Knowledge

Flip graph

Source 📝

20: 28: 154:
in it whenever they differ by a single interior edge. In this case, the flip operation consists in exchanging the diagonals of a convex quadrilateral. These diagonals are the interior edges by which two triangulations adjacent in the flip graph differ. The resulting flip graph is both the
1452:
in the 1930s, the flip graph of the topological sphere is connected. Among the connected flip graphs, one also finds the flip graphs of any finite 2-dimensional set of points. In higher dimensional Euclidean spaces, the situation is much more complicated. Finite sets of points of
1200:
of a given region in the plane. In this case, a flip can be performed when two adjacent dominos cover a square: it consists in rotating these dominos by 90 degrees around the center of the square, resulting in a different domino tiling of the same region.
1006:
Two triangulations are related by a flip when they differ by exactly one of the arcs they are composed of. Note that, these two triangulations necessarily have the same number of vertices. As in the Euclidean case, the flip graph of
708: 275: 612: 575: 1130:
A number of other flip graphs can be defined using alternative definitions of a triangulation. For instance, the flip graph whose vertices are the centrally-symmetric triangulations of a
428: 1480: 1378: 1281: 1744: 1434: 1402: 1309: 1252: 1053: 1029: 1001: 974: 938: 894: 834: 810: 786: 371: 319: 1698: 738: 475: 398: 1642: 498: 1163: 1616: 1345: 197: 148: 124: 1801: 1669: 1587: 1567: 1539: 1500: 1187: 1120: 1100: 1073: 914: 854: 762: 620: 538: 518: 448: 339: 295: 232: 104: 1193:. One can also consider an alternative flip graph of a topological surface, defined by allowing multiple arcs and loops in the triangulations of this surface. 2022: 812:
and whose edges correspond to flips between them, is a natural generalization of the flip graph of a convex polygon, as the two flip graphs coincide when
1509:
is known to be connected. However, it is yet unknown whether the flip graphs of finite 3- and 4-dimensional sets of points are always connected or not.
59:
link two of these objects when they can be obtained from one another by an elementary operation called a flip. Flip graphs are special cases of
1746:. The diameter of the flip graphs of arbitrary topological surfaces with boundary has also been studied and is known exactly in several cases. 2411: 2084: 1196:
Flip graphs may also be defined using combinatorial objects other than triangulations. An example of such combinatorial objects are the
916:
of points on it, and connect them by arcs in such a way that any two arcs never cross. When this set of arcs is maximal, it decomposes
2338: 241: 2540: 2181: 764:. The conditions just stated, under which a flip is possible, make sure that this operation results in a triangulation of 580: 543: 1284: 2456: 1805: 2545: 1849: 1075:
vertices and whose edges correspond to flips between them. This definition can be straightforwardly extended to
2043: 1943: 1076: 403: 151: 1988: 40: 1445: 1312: 1885: 1456: 1354: 1257: 2495:
Parlier, Hugo; Pournin, Lionel (2018). "Once punctured disks, non-convex polygons, and pointihedra".
1703: 1415: 1383: 1290: 1233: 1034: 1010: 982: 955: 919: 875: 815: 791: 767: 352: 300: 2321:
Bose, Prosenjit; Verdonschot, Sander (2012). "A History of Flips in Combinatorial Triangulations".
949: 865: 235: 2497: 2274: 1518: 1674: 1165:-gon and whose edges correspond to the operation of doing two centrally-symmetric flips is the 716: 453: 376: 60: 31:
Examples of flips in dimension 1 (top-right), 2 (top-left and central row), and 3 (bottom row).
1621: 483: 23:
The flip graphs of a quadrilateral (top-left), a pentagon (top-right), and a hexagon (bottom).
2135: 2130: 2079: 1923: 127: 44: 1133: 2307: 2214: 2166: 2117: 2066: 2001: 1966: 1901: 1872: 1828: 1592: 1318: 170: 1919: 703:{\displaystyle X{\mathord {\star }}{Y}=\{x\cup {y}:(x,y)\in {X{\mathord {\times }}{Y}}\},} 133: 109: 8: 56: 2506: 2465: 2420: 2375: 2283: 2190: 2144: 1786: 1654: 1572: 1552: 1524: 1485: 1172: 1105: 1085: 1058: 899: 869: 839: 747: 741: 523: 503: 433: 324: 280: 217: 89: 2253: 2236: 1863: 1819: 1517:
The maximum number of flips required to transform a triangulation into another is the
2344: 2334: 2057: 1983: 1957: 1760: 1003:
that can be obtained from one another by a continuous transformation are identical.
2516: 2475: 2430: 2385: 2326: 2293: 2248: 2232: 2200: 2154: 2103: 2093: 2052: 1952: 1858: 1814: 1546: 2098: 2303: 2210: 2179:
Pournin, Lionel (2013), "The flip-Graph of the 4-dimensional cube is connected",
2162: 2113: 2062: 1997: 1962: 1897: 1868: 1824: 1409: 1348: 1223: 945: 478: 2330: 1986:; Kapranov, Mikhail M. (1990), "Newton polytopes of principal A-determinants", 1979: 1651:
provided a quadratic upper bound on the diameter of the flip graph of a set of
941: 160: 2520: 2480: 2451: 2298: 2269: 2205: 2158: 2534: 2348: 2228: 1844: 1755: 1542: 1215: 1197: 200: 156: 71: 48: 2017: 1648: 1449: 346: 1671:
unmarked points on the sphere. The current upper bound on the diameter is
1219: 1190: 788:. The corresponding flip graph, whose vertices are the triangulations of 75: 2435: 2406: 1405: 1227: 1166: 164: 67: 2108: 1941:
Negami, Seiya (1994), "Diagonal flips in triangulations of surfaces",
1102:-gon, as the two coincide when the surface is a topological disk with 2149: 2082:(2000), "A point set whose space of triangulations is disconnected", 1506: 1930:. Algorithms and Computation in Mathematics. Vol. 25. Springer. 1380:. The subgraph induced by these triangulations in the flip graph of 2511: 2470: 2380: 52: 2425: 2390: 2363: 2288: 2195: 2325:. Berlin, Heidelberg: Springer Berlin Heidelberg. p. 29–44. 1647:
The diameter of other flip graphs has been studied. For instance
342: 206:
This basic construction can be generalized in a number of ways.
1978: 1783:
Lee, Carl (1989), "The Associahedron and Triangulations of the
1521:
of the flip graph. The diameter of the flip graph of a convex
19: 2237:"Rotation distance, triangulations, and hyperbolic geometry" 1888:(1962), "The algebra of bracketings and their enumeration", 27: 864:
Another kind of flip graphs is obtained by considering the
209: 2041:
Lawson, Charles L. (1972), "Transforming triangulations",
1928:
Triangulations, Structures for Algorithms and Applications
321:
by a flip. This operation consists in modifying the way
1482:
with disconnected flip graphs have been found whenever
450:, and if all the cells (faces of maximal dimension) of 1031:
is the graph whose vertices are the triangulations of
270:{\displaystyle {\mathcal {A}}\subset \mathbb {R} ^{d}} 2226: 1789: 1706: 1677: 1657: 1624: 1595: 1575: 1555: 1527: 1488: 1459: 1418: 1386: 1357: 1321: 1293: 1260: 1236: 1175: 1136: 1108: 1088: 1061: 1037: 1013: 985: 958: 922: 902: 878: 842: 818: 794: 770: 750: 719: 623: 583: 546: 526: 506: 486: 456: 436: 406: 379: 355: 327: 303: 283: 244: 220: 173: 136: 112: 92: 2023:
Jahresbericht der Deutschen Mathematiker-Vereinigung
1918: 1569:
is sufficiently large and by Lionel Pournin for all
944:(distinct arcs with the same pair of vertices), nor 607:{\displaystyle \lambda {\mathord {\star }}\tau ^{+}} 570:{\displaystyle \lambda {\mathord {\star }}\tau ^{-}} 16:
A graph that encodes local operations in mathematics
1795: 1738: 1692: 1663: 1636: 1610: 1581: 1561: 1533: 1494: 1474: 1428: 1396: 1372: 1339: 1303: 1275: 1246: 1181: 1157: 1114: 1094: 1082:The flip graph of a surface generalises that of a 1067: 1047: 1023: 995: 968: 932: 908: 888: 848: 828: 804: 780: 756: 732: 702: 606: 569: 532: 512: 492: 469: 442: 422: 392: 365: 333: 313: 289: 269: 226: 191: 142: 118: 98: 2364:"A Lower Bound on the Diameter of the Flip Graph" 2532: 2320: 2133:(2005), "Non-connected toric Hilbert schemes", 2494: 2449: 2407:"Flip-graph moduli spaces of filling surfaces" 2404: 86:A prototypical flip graph is that of a convex 2020:(1936), "Bemerkungen zum Vierfarbenproblem", 1444:Polytopal flip graphs are, by this property, 2412:Journal of the European Mathematical Society 2241:Journal of the American Mathematical Society 2085:Journal of the American Mathematical Society 2012: 2010: 940:into triangles. If in addition there are no 694: 642: 66:Among noticeable flip graphs, one finds the 2452:"Modular flip-graphs of one holed surfaces" 277:. Under some conditions, one may transform 1541:-gon has been obtained by Daniel Sleator, 2510: 2479: 2469: 2434: 2424: 2389: 2379: 2297: 2287: 2252: 2204: 2194: 2148: 2107: 2097: 2056: 2007: 1956: 1862: 1818: 1462: 1360: 1263: 373:). More precisely, if some triangulation 257: 1505:The flip graph of the vertex set of the 210:Finite sets of points in Euclidean space 26: 18: 2450:Parlier, Hugo; Pournin, Lionel (2018). 2405:Parlier, Hugo; Pournin, Lionel (2017). 2267: 2178: 979:In this setting, two triangulations of 859: 836:is the set of the vertices of a convex 423:{\displaystyle z\subset {\mathcal {A}}} 2533: 2129: 2078: 2040: 2016: 1940: 1884: 1843: 1700:, while the best-known lower bound is 2361: 2182:Discrete & Computational Geometry 1914: 1912: 1910: 1311:are the ones that can be obtained by 520:, then one can perform a flip within 126:. The vertices of this graph are the 1839: 1837: 1778: 1776: 1125: 744:, the unique other triangulation of 2368:Electronic Journal of Combinatorics 1782: 13: 1972: 1907: 1847:(2003), "A type-B associahedron", 1724: 1421: 1389: 1296: 1239: 1230:is a flip graph. For instance, if 1040: 1016: 988: 961: 925: 881: 821: 797: 773: 415: 358: 306: 247: 14: 2557: 2457:European Journal of Combinatorics 2323:Lecture Notes in Computer Science 2254:10.1090/s0894-0347-1988-0928904-4 1834: 1806:European Journal of Combinatorics 1773: 1475:{\displaystyle \mathbb {R} ^{d}} 1439: 1373:{\displaystyle \mathbb {R} ^{d}} 1276:{\displaystyle \mathbb {R} ^{d}} 2488: 2443: 2398: 2355: 2314: 2261: 2220: 2172: 2123: 1850:Advances in Applied Mathematics 1739:{\displaystyle 7n/3+\Theta (1)} 1209: 1122:points placed on its boundary. 2270:"The diameter of associahedra" 2072: 2034: 1934: 1878: 1733: 1727: 1429:{\displaystyle {\mathcal {A}}} 1397:{\displaystyle {\mathcal {A}}} 1334: 1322: 1304:{\displaystyle {\mathcal {A}}} 1247:{\displaystyle {\mathcal {A}}} 1152: 1137: 1048:{\displaystyle {\mathcal {S}}} 1024:{\displaystyle {\mathcal {S}}} 996:{\displaystyle {\mathcal {S}}} 969:{\displaystyle {\mathcal {S}}} 933:{\displaystyle {\mathcal {S}}} 889:{\displaystyle {\mathcal {S}}} 829:{\displaystyle {\mathcal {A}}} 805:{\displaystyle {\mathcal {A}}} 781:{\displaystyle {\mathcal {A}}} 671: 659: 366:{\displaystyle {\mathcal {A}}} 314:{\displaystyle {\mathcal {A}}} 297:into another triangulation of 186: 174: 1: 2099:10.1090/S0894-0347-00-00330-1 1864:10.1016/S0196-8858(02)00522-5 1820:10.1016/S0195-6698(89)80072-1 1766: 1254:is a finite set of points in 1226:have the property that their 1204: 1077:bordered topological surfaces 948:, this set of arcs defines a 150:, and two triangulations are 2058:10.1016/0012-365X(72)90093-3 1989:Soviet Mathematics - Doklady 1958:10.1016/0012-365X(93)E0101-9 1589:. This diameter is equal to 1412:, the secondary polytope of 7: 2541:Application-specific graphs 2331:10.1007/978-3-642-34191-5_3 1890:Nieuw Archief voor Wiskunde 1749: 1512: 81: 10: 2562: 872:: consider such a surface 238:of a finite set of points 2521:10.1007/s00026-018-0393-1 2481:10.1016/j.ejc.2017.07.003 2299:10.1016/j.aim.2014.02.035 2206:10.1007/s00454-013-9488-y 2159:10.1007/s00208-005-0643-5 1693:{\displaystyle 5.2n-33.6} 742:Radon's partition theorem 733:{\displaystyle \tau ^{+}} 470:{\displaystyle \tau ^{-}} 393:{\displaystyle \tau ^{-}} 2362:Frati, Fabrizio (2017). 2268:Pournin, Lionel (2014). 1637:{\displaystyle n\geq 13} 1507:4-dimensional hypercube 896:, place a finite number 493:{\displaystyle \lambda } 2498:Annals of Combinatorics 2275:Advances in Mathematics 2546:Geometric graph theory 1984:Zelevinskiĭ, Andrei V. 1797: 1740: 1694: 1665: 1638: 1612: 1583: 1563: 1535: 1496: 1476: 1430: 1398: 1374: 1341: 1305: 1285:regular triangulations 1277: 1248: 1183: 1159: 1158:{\displaystyle (2d+2)} 1116: 1096: 1069: 1049: 1025: 997: 970: 934: 910: 890: 850: 830: 806: 782: 758: 734: 704: 608: 571: 534: 514: 494: 471: 444: 424: 394: 367: 335: 315: 291: 271: 228: 193: 144: 120: 100: 32: 24: 2136:Mathematische Annalen 1798: 1741: 1695: 1666: 1639: 1613: 1611:{\displaystyle 2n-10} 1584: 1564: 1536: 1497: 1477: 1431: 1399: 1375: 1342: 1340:{\displaystyle (d+1)} 1306: 1278: 1249: 1184: 1160: 1117: 1097: 1070: 1050: 1026: 998: 971: 935: 911: 891: 851: 831: 807: 783: 759: 735: 705: 609: 572: 535: 515: 495: 472: 445: 425: 395: 368: 336: 316: 292: 272: 229: 194: 192:{\displaystyle (n-3)} 145: 121: 101: 70:of polytopes such as 30: 22: 2233:Thurston, William P. 2227:Sleator, Daniel D.; 2044:Discrete Mathematics 1944:Discrete Mathematics 1787: 1704: 1675: 1655: 1622: 1593: 1573: 1553: 1525: 1486: 1457: 1416: 1384: 1355: 1319: 1291: 1258: 1234: 1173: 1134: 1106: 1086: 1059: 1035: 1011: 983: 956: 920: 900: 876: 860:Topological surfaces 840: 816: 792: 768: 748: 717: 621: 581: 544: 524: 504: 484: 454: 434: 404: 377: 353: 325: 301: 281: 242: 218: 171: 143:{\displaystyle \pi } 134: 119:{\displaystyle \pi } 110: 90: 1980:Gel'fand, Izrail M. 870:topological surface 55:objects, and whose 1920:De Loera, Jesús A. 1793: 1736: 1690: 1661: 1634: 1608: 1579: 1559: 1531: 1492: 1472: 1426: 1394: 1370: 1337: 1301: 1273: 1244: 1179: 1155: 1112: 1092: 1065: 1045: 1021: 993: 966: 930: 906: 886: 846: 826: 802: 778: 754: 730: 700: 604: 567: 530: 510: 490: 467: 440: 420: 390: 363: 347:affinely dependent 331: 311: 287: 267: 224: 189: 140: 116: 96: 35:In mathematics, a 33: 25: 2340:978-3-642-34190-8 2229:Tarjan, Robert E. 2131:Santos, Francisco 2080:Santos, Francisco 1924:Santos, Francisco 1796:{\displaystyle n} 1761:Rotation distance 1664:{\displaystyle n} 1582:{\displaystyle n} 1562:{\displaystyle n} 1534:{\displaystyle n} 1495:{\displaystyle d} 1182:{\displaystyle d} 1126:Other flip graphs 1115:{\displaystyle n} 1095:{\displaystyle n} 1068:{\displaystyle n} 909:{\displaystyle n} 849:{\displaystyle n} 757:{\displaystyle z} 533:{\displaystyle T} 513:{\displaystyle T} 443:{\displaystyle T} 334:{\displaystyle T} 290:{\displaystyle T} 227:{\displaystyle T} 99:{\displaystyle n} 2553: 2525: 2524: 2514: 2492: 2486: 2485: 2483: 2473: 2447: 2441: 2440: 2438: 2436:10.4171/JEMS/726 2428: 2419:(9): 2697–2737. 2402: 2396: 2395: 2393: 2383: 2359: 2353: 2352: 2318: 2312: 2311: 2301: 2291: 2265: 2259: 2258: 2256: 2224: 2218: 2217: 2208: 2198: 2176: 2170: 2169: 2152: 2127: 2121: 2120: 2111: 2101: 2076: 2070: 2069: 2060: 2038: 2032: 2031: 2014: 2005: 2004: 1976: 1970: 1969: 1960: 1951:(1–3): 225–232, 1938: 1932: 1931: 1922:; Rambau, Jörg; 1916: 1905: 1904: 1882: 1876: 1875: 1866: 1841: 1832: 1831: 1822: 1802: 1800: 1799: 1794: 1780: 1745: 1743: 1742: 1737: 1717: 1699: 1697: 1696: 1691: 1670: 1668: 1667: 1662: 1643: 1641: 1640: 1635: 1617: 1615: 1614: 1609: 1588: 1586: 1585: 1580: 1568: 1566: 1565: 1560: 1547:William Thurston 1540: 1538: 1537: 1532: 1501: 1499: 1498: 1493: 1481: 1479: 1478: 1473: 1471: 1470: 1465: 1435: 1433: 1432: 1427: 1425: 1424: 1403: 1401: 1400: 1395: 1393: 1392: 1379: 1377: 1376: 1371: 1369: 1368: 1363: 1346: 1344: 1343: 1338: 1315:some faces of a 1310: 1308: 1307: 1302: 1300: 1299: 1282: 1280: 1279: 1274: 1272: 1271: 1266: 1253: 1251: 1250: 1245: 1243: 1242: 1188: 1186: 1185: 1180: 1164: 1162: 1161: 1156: 1121: 1119: 1118: 1113: 1101: 1099: 1098: 1093: 1074: 1072: 1071: 1066: 1054: 1052: 1051: 1046: 1044: 1043: 1030: 1028: 1027: 1022: 1020: 1019: 1002: 1000: 999: 994: 992: 991: 975: 973: 972: 967: 965: 964: 939: 937: 936: 931: 929: 928: 915: 913: 912: 907: 895: 893: 892: 887: 885: 884: 855: 853: 852: 847: 835: 833: 832: 827: 825: 824: 811: 809: 808: 803: 801: 800: 787: 785: 784: 779: 777: 776: 763: 761: 760: 755: 739: 737: 736: 731: 729: 728: 709: 707: 706: 701: 693: 692: 687: 686: 655: 638: 633: 632: 613: 611: 610: 605: 603: 602: 593: 592: 576: 574: 573: 568: 566: 565: 556: 555: 539: 537: 536: 531: 519: 517: 516: 511: 499: 497: 496: 491: 476: 474: 473: 468: 466: 465: 449: 447: 446: 441: 429: 427: 426: 421: 419: 418: 399: 397: 396: 391: 389: 388: 372: 370: 369: 364: 362: 361: 340: 338: 337: 332: 320: 318: 317: 312: 310: 309: 296: 294: 293: 288: 276: 274: 273: 268: 266: 265: 260: 251: 250: 233: 231: 230: 225: 198: 196: 195: 190: 149: 147: 146: 141: 125: 123: 122: 117: 105: 103: 102: 97: 61:geometric graphs 2561: 2560: 2556: 2555: 2554: 2552: 2551: 2550: 2531: 2530: 2529: 2528: 2493: 2489: 2448: 2444: 2403: 2399: 2360: 2356: 2341: 2319: 2315: 2266: 2262: 2225: 2221: 2177: 2173: 2128: 2124: 2077: 2073: 2039: 2035: 2015: 2008: 1977: 1973: 1939: 1935: 1917: 1908: 1883: 1879: 1842: 1835: 1788: 1785: 1784: 1781: 1774: 1769: 1752: 1713: 1705: 1702: 1701: 1676: 1673: 1672: 1656: 1653: 1652: 1623: 1620: 1619: 1594: 1591: 1590: 1574: 1571: 1570: 1554: 1551: 1550: 1526: 1523: 1522: 1515: 1502:is at least 5. 1487: 1484: 1483: 1466: 1461: 1460: 1458: 1455: 1454: 1442: 1420: 1419: 1417: 1414: 1413: 1388: 1387: 1385: 1382: 1381: 1364: 1359: 1358: 1356: 1353: 1352: 1320: 1317: 1316: 1295: 1294: 1292: 1289: 1288: 1267: 1262: 1261: 1259: 1256: 1255: 1238: 1237: 1235: 1232: 1231: 1212: 1207: 1174: 1171: 1170: 1135: 1132: 1131: 1128: 1107: 1104: 1103: 1087: 1084: 1083: 1060: 1057: 1056: 1039: 1038: 1036: 1033: 1032: 1015: 1014: 1012: 1009: 1008: 987: 986: 984: 981: 980: 960: 959: 957: 954: 953: 924: 923: 921: 918: 917: 901: 898: 897: 880: 879: 877: 874: 873: 862: 841: 838: 837: 820: 819: 817: 814: 813: 796: 795: 793: 790: 789: 772: 771: 769: 766: 765: 749: 746: 745: 724: 720: 718: 715: 714: 688: 682: 681: 677: 651: 634: 628: 627: 622: 619: 618: 598: 594: 588: 587: 582: 579: 578: 561: 557: 551: 550: 545: 542: 541: 525: 522: 521: 505: 502: 501: 485: 482: 481: 461: 457: 455: 452: 451: 435: 432: 431: 430:is a subset of 414: 413: 405: 402: 401: 384: 380: 378: 375: 374: 357: 356: 354: 351: 350: 341:triangulates a 326: 323: 322: 305: 304: 302: 299: 298: 282: 279: 278: 261: 256: 255: 246: 245: 243: 240: 239: 219: 216: 215: 212: 172: 169: 168: 135: 132: 131: 111: 108: 107: 91: 88: 87: 84: 17: 12: 11: 5: 2559: 2549: 2548: 2543: 2527: 2526: 2505:(3): 619–640. 2487: 2442: 2397: 2354: 2339: 2313: 2260: 2247:(3): 647–681. 2219: 2171: 2122: 2071: 2033: 2006: 1971: 1933: 1906: 1877: 1845:Simion, Rodica 1833: 1813:(6): 551–560, 1792: 1771: 1770: 1768: 1765: 1764: 1763: 1758: 1751: 1748: 1735: 1732: 1729: 1726: 1723: 1720: 1716: 1712: 1709: 1689: 1686: 1683: 1680: 1660: 1633: 1630: 1627: 1607: 1604: 1601: 1598: 1578: 1558: 1530: 1514: 1511: 1491: 1469: 1464: 1448:. As shown by 1441: 1438: 1423: 1391: 1367: 1362: 1336: 1333: 1330: 1327: 1324: 1298: 1270: 1265: 1241: 1222:, a number of 1211: 1208: 1206: 1203: 1198:domino tilings 1178: 1154: 1151: 1148: 1145: 1142: 1139: 1127: 1124: 1111: 1091: 1064: 1042: 1018: 990: 963: 927: 905: 883: 866:triangulations 861: 858: 845: 823: 799: 775: 753: 727: 723: 711: 710: 699: 696: 691: 685: 680: 676: 673: 670: 667: 664: 661: 658: 654: 650: 647: 644: 641: 637: 631: 626: 601: 597: 591: 586: 564: 560: 554: 549: 529: 509: 489: 477:have the same 464: 460: 439: 417: 412: 409: 387: 383: 360: 330: 308: 286: 264: 259: 254: 249: 223: 211: 208: 188: 185: 182: 179: 176: 161:Tamari lattice 139: 128:triangulations 115: 95: 83: 80: 15: 9: 6: 4: 3: 2: 2558: 2547: 2544: 2542: 2539: 2538: 2536: 2522: 2518: 2513: 2508: 2504: 2500: 2499: 2491: 2482: 2477: 2472: 2467: 2463: 2459: 2458: 2453: 2446: 2437: 2432: 2427: 2422: 2418: 2414: 2413: 2408: 2401: 2392: 2391:10.37236/5489 2387: 2382: 2377: 2373: 2369: 2365: 2358: 2350: 2346: 2342: 2336: 2332: 2328: 2324: 2317: 2309: 2305: 2300: 2295: 2290: 2285: 2281: 2277: 2276: 2271: 2264: 2255: 2250: 2246: 2242: 2238: 2234: 2230: 2223: 2216: 2212: 2207: 2202: 2197: 2192: 2188: 2184: 2183: 2175: 2168: 2164: 2160: 2156: 2151: 2146: 2142: 2138: 2137: 2132: 2126: 2119: 2115: 2110: 2105: 2100: 2095: 2091: 2087: 2086: 2081: 2075: 2068: 2064: 2059: 2054: 2050: 2046: 2045: 2037: 2029: 2025: 2024: 2019: 2018:Wagner, Klaus 2013: 2011: 2003: 1999: 1995: 1991: 1990: 1985: 1981: 1975: 1968: 1964: 1959: 1954: 1950: 1946: 1945: 1937: 1929: 1925: 1921: 1915: 1913: 1911: 1903: 1899: 1895: 1891: 1887: 1881: 1874: 1870: 1865: 1860: 1857:(1–2): 2–25, 1856: 1852: 1851: 1846: 1840: 1838: 1830: 1826: 1821: 1816: 1812: 1808: 1807: 1790: 1779: 1777: 1772: 1762: 1759: 1757: 1756:Flip distance 1754: 1753: 1747: 1730: 1721: 1718: 1714: 1710: 1707: 1687: 1684: 1681: 1678: 1658: 1650: 1645: 1631: 1628: 1625: 1605: 1602: 1599: 1596: 1576: 1556: 1548: 1544: 1543:Robert Tarjan 1528: 1520: 1510: 1508: 1503: 1489: 1467: 1451: 1447: 1440:Connectedness 1437: 1411: 1407: 1365: 1350: 1347:-dimensional 1331: 1328: 1325: 1314: 1286: 1268: 1229: 1225: 1221: 1217: 1202: 1199: 1194: 1192: 1189:-dimensional 1176: 1168: 1149: 1146: 1143: 1140: 1123: 1109: 1089: 1080: 1078: 1062: 1004: 977: 951: 950:triangulation 947: 943: 942:multiple arcs 903: 871: 867: 857: 843: 751: 743: 725: 721: 697: 689: 683: 678: 674: 668: 665: 662: 656: 652: 648: 645: 639: 635: 629: 624: 617: 616: 615: 599: 595: 589: 584: 562: 558: 552: 547: 540:by replacing 527: 507: 487: 480: 462: 458: 437: 410: 407: 400:of a circuit 385: 381: 348: 345:(a minimally 344: 328: 284: 262: 252: 237: 236:triangulation 221: 207: 204: 202: 201:associahedron 199:-dimensional 183: 180: 177: 166: 162: 158: 157:Hasse diagram 153: 137: 129: 113: 93: 79: 77: 73: 69: 64: 62: 58: 54: 50: 49:combinatorial 46: 42: 38: 29: 21: 2502: 2496: 2490: 2461: 2455: 2445: 2416: 2410: 2400: 2374:(1): P1.43. 2371: 2367: 2357: 2322: 2316: 2279: 2273: 2263: 2244: 2240: 2222: 2186: 2180: 2174: 2150:math/0204044 2140: 2134: 2125: 2089: 2083: 2074: 2048: 2042: 2036: 2027: 2021: 1993: 1987: 1974: 1948: 1942: 1936: 1927: 1893: 1892:, Series 3, 1889: 1880: 1854: 1848: 1810: 1804: 1649:Klaus Wagner 1646: 1516: 1504: 1450:Klaus Wagner 1443: 1216:associahedra 1213: 1210:Polytopality 1195: 1129: 1081: 1005: 978: 863: 712: 213: 205: 85: 72:associahedra 65: 36: 34: 2464:: 158–173. 2189:: 511–530, 2143:: 645–665, 2092:: 611–637, 2051:: 365–372, 1996:: 278–281, 1896:: 131–146, 1886:Tamari, Dov 1214:Apart from 1191:cyclohedron 2535:Categories 2512:1602.04576 2471:1510.07664 2381:1508.03473 2109:10902/2584 1767:References 1406:1-skeleton 1313:projecting 1228:1-skeleton 1220:cyclohedra 1205:Properties 1167:1-skeleton 349:subset of 165:1-skeleton 76:cyclohedra 68:1-skeleton 37:flip graph 2426:1407.1516 2349:0302-9743 2289:1207.6296 2282:: 13–42. 2196:1201.6543 1725:Θ 1685:− 1629:≥ 1603:− 1446:connected 1224:polytopes 722:τ 684:× 675:∈ 649:∪ 630:⋆ 596:τ 590:⋆ 585:λ 563:− 559:τ 553:⋆ 548:λ 488:λ 463:− 459:τ 411:⊂ 386:− 382:τ 253:⊂ 181:− 138:π 114:π 53:geometric 2235:(1988). 1926:(2010). 1750:See also 1519:diameter 1513:Diameter 1410:polytope 1349:polytope 614:, where 163:and the 152:adjacent 82:Examples 45:vertices 2308:3197650 2215:3038527 2167:2181765 2118:1758756 2067:0311491 2030:: 26–32 2002:1020882 1967:1310882 1902:0146227 1873:1979780 1829:1022776 1803:-gon", 1404:is the 1169:of the 740:is, by 343:circuit 167:of the 159:of the 2347:  2337:  2306:  2213:  2165:  2116:  2065:  2000:  1965:  1900:  1871:  1827:  1545:, and 1283:, the 856:-gon. 43:whose 2507:arXiv 2466:arXiv 2421:arXiv 2376:arXiv 2284:arXiv 2191:arXiv 2145:arXiv 1618:when 1549:when 1408:of a 1055:with 946:loops 868:of a 234:be a 106:-gon 57:edges 41:graph 39:is a 2345:ISSN 2335:ISBN 1688:33.6 1218:and 713:and 479:link 214:Let 47:are 2517:doi 2476:doi 2431:doi 2386:doi 2327:doi 2294:doi 2280:259 2249:doi 2201:doi 2155:doi 2141:332 2104:hdl 2094:doi 2053:doi 1953:doi 1949:135 1859:doi 1815:doi 1679:5.2 1351:on 1287:of 952:of 577:by 500:in 130:of 74:or 51:or 2537:: 2515:. 2503:22 2501:. 2474:. 2462:67 2460:. 2454:. 2429:. 2417:19 2415:. 2409:. 2384:. 2372:24 2370:. 2366:. 2343:. 2333:. 2304:MR 2302:. 2292:. 2278:. 2272:. 2243:. 2239:. 2231:; 2211:MR 2209:, 2199:, 2187:49 2185:, 2163:MR 2161:, 2153:, 2139:, 2114:MR 2112:, 2102:, 2090:13 2088:, 2063:MR 2061:, 2047:, 2028:46 2026:, 2009:^ 1998:MR 1994:40 1992:, 1982:; 1963:MR 1961:, 1947:, 1909:^ 1898:MR 1894:10 1869:MR 1867:, 1855:30 1853:, 1836:^ 1825:MR 1823:, 1811:10 1809:, 1775:^ 1644:. 1632:13 1606:10 1436:. 1079:. 976:. 203:. 78:. 63:. 2523:. 2519:: 2509:: 2484:. 2478:: 2468:: 2439:. 2433:: 2423:: 2394:. 2388:: 2378:: 2351:. 2329:: 2310:. 2296:: 2286:: 2257:. 2251:: 2245:1 2203:: 2193:: 2157:: 2147:: 2106:: 2096:: 2055:: 2049:3 1955:: 1861:: 1817:: 1791:n 1734:) 1731:1 1728:( 1722:+ 1719:3 1715:/ 1711:n 1708:7 1682:n 1659:n 1626:n 1600:n 1597:2 1577:n 1557:n 1529:n 1490:d 1468:d 1463:R 1422:A 1390:A 1366:d 1361:R 1335:) 1332:1 1329:+ 1326:d 1323:( 1297:A 1269:d 1264:R 1240:A 1177:d 1153:) 1150:2 1147:+ 1144:d 1141:2 1138:( 1110:n 1090:n 1063:n 1041:S 1017:S 989:S 962:S 926:S 904:n 882:S 844:n 822:A 798:A 774:A 752:z 726:+ 698:, 695:} 690:Y 679:X 672:) 669:y 666:, 663:x 660:( 657:: 653:y 646:x 643:{ 640:= 636:Y 625:X 600:+ 528:T 508:T 438:T 416:A 408:z 359:A 329:T 307:A 285:T 263:d 258:R 248:A 222:T 187:) 184:3 178:n 175:( 94:n

Index



graph
vertices
combinatorial
geometric
edges
geometric graphs
1-skeleton
associahedra
cyclohedra
triangulations
adjacent
Hasse diagram
Tamari lattice
1-skeleton
associahedron
triangulation
circuit
affinely dependent
link
Radon's partition theorem
triangulations
topological surface
multiple arcs
loops
triangulation
bordered topological surfaces
1-skeleton
cyclohedron

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.