 2438:"Fluorescence lifetime imaging of receptor tyrosine kinase activity in cells" 1926: 1891:
Agronskaia, Alexandra V.; Tertoolen, L.; Gerritsen, Hans C. (November 2004).
1869: 1814: 1749: 1650: 82: 66: 2644: 2870: 2830: 2815: 2774:"Fluorescence lifetime imaging of endogenous biomarker of oxidative stress" 2750: 2711: 2662: 2593: 2558: 2514: 2463: 2403: 2230: 2119: 2064: 1934: 1877: 1805: 1757: 1658: 1645: 90: 53: 2422: 2363: 2314: 2549: 2169: 2055: 1631:
and n is the harmonic number and T is the total time range of detection.
433: 78: 38: 1683:
Multi-photon FLIM is increasingly used to detect auto-fluorescence from
101:
description, the fluorescence emitted will decay with time according to
1973: 1861: 2789: 2212: 2007: 1917: 1892: 1796: 2377:
Lakowicz, Joseph R.; Szmacinski, H; Nowaczyk, K; Johnson, ML (1992).
1741: 1229:{\displaystyle \tau ={\frac {1}{n\omega }}{\frac {{A}_{n}}{{B}_{n}}}} 62: 2726: 2527: 579: 1665: 2724: 2376: 2327: 2771: 2484: 2132: 1893:"Fast fluorescence lifetime imaging of calcium in living cells" 1654: 86: 2379:"Fluorescence Lifetime Imaging of Free and Protein-Bound NADH" 1835: 1706:
Phasor approach to fluorescence lifetime and spectral imaging
533: 521: 1890: 1671: 863:{\displaystyle {{\chi }^{2}}=\sum \limits _{i}{{\left}^{2}}} 2828: 1778: 2006:. Becker & Hickl GmbH. April 26, 2017. Archived from 41:
from a sample. It can be used as an imaging technique in
2614: 1723: 33:
is an imaging technique based on the differences in the
1154:{\displaystyle \tau =\delta t/\ln({{D}_{0}}/{{D}_{1}})} 58: 2918: 2028: 1248: 923: 562:
source combined with an electro-optic modulator or an
1246: 1176: 1088: 921: 899: 879: 725: 683: 444: 401: 373: 346: 319: 293: 266: 246: 226: 179: 110: 2894:"Lifetime Imaging Techniques for Optical Microscopy" 2436:Wouters, Fred S.; Bastiaens, Philippe I.H. (1999). 604:. Unsourced material may be challenged and removed. 2092:. Methods in Cell Biology. Vol. 81. pp.  2083: 1621: 1228: 1153: 1070: 905: 885: 862: 709: 501: 407: 379: 359: 332: 305: 279: 252: 232: 208: 159: 2183: 2943: 2917:Lifetime and spectral analysis tools in ImageJ: 2435: 1687:as markers for changes in mammalian metabolism. 1664:More recently FLIM has also been used to detect 2891: 2675: 2270: 2615:Harvey, Christopher D.; Yasuda, R; Zhong, H; 2077: 502:{\displaystyle {d}(t)={IRF}(t)\otimes {F}(t)} 209:{\displaystyle {\frac {1}{\tau }}=\sum k_{i}} 1730:Photochemical & Photobiological Sciences 2913:Fluorescence Excited-State Lifetime Imaging 19:"FLIM" redirects here. For other uses, see 2085:"Fluorescence Lifetime Imaging Microscopy" 613:"Fluorescence-lifetime imaging microscopy" 436:or blended with the decay function, F(t). 2892:Becker, Wolfgang; Bergmann, Axel (2003). 2805: 2701: 2652: 2548: 2453: 2412: 2402: 2353: 2304: 2220: 2168: 2158: 2054: 1980:. Becker & Hickl GmbH. April 26, 2017 1916: 1804: 664:Learn how and when to remove this message 72: 2931:Fluorescence Lifetime Imaging Microscopy 2835:Methods and Applications in Fluorescence 520:Time-correlated single-photon counting ( 27:Fluorescence-lifetime imaging microscopy 2244:Gadella, Theodorus W. J. (2011-07-29). 2243: 1949:Principles of Fluorescence Spectroscopy 16:Imaging technique based on fluorescence 2944: 2571: 422: 160:{\displaystyle I(t)=I_{0}e^{-t/\tau }} 2271:Oida, T.; Sako, Y; Kusumi, A (1993). 2676:Kaláb, Petr; Soderholm, Jon (2010). 602:adding citations to reliable sources 573: 532:during fitting. More specifically, 1785:The Journal of Physical Chemistry C 1496: 1449: 1319: 1272: 1014: 944: 744: 552: 528:which is considered in determining 13: 367:. More importantly, the lifetime, 14: 2968: 2906: 37:rate of the photon emission of a 1974:"SPC-150NX, Product description" 578: 543: 47:two-photon excitation microscopy 2885: 2822: 2765: 2718: 2669: 2608: 2574:Current Opinion in Neurobiology 2565: 2521: 2478: 2429: 2370: 2330:"Fluorescence lifetime imaging" 2321: 2264: 2237: 2177: 2126: 2090:Digital Microscopy, 3rd Edition 1690: 1634: 589:needs additional citations for 287:is the initial fluorescence at 2071: 2022: 1992: 1966: 1941: 1884: 1829: 1772: 1717: 1533: 1521: 1489: 1477: 1468: 1462: 1365: 1353: 1344: 1338: 1312: 1300: 1291: 1285: 1148: 1112: 844: 815: 792: 775: 704: 687: 496: 490: 479: 473: 456: 450: 390: 260:is the fluorescence lifetime, 120: 114: 49:, and multiphoton tomography. 1: 2957:Optical microscopy techniques 2507:10.1126/science.290.5496.1567 2455:10.1016/S0960-9822(99)80484-9 2297:10.1016/S0006-3495(93)81427-9 2102:10.1016/S0091-679X(06)81024-1 2000:"PML-16, Product description" 1711: 2346:10.1016/0003-2697(92)90112-K 2193:Journal of Biomedical Optics 1897:Journal of Biomedical Optics 710:{\displaystyle d({{t}_{i}})} 7: 2694:10.1016/j.ymeth.2010.01.022 1699: 569: 10: 2973: 2586:10.1016/j.conb.2006.08.012 1672:Autofluorescent coenzymes 18: 2743:10.1016/j.aca.2011.12.068 2160:10.1088/1367-2630/6/1/180 2855:10.1088/2050-6120/ab6f25 2537:Human Molecular Genetics 2247:FRET and FLIM Techniques 515: 2952:Fluorescence techniques 2938:(Becker&Hickl GmbH) 2936:Principle of TCSPC FLIM 2645:10.1126/science.1159675 2334:Analytical Biochemistry 906:{\displaystyle \delta } 886:{\displaystyle \delta } 564:acousto-optic modulator 2731:Analytica Chimica Acta 2404:10.1073/pnas.89.4.1271 2199:(5): 056022–056022–5. 2139:New Journal of Physics 1623: 1230: 1155: 1072: 1041: 971: 907: 887: 864: 711: 503: 409: 381: 361: 334: 307: 281: 254: 234: 210: 161: 73:Fluorescence lifetimes 1624: 1231: 1156: 1073: 1013: 943: 908: 888: 865: 712: 504: 410: 408:{\displaystyle \tau } 382: 380:{\displaystyle \tau } 362: 360:{\displaystyle k_{f}} 335: 333:{\displaystyle k_{i}} 308: 282: 280:{\displaystyle I_{0}} 255: 253:{\displaystyle \tau } 235: 211: 162: 97:of a photon. In the 65:and chemical species 2056:10.1364/OE.18.010257 1947:Joseph R. Lakowicz. 1244: 1174: 1086: 919: 897: 877: 723: 681: 598:improve this article 442: 399: 371: 344: 317: 291: 264: 244: 224: 177: 108: 95:spontaneous emission 2919:http://spechron.com 2847:2020MApFl...8b4001C 2637:2008Sci...321..136H 2499:2000Sci...290.1567V 2395:1992PNAS...89.1271L 2289:1993BpJ....64..676O 2277:Biophysical Journal 2205:2010JBO....15e6022S 2151:2004NJPh....6..180E 2078:Chang, CW; Sud, D; 2047:2010OExpr..1810257L 1909:2004JBO.....9.1230A 1854:2012Ana...137.1500R 1791:(27): 11634–11642. 1641:ratiometric imaging 423:Pulsed illumination 306:{\displaystyle t=0} 43:confocal microscopy 2924:2013-03-11 at the 2778:Scientific Reports 2550:10.1093/hmg/ddl026 2004:Becker & Hickl 1978:Becker & Hickl 1862:10.1039/C2AN15851E 1619: 1617: 1504: 1457: 1327: 1280: 1226: 1151: 1068: 1066: 903: 883: 860: 752: 707: 526:Poisson statistics 499: 405: 377: 357: 330: 303: 277: 250: 230: 206: 157: 2790:10.1038/srep09848 2493:(5496): 1567–70. 2257:978-0-08-091512-8 2213:10.1117/1.3486612 1918:10.1117/1.1806472 1797:10.1021/jp9013493 1613: 1587: 1538: 1495: 1448: 1421: 1370: 1318: 1271: 1224: 1196: 743: 674: 673: 666: 648: 233:{\displaystyle t} 188: 89:will drop to the 35:exponential decay 2964: 2901: 2900: 2898: 2889: 2883: 2882: 2826: 2820: 2819: 2809: 2769: 2763: 2762: 2722: 2716: 2715: 2705: 2673: 2667: 2666: 2656: 2631:(5885): 136–40. 2612: 2606: 2605: 2569: 2563: 2562: 2552: 2543:(7): 1113–1122. 2534: 2525: 2519: 2518: 2482: 2476: 2475: 2457: 2433: 2427: 2426: 2416: 2406: 2374: 2368: 2367: 2357: 2325: 2319: 2318: 2308: 2268: 2262: 2261: 2241: 2235: 2234: 2224: 2190: 2181: 2175: 2174: 2172: 2162: 2130: 2124: 2123: 2087: 2075: 2069: 2068: 2058: 2041:(10): 10257–69. 2026: 2020: 2019: 2017: 2015: 2010:on March 3, 2018 1996: 1990: 1989: 1987: 1985: 1970: 1964: 1961:978-0387-31278-1 1945: 1939: 1938: 1920: 1903:(6): 1230–1237. 1888: 1882: 1881: 1848:(6): 1500–1508. 1833: 1827: 1826: 1808: 1776: 1770: 1769: 1742:10.1039/B800391B 1721: 1668:in plant cells. 1628: 1626: 1625: 1620: 1618: 1614: 1609: 1601: 1588: 1586: 1585: 1584: 1583: 1578: 1571: 1570: 1569: 1564: 1544: 1539: 1537: 1536: 1503: 1493: 1492: 1456: 1446: 1441: 1440: 1439: 1434: 1422: 1420: 1419: 1418: 1417: 1412: 1405: 1404: 1403: 1398: 1384: 1376: 1371: 1369: 1368: 1326: 1316: 1315: 1279: 1269: 1264: 1263: 1262: 1257: 1235: 1233: 1232: 1227: 1225: 1223: 1222: 1217: 1211: 1210: 1205: 1199: 1197: 1195: 1184: 1160: 1158: 1157: 1152: 1147: 1146: 1145: 1140: 1133: 1128: 1127: 1126: 1121: 1105: 1077: 1075: 1074: 1069: 1067: 1063: 1056: 1055: 1054: 1049: 1040: 1035: 1031: 1009: 1008: 1007: 1002: 993: 986: 985: 984: 979: 970: 966: 957: 939: 938: 937: 932: 912: 910: 909: 904: 892: 890: 889: 884: 869: 867: 866: 861: 859: 858: 857: 852: 851: 847: 831: 830: 829: 824: 814: 813: 812: 804: 791: 790: 789: 784: 774: 773: 772: 767: 751: 739: 738: 737: 732: 716: 714: 713: 708: 703: 702: 701: 696: 669: 662: 658: 655: 649: 647: 606: 582: 574: 553:Phase modulation 508: 506: 505: 500: 489: 472: 449: 414: 412: 411: 406: 386: 384: 383: 378: 366: 364: 363: 358: 356: 355: 339: 337: 336: 331: 329: 328: 312: 310: 309: 304: 286: 284: 283: 278: 276: 275: 259: 257: 256: 251: 239: 237: 236: 231: 215: 213: 212: 207: 205: 204: 189: 181: 166: 164: 163: 158: 156: 155: 151: 135: 134: 2972: 2971: 2967: 2966: 2965: 2963: 2962: 2961: 2942: 2941: 2926:Wayback Machine 2909: 2904: 2896: 2890: 2886: 2827: 2823: 2770: 2766: 2723: 2719: 2674: 2670: 2613: 2609: 2570: 2566: 2532: 2526: 2522: 2483: 2479: 2448:(19): 1127–30. 2442:Current Biology 2434: 2430: 2375: 2371: 2326: 2322: 2269: 2265: 2258: 2242: 2238: 2188: 2182: 2178: 2131: 2127: 2112: 2076: 2072: 2027: 2023: 2013: 2011: 1998: 1997: 1993: 1983: 1981: 1972: 1971: 1967: 1946: 1942: 1889: 1885: 1834: 1830: 1777: 1773: 1722: 1718: 1714: 1702: 1693: 1681: 1637: 1616: 1615: 1602: 1600: 1592: 1579: 1574: 1573: 1572: 1565: 1560: 1559: 1558: 1548: 1543: 1505: 1499: 1494: 1458: 1452: 1447: 1445: 1435: 1430: 1429: 1428: 1426: 1413: 1408: 1407: 1406: 1399: 1394: 1393: 1392: 1385: 1377: 1375: 1328: 1322: 1317: 1281: 1275: 1270: 1268: 1258: 1253: 1252: 1251: 1247: 1245: 1242: 1241: 1218: 1213: 1212: 1206: 1201: 1200: 1198: 1188: 1183: 1175: 1172: 1171: 1141: 1136: 1135: 1134: 1129: 1122: 1117: 1116: 1115: 1101: 1087: 1084: 1083: 1065: 1064: 1050: 1045: 1044: 1043: 1042: 1036: 1027: 1017: 1003: 998: 997: 996: 994: 980: 975: 974: 973: 972: 962: 958: 947: 933: 928: 927: 926: 922: 920: 917: 916: 898: 895: 894: 878: 875: 874: 853: 825: 820: 819: 818: 805: 800: 799: 798: 785: 780: 779: 778: 768: 763: 762: 761: 760: 756: 755: 754: 753: 747: 733: 728: 727: 726: 724: 721: 720: 697: 692: 691: 690: 682: 679: 678: 670: 659: 653: 650: 607: 605: 595: 583: 572: 560:continuous wave 555: 546: 530:goodness of fit 518: 512:close to zero. 485: 462: 445: 443: 440: 439: 425: 400: 397: 396: 393: 372: 369: 368: 351: 347: 345: 342: 341: 324: 320: 318: 315: 314: 292: 289: 288: 271: 267: 265: 262: 261: 245: 242: 241: 225: 222: 221: 200: 196: 180: 178: 175: 174: 147: 140: 136: 130: 126: 109: 106: 105: 75: 24: 17: 12: 11: 5: 2970: 2960: 2959: 2954: 2940: 2939: 2933: 2928: 2915: 2908: 2907:External links 2905: 2903: 2902: 2884: 2821: 2764: 2717: 2668: 2607: 2564: 2520: 2477: 2428: 2369: 2320: 2263: 2256: 2236: 2176: 2125: 2110: 2070: 2035:Optics Express 2021: 1991: 1965: 1940: 1883: 1828: 1771: 1736:(6): 668–670. 1715: 1713: 1710: 1709: 1708: 1701: 1698: 1692: 1689: 1680: 1670: 1636: 1633: 1612: 1608: 1605: 1599: 1596: 1593: 1591: 1582: 1577: 1568: 1563: 1557: 1554: 1551: 1547: 1542: 1535: 1532: 1529: 1526: 1523: 1520: 1517: 1514: 1511: 1508: 1502: 1498: 1491: 1488: 1485: 1482: 1479: 1476: 1473: 1470: 1467: 1464: 1461: 1455: 1451: 1444: 1438: 1433: 1427: 1425: 1416: 1411: 1402: 1397: 1391: 1388: 1383: 1380: 1374: 1367: 1364: 1361: 1358: 1355: 1352: 1349: 1346: 1343: 1340: 1337: 1334: 1331: 1325: 1321: 1314: 1311: 1308: 1305: 1302: 1299: 1296: 1293: 1290: 1287: 1284: 1278: 1274: 1267: 1261: 1256: 1250: 1249: 1221: 1216: 1209: 1204: 1194: 1191: 1187: 1182: 1179: 1150: 1144: 1139: 1132: 1125: 1120: 1114: 1111: 1108: 1104: 1100: 1097: 1094: 1091: 1062: 1059: 1053: 1048: 1039: 1034: 1030: 1026: 1023: 1020: 1016: 1012: 1006: 1001: 995: 992: 989: 983: 978: 969: 965: 961: 956: 953: 950: 946: 942: 936: 931: 925: 924: 902: 882: 856: 850: 846: 843: 840: 837: 834: 828: 823: 817: 811: 808: 803: 797: 794: 788: 783: 777: 771: 766: 759: 750: 746: 742: 736: 731: 706: 700: 695: 689: 686: 672: 671: 586: 584: 577: 571: 568: 554: 551: 545: 542: 517: 514: 498: 495: 492: 488: 484: 481: 478: 475: 471: 468: 465: 461: 458: 455: 452: 448: 424: 421: 404: 392: 389: 376: 354: 350: 327: 323: 302: 299: 296: 274: 270: 249: 229: 220:In the above, 218: 217: 203: 199: 195: 192: 187: 184: 168: 167: 154: 150: 146: 143: 139: 133: 129: 125: 122: 119: 116: 113: 74: 71: 15: 9: 6: 4: 3: 2: 2969: 2958: 2955: 2953: 2950: 2949: 2947: 2937: 2934: 2932: 2929: 2927: 2923: 2920: 2916: 2914: 2911: 2910: 2895: 2888: 2880: 2876: 2872: 2868: 2864: 2860: 2856: 2852: 2848: 2844: 2841:(2): 024001. 2840: 2836: 2832: 2825: 2817: 2813: 2808: 2803: 2799: 2795: 2791: 2787: 2783: 2779: 2775: 2768: 2760: 2756: 2752: 2748: 2744: 2740: 2736: 2732: 2728: 2721: 2713: 2709: 2704: 2699: 2695: 2691: 2688:(2): 220–32. 2687: 2683: 2679: 2672: 2664: 2660: 2655: 2650: 2646: 2642: 2638: 2634: 2630: 2626: 2622: 2618: 2611: 2603: 2599: 2595: 2591: 2587: 2583: 2580:(5): 551–61. 2579: 2575: 2568: 2560: 2556: 2551: 2546: 2542: 2538: 2531: 2524: 2516: 2512: 2508: 2504: 2500: 2496: 2492: 2488: 2481: 2473: 2469: 2465: 2461: 2456: 2451: 2447: 2443: 2439: 2432: 2424: 2420: 2415: 2410: 2405: 2400: 2396: 2392: 2389:(4): 1271–5. 2388: 2384: 2380: 2373: 2365: 2361: 2356: 2351: 2347: 2343: 2340:(2): 316–30. 2339: 2335: 2331: 2324: 2316: 2312: 2307: 2302: 2298: 2294: 2290: 2286: 2283:(3): 676–85. 2282: 2278: 2274: 2267: 2259: 2253: 2249: 2248: 2240: 2232: 2228: 2223: 2218: 2214: 2210: 2206: 2202: 2198: 2194: 2187: 2180: 2171: 2166: 2161: 2156: 2152: 2148: 2144: 2140: 2136: 2129: 2121: 2117: 2113: 2111:9780123740250 2107: 2103: 2099: 2095: 2091: 2086: 2081: 2074: 2066: 2062: 2057: 2052: 2048: 2044: 2040: 2036: 2032: 2025: 2009: 2005: 2001: 1995: 1979: 1975: 1969: 1962: 1958: 1954: 1951:3rd edition. 1950: 1944: 1936: 1932: 1928: 1924: 1919: 1914: 1910: 1906: 1902: 1898: 1894: 1887: 1879: 1875: 1871: 1867: 1863: 1859: 1855: 1851: 1847: 1843: 1839: 1832: 1824: 1820: 1816: 1812: 1807: 1806:10044/1/15590 1802: 1798: 1794: 1790: 1786: 1782: 1775: 1767: 1763: 1759: 1755: 1751: 1747: 1743: 1739: 1735: 1731: 1727: 1720: 1716: 1707: 1704: 1703: 1697: 1688: 1686: 1679: 1675: 1669: 1667: 1662: 1660: 1656: 1652: 1647: 1642: 1632: 1629: 1610: 1606: 1603: 1597: 1594: 1589: 1580: 1575: 1566: 1561: 1555: 1552: 1549: 1545: 1540: 1530: 1527: 1524: 1518: 1515: 1512: 1509: 1506: 1500: 1486: 1483: 1480: 1474: 1471: 1465: 1459: 1453: 1442: 1436: 1431: 1423: 1414: 1409: 1400: 1395: 1389: 1386: 1381: 1378: 1372: 1362: 1359: 1356: 1350: 1347: 1341: 1335: 1332: 1329: 1323: 1309: 1306: 1303: 1297: 1294: 1288: 1282: 1276: 1265: 1259: 1254: 1239: 1236: 1219: 1214: 1207: 1202: 1192: 1189: 1185: 1180: 1177: 1169: 1165: 1161: 1142: 1137: 1130: 1123: 1118: 1109: 1106: 1102: 1098: 1095: 1092: 1089: 1081: 1078: 1060: 1057: 1051: 1046: 1037: 1032: 1028: 1024: 1021: 1018: 1010: 1004: 999: 990: 987: 981: 976: 967: 963: 959: 954: 951: 948: 940: 934: 929: 914: 900: 880: 870: 854: 848: 841: 838: 835: 832: 826: 821: 809: 806: 801: 795: 786: 781: 769: 764: 757: 748: 740: 734: 729: 718: 698: 693: 684: 668: 665: 657: 646: 643: 639: 636: 632: 629: 625: 622: 618: 615: â€“  614: 610: 609:Find sources: 603: 599: 593: 592: 587:This article 585: 581: 576: 575: 567: 565: 561: 550: 544:Gating method 541: 539: 535: 531: 527: 523: 513: 509: 493: 486: 482: 476: 469: 466: 463: 459: 453: 446: 437: 435: 430: 420: 418: 402: 388: 374: 352: 348: 325: 321: 300: 297: 294: 272: 268: 247: 227: 201: 197: 193: 190: 185: 182: 173: 172: 171: 152: 148: 144: 141: 137: 131: 127: 123: 117: 111: 104: 103: 102: 100: 96: 92: 88: 84: 80: 70: 68: 67:concentration 64: 60: 55: 50: 48: 44: 40: 36: 32: 28: 22: 2899:. p. 4. 2887: 2838: 2834: 2824: 2781: 2777: 2767: 2734: 2730: 2720: 2685: 2681: 2671: 2628: 2624: 2610: 2577: 2573: 2567: 2540: 2536: 2523: 2490: 2486: 2480: 2445: 2441: 2431: 2386: 2382: 2372: 2337: 2333: 2323: 2280: 2276: 2266: 2250:. Elsevier. 2246: 2239: 2196: 2192: 2179: 2142: 2138: 2128: 2089: 2073: 2038: 2034: 2024: 2012:. Retrieved 2008:the original 2003: 1994: 1982:. Retrieved 1977: 1968: 1943: 1900: 1896: 1886: 1845: 1841: 1831: 1788: 1784: 1774: 1733: 1729: 1719: 1694: 1691:FRET imaging 1682: 1663: 1646:EGF receptor 1638: 1635:Applications 1630: 1240: 1237: 1170: 1166: 1162: 1082: 1079: 915: 871: 719: 675: 660: 651: 641: 634: 627: 620: 608: 596:Please help 591:verification 588: 556: 547: 519: 510: 438: 426: 417:FRET imaging 394: 219: 169: 91:ground state 76: 54:fluorescence 51: 30: 26: 25: 2784:(1): 9848. 2170:10044/1/578 391:Measurement 79:fluorophore 39:fluorophore 2946:Categories 2617:Svoboda, K 2145:(1): 180. 1712:References 624:newspapers 2879:210883495 2863:2050-6120 2798:2045-2322 2737:: 68–75. 2080:Mycek, MA 2014:April 26, 1984:April 26, 1927:1083-3668 1870:1364-5528 1815:1932-7447 1750:1474-9092 1685:coenzymes 1666:flavanols 1607:π 1595:ω 1576:τ 1562:ω 1528:ω 1519:⁡ 1497:∑ 1484:ω 1475:⁡ 1450:∑ 1410:τ 1396:ω 1382:τ 1379:ω 1360:ω 1351:⁡ 1320:∑ 1307:ω 1298:⁡ 1273:∑ 1193:ω 1178:τ 1110:⁡ 1096:δ 1090:τ 1058:δ 1015:∑ 988:δ 945:∑ 901:δ 881:δ 842:τ 796:− 745:∑ 730:χ 483:⊗ 434:convolved 403:τ 375:τ 248:τ 240:is time, 194:∑ 186:τ 153:τ 142:− 81:which is 63:viscosity 2922:Archived 2871:31972557 2816:25993434 2759:24094780 2751:22340533 2712:20096786 2663:18556515 2619:(2008). 2602:54398436 2594:16971112 2559:16481358 2515:11090353 2464:10531012 2231:21054116 2120:17519182 2082:(2007). 2065:20588879 1955:(2006). 1953:Springer 1935:15568944 1878:22324050 1823:96097931 1766:42881416 1758:18528549 1700:See also 654:May 2014 570:Analysis 99:ensemble 2843:Bibcode 2807:4438616 2703:2884063 2682:Methods 2654:2745709 2633:Bibcode 2625:Science 2495:Bibcode 2487:Science 2472:7640970 2423:1741380 2391:Bibcode 2364:1519759 2355:6986422 2315:8471720 2306:1262380 2285:Bibcode 2222:2966493 2201:Bibcode 2147:Bibcode 2094:495–524 2043:Bibcode 1905:Bibcode 1850:Bibcode 1842:Analyst 1674:NAD(P)H 1238:Where: 638:scholar 83:excited 2877:  2869:  2861:  2814:  2804:  2796:  2757:  2749:  2710:  2700:  2661:  2651:  2600:  2592:  2557:  2513:  2470:  2462:  2421:  2411:  2362:  2352:  2313:  2303:  2254:  2229:  2219:  2118:  2108:  2063:  1959:  1933:  1925:  1876:  1868:  1821:  1813:  1764:  1756:  1748:  1655:CaMKII 640:  633:  626:  619:  611:  313:, and 170:where 87:photon 2897:(PDF) 2875:S2CID 2755:S2CID 2598:S2CID 2533:(PDF) 2468:S2CID 2414:48431 2189:(PDF) 1819:S2CID 1762:S2CID 645:JSTOR 631:books 534:TCSPC 522:TCSPC 516:TCSPC 429:delta 85:by a 2867:PMID 2859:ISSN 2812:PMID 2794:ISSN 2747:PMID 2708:PMID 2659:PMID 2590:PMID 2555:PMID 2511:PMID 2460:PMID 2419:PMID 2360:PMID 2311:PMID 2252:ISBN 2227:PMID 2116:PMID 2106:ISBN 2061:PMID 2016:2017 1986:2017 1957:ISBN 1931:PMID 1923:ISSN 1874:PMID 1866:ISSN 1811:ISSN 1754:PMID 1746:ISSN 1676:and 617:news 52:The 31:FLIM 21:Flim 2851:doi 2802:PMC 2786:doi 2739:doi 2735:719 2698:PMC 2690:doi 2649:PMC 2641:doi 2629:321 2582:doi 2545:doi 2503:doi 2491:290 2450:doi 2409:PMC 2399:doi 2350:PMC 2342:doi 2338:202 2301:PMC 2293:doi 2217:PMC 2209:doi 2165:hdl 2155:doi 2098:doi 2051:doi 1913:doi 1858:doi 1846:137 1801:hdl 1793:doi 1789:113 1738:doi 1678:FAD 1659:Rac 1651:Ras 1516:cos 1472:cos 1348:sin 1295:sin 913:t: 600:by 538:PMT 29:or 2948:: 2873:. 2865:. 2857:. 2849:. 2837:. 2833:. 2810:. 2800:. 2792:. 2780:. 2776:. 2753:. 2745:. 2733:. 2729:. 2706:. 2696:. 2686:51 2684:. 2680:. 2657:. 2647:. 2639:. 2627:. 2623:. 2596:. 2588:. 2578:16 2576:. 2553:. 2541:15 2539:. 2535:. 2509:. 2501:. 2489:. 2466:. 2458:. 2444:. 2440:. 2417:. 2407:. 2397:. 2387:89 2385:. 2381:. 2358:. 2348:. 2336:. 2332:. 2309:. 2299:. 2291:. 2281:64 2279:. 2275:. 2225:. 2215:. 2207:. 2197:15 2195:. 2191:. 2163:. 2153:. 2141:. 2137:. 2114:. 2104:. 2096:. 2088:. 2059:. 2049:. 2039:18 2037:. 2033:. 2002:. 1976:. 1929:. 1921:. 1911:. 1899:. 1895:. 1872:. 1864:. 1856:. 1844:. 1840:. 1817:. 1809:. 1799:. 1787:. 1783:. 1760:. 1752:. 1744:. 1732:. 1728:. 1657:, 1653:, 1107:ln 419:. 77:A 69:. 61:, 59:pH 45:, 2881:. 2853:: 2845:: 2839:8 2818:. 2788:: 2782:5 2761:. 2741:: 2714:. 2692:: 2665:. 2643:: 2635:: 2604:. 2584:: 2561:. 2547:: 2517:. 2505:: 2497:: 2474:. 2452:: 2446:9 2425:. 2401:: 2393:: 2366:. 2344:: 2317:. 2295:: 2287:: 2260:. 2233:. 2211:: 2203:: 2173:. 2167:: 2157:: 2149:: 2143:6 2122:. 2100:: 2067:. 2053:: 2045:: 2018:. 1988:. 1963:. 1937:. 1915:: 1907:: 1901:9 1880:. 1860:: 1852:: 1825:. 1803:: 1795:: 1768:. 1740:: 1734:7 1611:T 1604:2 1598:= 1590:, 1581:2 1567:2 1556:n 1553:+ 1550:1 1546:1 1541:= 1534:) 1531:t 1525:n 1522:( 1513:F 1510:R 1507:I 1501:t 1490:) 1487:t 1481:n 1478:( 1469:) 1466:t 1463:( 1460:d 1454:t 1443:= 1437:n 1432:B 1424:, 1415:2 1401:2 1390:+ 1387:1 1373:= 1366:) 1363:t 1357:n 1354:( 1345:) 1342:t 1339:( 1336:F 1333:R 1330:I 1324:t 1313:) 1310:t 1304:n 1301:( 1292:) 1289:t 1286:( 1283:d 1277:t 1266:= 1260:n 1255:A 1220:n 1215:B 1208:n 1203:A 1190:n 1186:1 1181:= 1149:) 1143:1 1138:D 1131:/ 1124:0 1119:D 1113:( 1103:/ 1099:t 1093:= 1061:t 1052:i 1047:I 1038:K 1033:2 1029:/ 1025:K 1022:= 1019:i 1011:= 1005:1 1000:D 991:t 982:i 977:I 968:2 964:/ 960:K 955:1 952:= 949:i 941:= 935:0 930:D 855:2 849:] 845:) 839:, 836:a 833:, 827:i 822:t 816:( 810:i 807:0 802:d 793:) 787:i 782:t 776:( 770:i 765:d 758:[ 749:i 741:= 735:2 705:) 699:i 694:t 688:( 685:d 667:) 661:( 656:) 652:( 642:· 635:· 628:· 621:· 594:. 497:) 494:t 491:( 487:F 480:) 477:t 474:( 470:F 467:R 464:I 460:= 457:) 454:t 451:( 447:d 353:f 349:k 326:i 322:k 301:0 298:= 295:t 273:0 269:I 228:t 216:. 202:i 198:k 191:= 183:1 149:/ 145:t 138:e 132:0 128:I 124:= 121:) 118:t 115:( 112:I 23:.

Index

Flim
exponential decay
fluorophore
confocal microscopy
two-photon excitation microscopy
fluorescence
pH
viscosity
concentration
fluorophore
excited
photon
ground state
spontaneous emission
ensemble
FRET imaging
delta
convolved
TCSPC
Poisson statistics
goodness of fit
TCSPC
PMT
continuous wave
acousto-optic modulator

verification
improve this article
adding citations to reliable sources
"Fluorescence-lifetime imaging microscopy"

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑