Knowledge

Injective sheaf

Source đź“ť

271:
in the Zariski topology. This causes problems when attempting to define left derived functors of a right exact functor (such as Tor). This can sometimes be done by ad hoc means: for example, the left derived functors of Tor can be defined using a flat resolution rather than a projective one, but it
103:
sufficed to found the theory. The other classes of sheaves are historically older notions. The abstract framework for defining cohomology and derived functors does not need them. However, in most concrete situations, resolutions by acyclic sheaves are often easier to construct. Acyclic sheaves
267:, is not used much, because in a general category of sheaves there are not enough of them: not every sheaf is the quotient of a projective sheaf, and in particular projective resolutions do not always exist. This is the case, for example, when looking at the category of sheaves on 357:. Typical examples are the sheaf of germs of continuous real-valued functions over such a space, or smooth functions over a smooth (paracompact Hausdorff) manifold, or modules over these sheaves of rings. Also, fine sheaves over paracompact Hausdorff spaces are soft and acyclic. 255:
For technical purposes, injective sheaves are usually superior to the other classes of sheaves mentioned above: they can do almost anything the other classes can do, and their theory is simpler and more general. In fact, injective sheaves are flabby
497: 871: 623: 244:
The category of abelian sheaves has enough injective objects: this means that any sheaf is a subsheaf of an injective sheaf. This result of Grothendieck follows from the existence of a
775: 240: 716: 658: 309: 213: 189: 165: 141: 530: 390: 260:), soft, and acyclic. However, there are situations where the other classes of sheaves occur naturally, and this is especially true in concrete computational situations. 272:
takes some work to show that this is independent of the resolution. Not all categories of sheaves run into this problem; for instance, the category of sheaves on an
402: 736: 793: 895:
Flasque sheaves are useful because (by definition) their sections extend. This means that they are some of the simplest sheaves to handle in terms of
346:
we can find a family of homomorphisms from the sheaf to itself with sum 1 such that each homomorphism is 0 outside some element of the open cover.
538: 252:). This is enough to show that right derived functors of any left exact functor exist and are unique up to canonical isomorphism. 993: 966: 900: 908: 360:
One can find a resolution of a sheaf on a smooth manifold by fine sheaves using the Alexander–Spanier resolution.
318:
The cohomology groups of any sheaf can be calculated from any acyclic resolution of it (this goes by the name of
143:
is a sheaf that is an injective object of the category of abelian sheaves; in other words, homomorphisms from
748: 1074: 899:. Any sheaf has a canonical embedding into the flasque sheaf of all possibly discontinuous sections of the 17: 1069: 218: 697: 639: 290: 194: 170: 146: 122: 513: 373: 105: 1010: 90: 532:
can thus be computed as the cohomology of the complex of globally defined differential forms:
492:{\displaystyle 0\to \mathbb {R} \to C_{X}^{0}\to C_{X}^{1}\to \cdots \to C_{X}^{\dim X}\to 0.} 1079: 1044: 1003: 889: 319: 249: 8: 896: 881: 785: 692: 339: 58: 885: 866:{\displaystyle r_{U\subseteq V}:\Gamma (V,{\mathcal {F}})\to \Gamma (U,{\mathcal {F}})} 721: 393: 1032: 989: 962: 739: 503: 1022: 954: 912: 268: 99: 94: 43: 903:, and by repeating this we can find a canonical flasque resolution for any sheaf. 1040: 999: 925: 47: 981: 958: 1063: 1036: 1027: 273: 39: 953:. Graduate Texts in Mathematics. Vol. 94. pp. 186, 181, 178, 170. 1054: 86: 248:
of the category (it can be written down explicitly, and is related to the
781: 350: 51: 31: 877: 85:. In the history of the subject they were introduced before the 1957 " 364: 1050: 951:
Foundations of Differentiable Manifolds and Lie Groups - Springer
618:{\displaystyle H^{i}(X,\mathbb {R} )=H^{i}(C_{X}^{\bullet }(X)).} 502:
This is a resolution, i.e. an exact complex of sheaves by the
675:
Soft sheaves are acyclic over paracompact Hausdorff spaces.
315:
is one such that all higher sheaf cohomology groups vanish.
104:
therefore serve for computational purposes, for example the
911:
by means of flasque sheaves, are one approach to defining
370:. There is the following resolution of the constant sheaf 928:
word that has sometimes been translated into English as
57:
There is a further group of related concepts applied to
42:
are used to construct the resolutions needed to define
1013:(1957), "Sur quelques points d'algèbre homologique", 796: 751: 724: 700: 642: 541: 516: 405: 376: 293: 221: 197: 173: 149: 125: 865: 769: 730: 710: 652: 617: 524: 491: 384: 342:"; more precisely for any open cover of the space 303: 234: 207: 183: 159: 135: 1061: 986:Topologie algĂ©brique et thĂ©orie des faisceaux 1051:"Sheaf cohomology and injective resolutions" 1009: 678: 1026: 562: 518: 413: 378: 980: 349:Fine sheaves are usually only used over 770:{\displaystyle U\subseteq V\subseteq X} 27:Mathematical object in sheaf cohomology 14: 1062: 948: 918:Flasque sheaves are soft and acyclic. 664:is one such that any section over any 672:can be extended to a global section. 191:can always be extended to any sheaf 111: 363:As an application, consider a real 24: 855: 841: 830: 816: 742:on which the sheaf is defined and 703: 645: 296: 279: 224: 200: 176: 152: 128: 25: 1091: 718:with the following property: if 392:by the fine sheaves of (smooth) 1015:The Tohoku Mathematical Journal 628: 325: 235:{\displaystyle {\mathcal {A}}.} 942: 860: 844: 838: 835: 819: 711:{\displaystyle {\mathcal {F}}} 653:{\displaystyle {\mathcal {F}}} 609: 606: 600: 582: 566: 552: 483: 459: 453: 435: 417: 409: 304:{\displaystyle {\mathcal {F}}} 208:{\displaystyle {\mathcal {B}}} 184:{\displaystyle {\mathcal {F}}} 160:{\displaystyle {\mathcal {A}}} 136:{\displaystyle {\mathcal {F}}} 13: 1: 935: 276:contains enough projectives. 525:{\displaystyle \mathbb {R} } 385:{\displaystyle \mathbb {R} } 7: 10: 1096: 959:10.1007/978-1-4757-1799-0 949:Warner, Frank W. (1983). 679:Flasque or flabby sheaves 93:, which showed that the 1011:Grothendieck, Alexander 106:Leray spectral sequence 1028:10.2748/tmj/1178244839 867: 771: 732: 712: 654: 619: 526: 493: 386: 305: 236: 209: 185: 161: 137: 91:Alexander Grothendieck 868: 772: 733: 713: 655: 620: 527: 494: 387: 306: 237: 210: 186: 162: 138: 794: 749: 722: 698: 640: 539: 514: 506:. The cohomology of 403: 374: 320:De Rham-Weil theorem 291: 250:subobject classifier 219: 195: 171: 147: 123: 1075:Homological algebra 905:Flasque resolutions 897:homological algebra 599: 482: 452: 434: 340:partitions of unity 1070:Algebraic geometry 988:, Paris: Hermann, 863: 767: 728: 708: 650: 615: 585: 522: 489: 462: 438: 420: 394:differential forms 382: 301: 265:projective sheaves 263:The dual concept, 232: 205: 181: 157: 133: 1017:, Second Series, 995:978-2-7056-1252-8 968:978-1-4419-2820-7 740:topological space 731:{\displaystyle X} 353:Hausdorff spaces 112:Injective sheaves 36:injective sheaves 16:(Redirected from 1087: 1047: 1030: 1006: 973: 972: 946: 913:sheaf cohomology 872: 870: 869: 864: 859: 858: 834: 833: 812: 811: 776: 774: 773: 768: 737: 735: 734: 729: 717: 715: 714: 709: 707: 706: 659: 657: 656: 651: 649: 648: 624: 622: 621: 616: 598: 593: 581: 580: 565: 551: 550: 531: 529: 528: 523: 521: 498: 496: 495: 490: 481: 470: 451: 446: 433: 428: 416: 391: 389: 388: 383: 381: 310: 308: 307: 302: 300: 299: 269:projective space 241: 239: 238: 233: 228: 227: 214: 212: 211: 206: 204: 203: 190: 188: 187: 182: 180: 179: 166: 164: 163: 158: 156: 155: 142: 140: 139: 134: 132: 131: 100:injective object 95:abelian category 50:, such as sheaf 48:derived functors 44:sheaf cohomology 21: 1095: 1094: 1090: 1089: 1088: 1086: 1085: 1084: 1060: 1059: 996: 982:Godement, Roger 977: 976: 969: 947: 943: 938: 854: 853: 829: 828: 801: 797: 795: 792: 791: 786:restriction map 750: 747: 746: 723: 720: 719: 702: 701: 699: 696: 695: 687:(also called a 681: 644: 643: 641: 638: 637: 631: 594: 589: 576: 572: 561: 546: 542: 540: 537: 536: 517: 515: 512: 511: 510:with values in 471: 466: 447: 442: 429: 424: 412: 404: 401: 400: 377: 375: 372: 371: 328: 295: 294: 292: 289: 288: 282: 280:Acyclic sheaves 223: 222: 220: 217: 216: 199: 198: 196: 193: 192: 175: 174: 172: 169: 168: 151: 150: 148: 145: 144: 127: 126: 124: 121: 120: 118:injective sheaf 114: 28: 23: 22: 15: 12: 11: 5: 1093: 1083: 1082: 1077: 1072: 1058: 1057: 1048: 1021:(2): 119–221, 1007: 994: 975: 974: 967: 940: 939: 937: 934: 880:, as a map of 874: 873: 862: 857: 852: 849: 846: 843: 840: 837: 832: 827: 824: 821: 818: 815: 810: 807: 804: 800: 778: 777: 766: 763: 760: 757: 754: 727: 705: 680: 677: 647: 630: 627: 626: 625: 614: 611: 608: 605: 602: 597: 592: 588: 584: 579: 575: 571: 568: 564: 560: 557: 554: 549: 545: 520: 504:PoincarĂ© lemma 500: 499: 488: 485: 480: 477: 474: 469: 465: 461: 458: 455: 450: 445: 441: 437: 432: 427: 423: 419: 415: 411: 408: 380: 327: 324: 298: 281: 278: 231: 226: 202: 178: 154: 130: 113: 110: 40:abelian groups 26: 9: 6: 4: 3: 2: 1092: 1081: 1078: 1076: 1073: 1071: 1068: 1067: 1065: 1056: 1052: 1049: 1046: 1042: 1038: 1034: 1029: 1024: 1020: 1016: 1012: 1008: 1005: 1001: 997: 991: 987: 983: 979: 978: 970: 964: 960: 956: 952: 945: 941: 933: 931: 927: 923: 919: 916: 914: 910: 906: 902: 898: 893: 891: 887: 883: 879: 850: 847: 825: 822: 813: 808: 805: 802: 798: 790: 789: 788: 787: 783: 764: 761: 758: 755: 752: 745: 744: 743: 741: 725: 694: 690: 686: 685:flasque sheaf 676: 673: 671: 667: 663: 636: 612: 603: 595: 590: 586: 577: 573: 569: 558: 555: 547: 543: 535: 534: 533: 509: 505: 486: 478: 475: 472: 467: 463: 456: 448: 443: 439: 430: 425: 421: 406: 399: 398: 397: 395: 369: 366: 361: 358: 356: 352: 347: 345: 341: 338:is one with " 337: 333: 323: 321: 316: 314: 287: 286:acyclic sheaf 277: 275: 274:affine scheme 270: 266: 261: 259: 253: 251: 247: 242: 229: 119: 109: 107: 102: 101: 96: 92: 88: 84: 80: 76: 72: 68: 64: 60: 55: 53: 49: 45: 41: 37: 33: 19: 1080:Sheaf theory 1055:MathOverflow 1018: 1014: 985: 950: 944: 929: 921: 920: 917: 904: 894: 875: 782:open subsets 779: 738:is the base 689:flabby sheaf 688: 684: 682: 674: 669: 665: 661: 634: 632: 629:Soft sheaves 507: 501: 367: 362: 359: 354: 348: 343: 335: 331: 329: 326:Fine sheaves 317: 312: 285: 283: 264: 262: 257: 254: 245: 243: 117: 115: 98: 87:Tohoku paper 82: 81:in French), 78: 74: 70: 69:in French), 66: 62: 56: 35: 29: 18:Flabby sheaf 909:resolutions 907:, that is, 901:Ă©talĂ© space 784:, then the 351:paracompact 215:containing 46:(and other 32:mathematics 1064:Categories 936:References 878:surjective 668:subset of 635:soft sheaf 332:fine sheaf 97:notion of 1037:0040-8735 892:, etc.). 842:Γ 839:→ 817:Γ 806:⊆ 762:⊆ 756:⊆ 596:∙ 484:→ 476:⁡ 460:→ 457:⋯ 454:→ 436:→ 418:→ 410:→ 246:generator 984:(1998), 365:manifold 1045:0102537 1004:0345092 922:Flasque 890:modules 691:) is a 258:flasque 83:acyclic 67:flasque 59:sheaves 1043:  1035:  1002:  992:  965:  930:flabby 926:French 882:groups 666:closed 63:flabby 924:is a 886:rings 693:sheaf 660:over 334:over 311:over 89:" of 1033:ISSN 990:ISBN 963:ISBN 780:are 75:soft 71:fine 1053:on 1023:doi 955:doi 876:is 473:dim 322:). 284:An 167:to 116:An 108:. 79:mou 54:). 52:Ext 38:of 30:In 1066:: 1041:MR 1039:, 1031:, 1000:MR 998:, 961:. 932:. 915:. 888:, 683:A 633:A 487:0. 396:: 330:A 73:, 61:: 34:, 1025:: 1019:9 971:. 957:: 884:( 861:) 856:F 851:, 848:U 845:( 836:) 831:F 826:, 823:V 820:( 814:: 809:V 803:U 799:r 765:X 759:V 753:U 726:X 704:F 670:X 662:X 646:F 613:. 610:) 607:) 604:X 601:( 591:X 587:C 583:( 578:i 574:H 570:= 567:) 563:R 559:, 556:X 553:( 548:i 544:H 519:R 508:X 479:X 468:X 464:C 449:1 444:X 440:C 431:0 426:X 422:C 414:R 407:0 379:R 368:X 355:X 344:X 336:X 313:X 297:F 256:( 230:. 225:A 201:B 177:F 153:A 129:F 77:( 65:( 20:)

Index

Flabby sheaf
mathematics
abelian groups
sheaf cohomology
derived functors
Ext
sheaves
Tohoku paper
Alexander Grothendieck
abelian category
injective object
Leray spectral sequence
subobject classifier
projective space
affine scheme
De Rham-Weil theorem
partitions of unity
paracompact
manifold
differential forms
Poincaré lemma
sheaf
topological space
open subsets
restriction map
surjective
groups
rings
modules
homological algebra

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑